
Table of Contents
ActiveReports 14 User Guide 17

Welcome to ActiveReports 14 17-18

What's New 18-19

ActiveReports Editions 19-28

Product Requirements 28-30

Install ActiveReports 30-36

Available Packages 36-39

Manage ActiveReports Dependencies 39-40

GrapeCity Copyright Notice 41

End User License Agreement 41

Redistributable Files 41-42

Open Source Software 42-46

License Your ActiveReports 46

License Types 46-47

Licensing a Developer Machine 47-53

Licensing a Project 53-56

Licensing Compiled Code 56-57

Licensing with Pipelines 57

Licensing Errors 57-59

Contacting Support 59

Quick Start 59-68

Upgrade Reports 68-69

Breaking Changes 69-74

Migration Types 74-75

Migrate from Previous Versions 75

ActiveReports Version Up History 75

ActiveReports File Converter 75-78

Migrate to ActiveReports 14 78-79

Reference Migration 79-80

License Migration 80-81

ds Variable 81-82

WebViewer Migration 82

ActiveReports 14 1

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveX Viewer Migration 82-85

Compatibility Guidelines 86-89

Migrate Execution Environment 89-90

Migrate from ActiveReports 2 COM 90

ActiveReports 2 COM versus ActiveReports 14 90-100

Coexistence of ActiveReports Designers 100-101

Import Reports 101-102

Import Crystal Reports/MS Access Reports 102-105

Import Excel 105-111

Import RPX 111-114

Report Types 114-118

Page Report 118-119

Report Definition Language (RDL) Report 119-122

Master Reports (RDL) 122-124

Code-Based Section Report 124

XML-Based Section Report 124-125

Preview Reports 125-126

Windows Forms 126-137

Customize the Viewer ToolStrip 137-138

Customize the Viewer Control 138-141

ASP.NET 141-142

Getting Started with the WebViewer 142-143

Using the HTML Viewer 143-147

Using Javascript with the HTML Viewer 147

JavaScript 147-151

JSViewer API 151-160

Configure JSViewer 160-163

Previewing Reports in JSViewer 163-166

WPF 166-172

View Reports in WPF Viewer 172-177

Medium Trust Support 177-178

Viewing Reports from Different Domains using CORS 178-180

Print Reports 180

ActiveReports 14 2

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Advanced Print Options 180-181

Print Methods 181-183

Print in JSViewer 183-185

PDF Print Presets 185-188

Export Reports 188-189

Rendering Extensions 189-190

Rendering to HTML 190-192

Rendering to PDF 192-202

Rendering to Images 202-206

Rendering to XML 206-208

Rendering to Excel 208-212

Rendering to Word 212-219

Rendering to CSV 219-221

Rendering to JSON 221-222

Editable PDFs 222-223

Export Filters 223

HTML Export 223-225

PDF Export 225-233

Text Export 233-234

RTF Export 234-235

Excel Export 235-236

TIFF Export 236-237

Exporting Reports using Export Filters 237-240

Basic Spreadsheet with SpreadBuilder 240-242

Custom Font Factory (Pro Edition) 242-247

Font Linking 247

Concepts 247-248

ActiveReports Designer 248-250

Design View 250-253

Report Menu 253-254

Designer Tabs 254-256

Designer Buttons 256-260

Page Tabs 260-261

ActiveReports 14 3

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Toolbar 261-266

Report Explorer 266-267

Exploring Page and RDL Reports 267-269

Exploring Section Reports 269-270

Toolbox 270

Properties Window 270-271

Rulers 271-273

Scroll Bars 273

Snap Lines 273-275

Zoom Support 275-276

ActiveReports Web Designer 276

Set up Web Designer 276-285

Designer Server API Object 285-301

Designer Options Object 301-309

Create a Simple Web Designer Sample 309-330

Designer Control (Pro Edition) 330

Standalone Viewers 330-331

Standalone ActiveReports Designer 331-336

Page Report/RDL Report Concepts 336-337

Toolbox 337-339

Banded List 339-343

Barcode 343-357

Bullet 357-360

Chart 360-363

Chart Types 363-364

Column Chart 364-367

Bar Chart 367-369

Line Chart 369-371

Area Chart 371-374

Pie Chart 374-376

Spiral Chart 376-378

Polar Chart 378-379

Other Chart Types 379-386

ActiveReports 14 4

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Classic Chart 386-397

Chart Data Dialog 397-404

CheckBox 404-406

Container 406-408

Formatted Text 408-412

Image 412-415

InputField 415

Line 415-416

List 416-420

Map 420-430

Overflow Place Holder 430-432

Shape 432-434

Sparkline 434-438

Subreport 438-440

Table 440-447

Table of Contents 447-449

TextBox 449-454

Tablix 454-458

Tablix Reports 458-461

Data Sources and Datasets 461-462

Report Data Source Dialog 462-463

Microsoft SQL Client Provider 463-464

CSV Provider 464-465

Reports with CSV Data 465-467

DataSet and Object Providers 467

JSON Provider 467-470

Reports with JSON Data 470-479

Microsoft ODBC Provider 479

Microsoft OLeDb Provider 479-481

XML Provider 481-482

Reports with XML Data 482-486

DataSet Dialog 486-489

Nested Data Regions Bound to Different Data 489-491

ActiveReports 14 5

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Expressions 491-494

Common Values 494-495

Common Functions 495-503

Expressions in Reports 503-505

LookupSet Function in Data Regions 505-506

Layers 506-515

Working with Layers 515-519

View, Export or Print Layers 519-520

Tracing Layers 520-524

Report Appearance 524

Styles 524-533

Themes 533-536

Report Dialog 536-539

Fixed Page Dialog 539-542

Data Visualizers 542-543

Icon Set 543-547

Range Bar 547-550

Range Bar Progress 550-553

Data Bar 553-557

Gradient 557-559

Hatch 559-560

Color Scale 2 560-563

Color Scale 3 563-566

Custom Resource Locator 566-571

Section Report Concepts 571

Section Report Toolbox 571-572

Label 572-575

TextBox (Section Report) 575-579

CheckBox (Section Report) 579-580

RichTextBox 580-584

Shape (Section Report) 584-585

Picture 585-586

Line (Section Report) 586-587

ActiveReports 14 6

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Page Break 587-588

Barcode (Section Report) 588-603

Subreport (Section Report) 603-604

Ole Object 604-605

Chart 605-608

Chart Wizard 608-609

Chart Types (Section Reports) 609

Area Chart 609-610

2D Area Charts 610-611

3D Area Charts 611-613

Bar Chart 613

2D Bar Charts 613-616

3D Bar Charts 616-623

Line Chart 623

2D Line Charts 623-625

3D Line Charts 625-626

Pie and Doughnut Charts 626

2D Pie/Doughnut Charts 626-629

3D Pie/Doughnut Charts 629-634

Financial Chart 634

2D Financial Charts 634-642

3D Financial Charts 642-646

Point and Bubble Charts 646

2D Point/Bubble Charts 646-649

Chart Series 649-651

Chart Appearance 651

Chart Effects 651

Colors 651-653

3D Effects 653

Alpha Blending 653-654

Lighting 654-655

Chart Control Items 655

Chart Annotations 655-657

ActiveReports 14 7

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Titles and Footers 657-659

Legends 659-662

Markers 662-663

Label Symbols 663-670

Constant Lines and Stripes 670-673

Chart Axes and Walls 673

Standard Axes 673-676

Custom Axes 676-678

Gridlines and Tick Marks 678

Report Info 678-680

CrossSection Controls 680-683

Section Report Structure 683-685

Section Report Events 685-689

Designing Code-based Section Reports in .NET Core 689-696

Scripting in Section Reports 696-698

Report Settings Dialog 698-700

Date, Time, and Number Formatting 700-701

Optimizing Section Reports 701-702

CacheToDisk and Resource Storage 702-703

Visual Query Designer 703-709

Query Building With Visual Query Designer 709-721

Tables And Relations 721-723

Using the Visual Query Designer 723-727

Interactive Features 727-728

Parameters 728-730

Filtering 730-732

Drill-Down Reports 732

Linking in Reports 732-734

Document Map 734-735

Sorting 735-736

Annotations 736-738

Report Parts 738-742

Create report using Report Parts 742-745

ActiveReports 14 8

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Common Concepts 745

Text Justification 745-746

Multi Line in Report Controls 746-747

Line Spacing and Character Spacing 747

Shrink Text to Fit in a Control 747-748

Condense Characters to Fit in a Control 748-750

Localization 750

Cultures 750-757

Section 508 Compliance 757-762

How To 762

Page Report/RDL Report How To 762-763

Report Data 763

Connect to a Data Source 763-766

Add a Dataset 766-769

Work with Local Shared Data Sources 769-770

Bind a Page Report to a Data Source at Run Time 770-780

Use Dynamically Built JSON Data Source 780-781

Report Controls 781-782

Work with Map 782

Create a Map 782-787

Add Data 787-791

Work with Layers 791

Use Layers 791-793

Use a Polygon Layer 793-794

Use a Point Layer 794-796

Use a Line Layer 796-797

Use a Tile Layer 797-799

Add a Custom Tile Provider 799-803

Use Color Rule, Marker Rule and Size Rule 803-807

Work with Images 807-809

Add TableOfContents 809-812

Merge Cells in a Data Region 812-814

Add Totals and Subtotals in a Data Region 814-819

ActiveReports 14 9

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Set Fixed Size of a Data Region 819-820

Manage Data 820-821

Group Data 821-824

Set Detail Grouping In Sparklines 824-825

Sort Data 825-829

Set Filters 829-832

Page/RDL Report Scenarios 832-833

Create Top N Report 833

Create Red Negatives Report 833-834

Create Green Bar Report 834-835

Create a Bullet Graph 835-836

Create a Whisker Sparkline 836

Create and Use a Master Report (RDL Report) 836-837

Merge Multiple Reports 837-840

Interactivity 840-841

Add Parameters 841

Add a Multi-Value Parameter 841-845

Add a Cascading Parameter 845-847

Set a Hidden Parameter 847-848

Add Hyperlinks 848-849

Add Bookmarks 849-851

Create a Drill-Down Report 851-852

Set a Drill-Through Link 852-854

Allow Users to Sort Data in the Viewer 854-855

Common Tasks 855-856

Add Items to the Document Map 856-859

Change Page Size 859-860

Add Code to Layouts Using Scripts 860-862

Freeze Rows and Columns (RDL Report) 862-863

Add Page Numbers 863-865

Add Page Breaks in RDL (RDL Report) 865

Section Report How To 865-866

Report Data 866

ActiveReports 14 10

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Bind Reports to a Data Source 866-874

Modify Data Sources at Run Time 874-876

Report Controls 876

Add Field Expressions 877-878

Display Page Numbers and Report Dates 878-880

Load a File into a RichTextBox Control 880-884

Use Custom Controls on Reports 884-886

Section Report Scenarios 886-887

Create Top N Reports 887-888

Create a Summary Report 888-889

Create Green Bar Reports 890-891

Interactivity 891

Add Parameters in a Section Report 891-896

Add Bookmarks 896-899

Add Hyperlinks 899-902

Add and Save Annotations 902-904

Common Tasks 904

Inherit a Report Template 904-906

Change Ruler Measurements 906-907

Conditionally Show or Hide Details 907-908

Use External Style Sheets 908-910

Insert or Add Pages 910-913

Add Groups 913-918

Embed Subreports 918-919

Add Code to Layouts Using Script 919-925

Save and Load RDF Report Files 925-927

Save and Load RPX Report Files 927-929

Print Multiple Copies, Duplex and Landscape 929-931

Localize and Deploy 931-932

Localize Reports, TextBoxes, and Chart Controls 932-934

Localize ActiveReports Resources 934-935

Localize the End User Report Designer 935

Localize the Viewer Control 935-936

ActiveReports 14 11

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Deploy Windows Applications 936-938

Deploy Web Applications 938-940

Configure HTTPHandlers in IIS 8 and IIS 10 940-943

Samples and Walkthroughs 943

Samples 943-946

Samples 946-949

Advanced 949

Page and RDL Reports 949-950

Calendar 950-951

Custom Chart 951-952

Custom Data Provider 952-954

Custom Pdf Export 954

Custom Resource Locator 954-955

Custom Tile Provider 955-957

Svg Image 957-959

RTF Control 959-960

Oracle Data Provider 960-962

Section Reports 962

Custom Drill Through 962-964

Custom Word Export 964-965

API 965

Page and RDL Reports 965

Create Report 965-966

Digital Signature Pro 966-968

Export 968

Layers 968-971

Report Wizard 971-972

Stylesheets 972-973

Section Reports 973-974

Charting 974-975

Cross Section Controls 975-977

Cross Tab Report 978-980

Custom Annotation 980-981

ActiveReports 14 12

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Digital Signature Pro 981-982

Export 982-983

Inheritance 983-984

Print Multiple Pages per Sheet 984-985

Style Sheets 985-986

Sub Report 986-988

Summary 988-989

Data Binding 989-990

Page and RDL Reports 990

CSV Data Source 990-991

DataSet DataSource 991-992

Json Data Source 992-994

Object Data Source 994-995

OData Data Source 995-997

OleDb Data Source 997-998

Xml Data Source 998-999

Section Reports 999

Bound Data 999-1001

IList Binding 1001-1003

LINQ 1003-1004

Unbound Data 1004-1006

XML 1006-1008

Designer Pro 1008

Map 1008-1009

End User Designer 1009-1012

Table of Contents 1012-1013

Desktop 1013

Reports Gallery 1013-1022

Win Viewer 1022-1023

WPF Viewer 1023-1025

Web 1025

Custom Preview 1025-1028

Web Samples 1028

ActiveReports 14 13

Copyright © 2020 GrapeCity, Inc. All rights reserved.

JSViewer Angular(Core) 1028-1030

JSViewer MVC 1030-1031

JSViewer MVC(Core) 1031-1032

JSViewer React(Core) 1032-1033

JSViewer Vue(Core) 1033-1035

JSViewer Blazor 1035-1036

Web Designer MVC 1036-1037

Web Designer MVC(Core) 1037-1038

Web Designer Angular(Core) 1038-1039

WebViewer Pro 1039-1043

Online Samples 1043

FinancialPortfolio_Angular 1043-1044

Plant Performance_Angular 1044-1045

ReportsGallery_Angular 1045-1046

Walkthroughs 1046

Page Report/RDL Report Walkthroughs 1046

Data 1046-1047

Master Detail Reports 1047-1051

Reports with Parameterized Queries 1051-1055

Reports with Stored Procedures 1055-1057

Multiple Datasets in a Data Region 1057-1061

Layout 1061

Banded List Reports 1061-1067

Collate Multiple Copies of a Report 1067-1070

Columnar Layout Reports (RDL) 1070-1073

Overflow Data in a Single Page(Page Report) 1073-1077

Overflow Data in Multiple Pages(Page Report) 1077-1083

Recursive Hierarchy Reports 1083-1087

Single Layout Reports 1087-1091

Subreports in Page/RDL Reports 1091-1099

Chart 1099

Column Charts 1099-1102

Composite Charts 1102-1105

ActiveReports 14 14

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Funnel Charts 1106-1108

Gantt Charts 1108-1111

Column Charts (Classic Charts) 1111-1114

Composite Charts (Classic Charts) 1114-1118

Map 1118

Reports with Map 1118-1122

Tablix 1122

Grouping in Tablix 1122-1126

Cell Merging in a Row Group Area in Tablix 1126-1130

Export 1130

Custom Web Exporting 1130-1135

Preview 1135-1136

Drilldown Reports 1136-1137

Drill-Through Reports 1137-1144

Parameterized Reports 1144-1147

Reports with Bookmarks 1147-1153

Reports with TableOfContents 1153-1158

Advanced 1158

Reports with Custom Code 1158-1163

Custom Resource Locator 1163-1168

Custom Data Provider 1168-1210

Section Report Walkthroughs 1210

Data 1210-1211

Basic Data Bound Reports 1211-1213

Basic XML-Based Reports (RPX) 1213-1217

Run-Time Data Sources 1217-1221

Bind a Section Report to CSV Data Source 1221-1222

Layout 1222-1223

Address Labels 1223-1227

Columnar Reports 1227-1230

Group On Unbound Fields 1230-1238

Mail Merge with RichText 1238-1245

Overlaying Reports (Letterhead) 1245-1251

ActiveReports 14 15

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Run-Time Layouts 1251-1262

Subreports with XML Data 1262-1267

Subreports with Run-Time Data Sources 1267-1272

Chart 1272

Bar Chart 1272-1274

3D Pie Chart 1274-1277

Financial Chart 1277-1279

Unbound Chart 1279-1282

Export 1282

Custom Web Exporting (Std Edition) 1282-1287

Custom HTML Outputter (Std Edition) 1288-1295

Script 1295-1296

Script for Simple Reports 1296-1303

Script for Subreports 1303-1313

Parameters 1313

Using Parameters in Sub Reports 1313-1318

Parameters for Charts 1318-1324

Web 1324

Document Web Service 1324-1325

Document Windows Application 1325-1327

Common Walkthroughs 1327-1328

Professional 1328

Creating a Basic End User Report Designer (Pro Edition) 1328-1333

Customizing the WebViewer UI 1333-1337

Web 1337

DataSet Web Service 1337-1339

DataSet Windows Application 1339-1341

Troubleshooting 1341-1349

ActiveReports 14 16

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveReports 14 User Guide
ActiveReports provides fully integrated Visual Studio components which combine user-friendly visual controls with the
low-level control of code in Visual Studio .NET programming languages to provide a powerful report designer.

This is the help file for ActiveReports, reporting software for use in Visual Studio 2013, 2015, 2017, or 2019.

Topic Content

Welcome to ActiveReports 14 Learn basic information on installing and using the product, as well as support,
licensing, and what's new.

License Your ActiveReports About licensing ActiveReports.

Quick Start Overview to get started for designing reports.

Upgrade Reports Upgrading reports from previous versions of ActiveReports and Data Dynamics
Reports.

Import Reports Importing MS Access Reports, Crystal Reports, Section Reports, and Excel files with the
Import Wizard.

Report Types Learn which type of ActiveReport best suits your needs.

Preview Reports Previewing a report at design time or viewing it in Windows Form or Web Viewers.

Print Reports Learn about printing.

Export Reports Learn about rendering extensions and exports, and which formats are available with
Page and Section reports.

Concepts Basic concepts that you may need to create reports from scratch.

How To Step-by-step instructions for common features.

Samples and Walkthroughs Description of the samples available with ActiveReports and step-by-step walkthroughs
explaining key features.

Troubleshooting Provides troubleshooting symptoms, causes, and solutions to commonly encountered
issues.

Class Library (on-line
documentation)

API documentation with topics for all of the public members of each assembly included
with ActiveReports.

Welcome to ActiveReports 14
Learn to use and install ActiveReports 14.

Topic Content

What's New Learn about the new features in ActiveReports.

ActiveReports Editions Find out which features can be used with Standard and Professional Edition licenses.

Product Requirements Learn about the hardware and software required to run ActiveReports.

ActiveReports 14 17

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Install ActiveReports Find out how to install ActiveReports, the files provided by the setup, and Visual
Studio Integration.

Available Packages Learn about the packages available for ActiveReports through NuGet and NPM.

Manage ActiveReports
Dependencies

Learn about managing packages available for ActiveReports through NuGet.

GrapeCity Copyright Notice Explains GrapeCity copyright information.

End User License Agreement Understand the terms of the ActiveReports License Agreement and Limited Warranty.

Redistributable Files Find out the list of files that may be distributed.

Open Source Software Lists Open Source software supported by ActiveReports.

What's New
We have made a number of changes and added new features since the last version of ActiveReports. Following are some
of the major highlights of this release.

Enhancement in PDF Export (Pro)

With the new API, you can add metadata that includes document information properties like title, contributor, description,
etc. to exported PDFs. You can also add files as attachments to exported PDFs. This feature is supported in the Pdf
Rendering Extension and Pdf Export with Version PDF/A-3b or higher.

|Rendering Extension| |Export Filter|

Improved Excel Export

The Container, Table, Tablix and Subreport controls in Page and RDL reports have a new PageName property. This new
property sets the name for a sheet with this report item in the exported Excel file.

.NET Core Support

The ActiveReports packages available through NuGet let you design and preview reports in .NET Core applications. The
applications can be deployed in major operating systems such as Windows, Linux, and macOS.

Learn More

Improved Installation

ActiveReports 14 brings several improvements in the installation process to provide a simplified installation and update
experience. The changes include:

ActiveReports Packages are available for installation from NuGet, an open source package manager. All
the dependencies will be automatically included.
Latest JavaScript files and libraries for JSViewer and WebDesigner are available for download from NPM.
Latest samples are available in the GitHub repository.

ActiveReports 14 18

Copyright © 2020 GrapeCity, Inc. All rights reserved.

|Install ActiveReports| |Available Packages| |Samples|

New JSViewer (Pro)

An improved JSViewer in ActiveReports 14 offers more features in addition to the old JSViewer, which are Search panel,
print without preview, and extensive export format support, including the ones for section reports.

Learn More

Improved Standalone Designer

The UI/UX enhancements have been made in the standalone designer shipped with ActiveReports 14 to comply with the
modern look and feel.

Learn More

Improved WebViewer (Pro)

An improved WebViewer in ActiveReports 14 uses the Pro JSViewer instead of the old ASP.NET WebViewer, offering all
advantages of using this new generation viewer features.

Learn More

InputField (Page and RDL Reports) (Pro)

A new report control for Page and RDL reports, InputField, provides support for editable fields in an exported PDF report
where the InputField’s value can be modified. The new control can be of two types, Text and Checkbox, that you can set
in the Type property. Each selected type has its own set of properties.

Learn More

Rendering Extensions Improvements

In ActiveReports 14, we have improved the rendering extensions implementation to get better performance and user-
friendly behavior. The API changes mainly affect the PDF and Image rendering extensions.

Learn More

Adding Data in Web Designer (Pro)

You can now access data directly from the ActiveReports 14 Web Designer by adding a data source and a data set under
the Data tab. You can choose from a number of predefined data providers that include Microsoft SQL Client, Microsoft
Ole DB, Microsoft ODBC, JSON, CSV, and XML.

Learn More

ActiveReports Editions
Available in two editions, Standard and Professional, ActiveReports 14 delivers outstanding reporting capabilities. Drop

ActiveReports 14 19

Copyright © 2020 GrapeCity, Inc. All rights reserved.

down the sections below to see the features packed into each edition.

Standard Edition Features

The Standard Edition provides a report designer that is fully integrated with the Visual Studio IDE, a report viewer for
Windows Forms, and export filters for generating reports in various file formats. The report designer even includes a
barcode control with all of the most popular barcode styles, and its own chart control.

Designer

Full integration with the .NET environment
Familiar user interfaces
Choice of section or page or RDL report types

C# and VB.NET support with code-based section reports
Script support with XML-based section reports
Expression support with page reports and RDL reports

The ability to compile reports into the application for speed and security or to keep them separate for ease of
updating
Designer hosting of .NET and user controls

Report Controls

Section Reports Page Reports/RDL Reports

ReportInfo
Label
Line
PageBreak
OleObject
SubReport
Shape
Picture
RichTextBox with HTML tag support
Chart with separate data source
Textbox
Barcode with standard styles plus RSS and UPC styles
Checkbox
CrossSectionBox extends from a header section to the
related footer section
CrossSectionLine extends from a header section to the
related footer section

Table data region
Tablix data region
Map data region
Chart data region
List data region
BandedList data region
Sparkline data region
FormattedText with mail merge capabilities and
XHTML + CSS support
Bullet Graph
BarCode
CheckBox
TextBox
TableOfContents
Line
Container
Shape
Image
Subreport
Overflow Placeholder

Expressions (Page reports/RDL reports)

ActiveReports 14 20

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Aggregates
Data visualization

Data bar
Icon set
Range bar
Color scale
Gradient
Hatch

Interactive Features

Document map (table of contents)
Bookmark links, hyperlinks, and drill through links
Parameters
Drill-down (page report/RDL reports)
Copy, pan, and zoom
Jump to previous, next, first, or last group or search result

Reporting Engine

Managed code
Binding to ADO.NET, XML, iList, and custom data sources
Master reports, themes, and styles
All of the features of previous versions of ActiveReports and Data Dynamics Reports

Windows Forms Report Viewer

Managed C# code
Very small deployment assembly, suitable for use on the Internet
Table of contents and bookmarks
Thumbnail view
HyperLinking
Annotations (section reports only)
Configurable scroll bar jump buttons (like those found in Microsoft® Word®)
Parameters
Bookmark links, hyperlinks and drillthrough links
Interactive sorting (page reports/RDL reports)
Touch mode

WPF Viewer

Managed C# code
Table of contents and bookmarks
Thumbnail view
Parameters
Annotations
Configurable scroll bar jump buttons (like those found in Microsoft® Word®)
Bookmark links, hyperlinks and drillthrough links

ActiveReports 14 21

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Interactive sorting

Export Filters

ActiveReports includes export filters to generate output into many popular formats.

Export formats Section
report

Page/RDL
report

Html: Export reports to HTML, DHTML, or MHT formats, all of which open in a Web browser. ✓ ✓

Pdf: Export reports to PDF, a portable document format that opens in the Adobe Reader. ✓ ✓

Rtf: Export reports to RTF, RichText format that opens in Microsoft Word, and is native to WordPad. ✓ ✓

Word: Export reports to DOC, a format that opens in Microsoft Word. ✘ ✓

Text: Export reports to TXT, plain text, a format that opens in Notepad or any text editor. Export
reports to CSV, comma separated values, a format that you can open in Microsoft Excel.

✓ ✓

Image: Export reports to BMP, GIF, JPEG, or PNG image format. ✘ ✓

Tiff: Export reports to TIFF image format for optical archiving and faxing. ✓ ✓

Excel: Export reports to formats that open in Microsoft Excel, XLS or XLSX. ✓ ✓

Xml: Export reports to XML, a format that opens in a Web browser or delivers data to other
applications.

✘ ✓

CSV: Export reports to a CSV file, a form of structured data in plain text. The text in a CSV file is
saved as series of values separated by comma.

✘ ✓

JSON: Export reports to a JSON file, a text-based data format in which the data is stored in the
hierarchical form.

✘ ✓

Import Filters

Access® Reports
Crystal Reports
Excel file
RPX file

Stand-Alone Applications

The Report Designer application lets you create report layout, define data, and add interactive features report, and
lets you preview the reports and export or print them. It can be opened from the shortcut provided in the Start
menu.
The Report Viewer application contains all the functionality of the ReportPreview control. It can be opened from
the shortcut provided in the Start menu.
The WPF Viewer application contains all the functionality of the WPF Viewer control.
The ActiveReports Import Wizard application allows importing Microsoft Access reports, Crystal Reports, Excel files,
and RPX files. It can be opened from the shortcut provided in the Start menu.

ActiveReports 14 22

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Professional Edition Features

The Professional Edition includes all of the features of the Standard Edition and supports the following additional features:

End-User Report Designer

The control is a run-time designer that may be distributed royalty-free. It allows the ActiveReports designer to be hosted
in an application and provides end-user report editing capabilities. The control's methods and properties provide easy
access for saving and loading report layouts, monitoring and controlling the design environment, and customizing the
look and feel to the needs of end users.

ASP.NET Integration

The Web server control provides convenience for running and exporting reports in ASP.NET.
HTTP Handler extensions allow report files (RPX or RDLX) or compiled assemblies containing reports to be dropped
on the server and hyperlinked.

WebViewer Control

The WebViewer control allows quick viewing of ActiveReports on the web as well as printing capability with the
AcrobatReader ViewerType enumeration.

HTTP Handlers

The RPX and RDLX HTTPHandler allows the developer to hyperlink ActiveReports on a web page to return HTML
format or PDF format reports for viewing and/or printing.
The Compiled Report HTTPHandler allows the developer to hyperlink ActiveReports compiled in an assembly on a
web page to return HTML format or PDF format reports for viewing and/or printing.

Table of Contents Control

TableOfContents control is used to display the document map, an organized hierarchy of the report heading
levels and labels along with their page numbers, in the body of a report.
TableOfContents control allows you to quickly understand and navigate the data inside a report in all viewers that
are supported in ActiveReports

Map Control

The Map data region shows your business data against a geographical background.
Create different types of map, depending on the type of information you want to communicate in your report.

PdfSignature and TimeStamp Features

The PdfSignature class allows you to provide PDF document digital signatures and certification.
The PdfStamp class allows you to draw the digital signatures and certification onto the documents.
The TimeStamp class allows you to add a TSA (Time Stamping Authority) stamp to your digital signatures.

ActiveReports 14 23

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Font Linking

Font linking helps you resolve the situation when fonts on a deployment machine do not have the glyphs that were
used in a development environment.
By linking fonts, you can resolve the problem with a different PDF output on deployment and development
machines that may occur due to the missing glyphs.

Font Fallback

If missing glyphs are not found in linked fonts, the PDF export filter looks for the glyphs in fonts declared in the
FontFallback property.
A default font is used if you do not declare one, or you can declare an empty string for this property to leave out
missing glyphs from the exported file.

PDF Export

PDF/A and PDF/UA support.
IVS character support.
Devanagari character support.

Bold Font Emulation (PDF Export Filter)

Some fonts (for example, Franklin Gothic Medium, Microsoft Sans Serif, most East Asian fonts, etc.) may lose bold
style for the PDF output. The Professional Edition provides bold style emulation in the PDF export filter to eliminate
this limitation.

Word Export

Export your reports in .docx format, a format that opens in Microsoft Word application.

Web Designer

Create or modify reports by embedding Web Designer into your web applications.

JSViewer

View reports in all modern browsers using JSViewer.

InputField Control

The InputField report control provides support for editable fields in an exported PDF report where the InputField’s
value can be modified.
Choose one of the two report contorl types – Text and Checkbox. Each selected type has its own set of properties.

Comparison Between Editions

ActiveReports 14 24

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Professional Edition features are disabled or marked with an evaluation banner if you have purchased a Standard Edition
license.

Features Standard Professional

Visual Studio Controls

Web Forms WebViewer: Use this control to display your reports on the Web. Includes viewer
types HTML and PDF.

✘ ✓

HTTP Handlers: PDF and HTML (compiled report, RPX file) ✘ ✓

Windows
Forms

Viewer: Use this control to offer your users report zoom and preview, multiple
tabs for hyperlinks, split-page and multi-page views, a Table of Contents pane, a
Thumbnails pane, text searches, and annotations.

✓ ✓

Designer: Use this control to create a royalty-free, custom designer that your end
users can use to create and modify their own reports.

✘ ✓

ReportExplorer: Use this control along with the Designer control to provide
functionality to your users.

✓ ✓

ToolBox: Use this control along with the Designer control to provide report
controls for your users.

✓ ✓

LayerList: Use this control along with the Designer control to provide Layers
functionality to your users.

✓ ✓

ReportsLibrary: Use this control to view, add, or hide report parts. ✓ ✓

WPF WPF Viewer: Use this control to display your section, page and RDL reports. The
WPF Viewer offers the Thumbnails pane, the Parameters pane, the Document
map pane, and the Search results pane.

✓ ✓

Web and
Windows
Forms

HtmlExport: Export reports to HTML, DHTML, or MHT formats that open in a
Web browser.

✓ ✓

PdfExport: Export reports to PDF, a portable document format that opens in the
Adobe Reader.

✓ ✓

RtfExport: Export reports to RTF, RichText format that opens in Microsoft Word,
and is native to WordPad.

✓ ✓

WordExport (.doc): Export reports to DOC (Word HTML), a format that opens in
Microsoft Word.

✓ ✓

WordExport (.docx): Export reports to DOCX (LibreOffice), a format that opens
in any word processing software.

✘ ✓

TextExport: Export reports to TXT, plain text, a format that opens in Notepad or
any text editor.
This export filter can also export reports to CSV, comma separated values, a
format that you can open in Microsoft Excel.

✓ ✓

ImageExport: Export reports to BMP, GIF, JPEG, TIFF, or PNG image format.
Note that you can only export section reports to the TIFF image type. All other

✓ ✓

ActiveReports 14 25

Copyright © 2020 GrapeCity, Inc. All rights reserved.

image types are for page reports and RDL reports.

XlsExport: Export reports to formats that open in Microsoft Excel, XLS or XLSX. ✓ ✓

XmlExport: Export reports to XML, a format that opens in a Web browser or
delivers data to other applications.

✓ ✓

Components Web Designer: Create or modify reports by embedding Web Designer into your
web applications.

✘ ✓

JSViewer: View reports in all modern browsers using JSViewer. ✘ ✓

PDF Export
Advanced
Features

Digital signatures ✘ ✓

Time stamp ✘ ✓

EUDC ✘ ✓

Select from Japanese embedded fonts or unembedded fonts ✘ *1 ✓

Bold ✘ ✓

Italic ✓ ✓

Multi Language ✓ *2 ✓

PDF/A and PDF/UA Support ✘ ✓

IVS Character Support ✘ ✓

Devanagari Character Support ✘ ✓

Print Presets ✘ ✓

Integrated Report Designer

Design
Format

Section reports support banded layouts.
Page reports support fixed page layouts.
RDL reports support continuous page layout.

✓ ✓

Script and
Code

In section reports, you can add C# or VB code to events behind your code-based
reports, or add script to events in the script editor in XML-based reports.
In page reports/RDL reports, you can use regular expressions in any property,
plus you can add VB.NET methods to the code tab, and call them in your
expressions.

✓*3 ✓*3

Report File
Formats

You can save and load page reports/RDL reports in RDLX (extended RDL) format.
You can save and load section reports in RPX (report XML) format, and you can
compile section reports in CS or VB code formats.

✓ ✓

Report
Controls

The BarCode control supports all of the following styles:

ANSI 3 of 9 ANSI Extended 3 of 9 Code 2 of 5 Interleaved 2
of 5

Code 25 Matrix Code 39 Extended
Code 39

Code 128 A

Code 128 B Code 128 C Code 128 Code 93

✓ ✓

ActiveReports 14 26

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Auto

Extended Code 93 MSI PostNet Codabar

EAN-8 EAN-13 UPC-A UPC-E0

UPC-E1 RoMail RM4SCC UCC/EAN-128 QRCode

Code 49 Japanese Postal Pdf417 EAN-128
FNC1

RSS-14 RSS-14 Truncated RSS-14
Stacked

MicroPdf417

RSS-14 Stacked
Omnidirectional

RSS Expanded RSS Expanded
Stacked

MicroQRCode

BC412 Code_11 ISBN ISMN

ISSN ITF14 MaxiCode Pharmacode

Plessey PZN SSCC_18 Telepen

IntelligentMail IntelligentMailPackage HIBC Code
128

HIBC Code 39

The InputField control provides support for editable fields in an exported PDF
report where the InputField’s value can be modified.

✘ ✓

The Map control allows you to display data against a geographical background
on the report.

✘ ✓

The TableofContents control allows you to display a document map in an
organized hierarchy of the report heading levels and labels along with there page
numbers, in the body of a report.

✘ ✓

The Chart control supports all of the following styles:

Common Charts: Area, Bar2D, Bezier, Doughnut/Pie, Line, Scatter,
StackedArea, StackedBar, StackedArea100Pct, and StackedBAR110Pct
3D Charts: Area3D, Bar3D, ClusteredBar, Line3D, Doughnut3D/Pie,
StackedBar3D, and StackedBar3D100Pct
XY Charts: Bubble, BubbleXY, LineXY, and PlotXY
Financial Charts: Candle, HiLo, and HiLoOpenClose
Composite Charts for following chart types:

Column: Plain, Stacked, Percent Stacked
Area: Plain, Stacked, Percent Stacked
Line: Plain, Smooth

✓ ✓

Other report controls include:

Label TextBox CheckBox Picture

Line Shape RichText PageBreak

✓ ✓

ActiveReports 14 27

Copyright © 2020 GrapeCity, Inc. All rights reserved.

SubReport ReportInfo CrossSectionLine CrossSectionBox

Styles
and Report
Settings

You can control page settings, printer settings, global settings such as grid
display, grid size, and whether to show a verification dialog when deleting
controls. You can specify row count or column count in grids, ruler units, and how
many pages to display in previews.

✓ ✓

External
Style Sheets

You can reuse report designer styles by saving and loading style information in
external files.

✓ ✓

Others The designer also offers snaplines, report preview, designer zoom, various
formatting settings, control and text alignment settings, Z order settings,
unbound fields, and parameters support.

✓ ✓

Input and Output

Data Supported data includes: ADO.NET data provider, ADO.NET data class (DataSet,
DataTable, DataReader, DataView), XML data, and unbound data

✓ ✓

Print You can control the page size, orientation, and margins, as well as specifying
bound (double page spread), collating, duplex printing, and paper feed trays.

✓ ✓

Import You can import Crystal Reports, MS Access Reports, Excel files, and RPX
files using the ActiveReports Import Wizard.

✓ ✓

*1: Japanese fonts can only be output as embedded fonts.
*2: Cannot handle output of multiple language fonts in a single control. Please refer to Multi-Language PDF for details.
*3: See Designing Code-based Section Reports in .NET Core for more information.

Product Requirements
To install and use ActiveReports 14, you need the following hardware and software.

Hardware requirements (minimum)

Hard drive space: 200 MB available

Development Environments

.NET Framework .NET Core

Application Windows Forms, WPF, ASP.NET Web Forms, ASP.NET
MVC5, JavaScript libraries (JSViewer, Web Designer)

Windows Forms, WPF, ASP.NET Core MVC,
JavaScript libraries (JSViewer, Web Designer)

Operating
System

Windows 8.1, or 10, or
Windows Server 2012, 2012 R2, 2016, and 2019

Windows 8.1, or 10, or
Windows Server 2012, 2012 R2, 2016, and
2019

Microsoft
Visual Studio

2013, 2015, 2017, and 2019 2019 (16.4+)

Internet
Information

8.0, 8.5, 10 8.0, 8.5, 10

ActiveReports 14 28

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Services

Note:

The Express Editions of Visual Studio do not work with ActiveReports, as they do not support packages.

You are required to perform following updates from the links provided for proper working in Visual Studio.

Developer Pack for .NET Framework 4.6.2 or above

https://www.microsoft.com/download/visual-studio-sdks

NuGet Package

for VS2013
https://marketplace.visualstudio.com/items?itemName=NuGetTeam.NuGetPackageManagerforVisualStudio2013
for VS2015
https://dist.nuget.org/visualstudio-2015-vsix/latest/NuGet.Tools.vsix

Visual Studio Update Packages

update 5 for VS2013
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2013-update5-vs
Update 3 for VS2015
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2015-update3-vs
update 3 and KB3165756 for VS2015
https://docs.microsoft.com/en-us/previous-versions/mt752379(v=vs.140)
version 15.9 for VS2017
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes
version 16.5 for VS2019
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes#16.5.0

TypeScript Plugin

Download latest TypeScript plugin (required for Angular applications)

For VS2015
https://www.microsoft.com/en-us/download/details.aspx?id=48593
For VS2017/VS2019
https://github.com/Microsoft/TypeScript/releases

Run Time Supported Environments

Windows Forms and WPF

Microsoft® .NET Framework Version: 4.6.2, 4.7, 4.7.1, 4.7.2, 4.8 or Microsoft® .NET Core 3.1
Operating System:
Windows 8.1, or 10, or
Windows Server 2012, 2012 R2, 2016, and 2019

Web Development

.NET Framework .NET Core

Server

ActiveReports 14 29

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://dotnet.microsoft.com/download/visual-studio-sdks
https://marketplace.visualstudio.com/items?itemName=NuGetTeam.NuGetPackageManagerforVisualStudio2013
https://dist.nuget.org/visualstudio-2015-vsix/latest/NuGet.Tools.vsix
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2013-update5-vs
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2015-update3-vs
https://docs.microsoft.com/en-us/previous-versions/mt752379(v=vs.140)
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes#16.5.0
https://www.microsoft.com/en-us/download/details.aspx?id=48593
https://github.com/Microsoft/TypeScript/releases

Version Microsoft® .NET Framework Version 4.6.2 and
above

Microsoft® .NET Core 3.1

Application ASP.NET Web Forms, ASP.NET MVC5, JavaScript
libraries (JSViewer, Web Designer)

ASP.NET Core MVC, JavaScript libraries
(JSViewer, Web Designer)

Operating
System

Windows 8.1, or 10, or
Windows Server 2012, 2012 R2, 2016, and 2019

Windows 8.1, or 10, or
Windows Server 2012, 2012 R2, 2016, and 2019
macOS 10.13+, RHEL 6+, Fedora 29+, Ubuntu
16.04+, Debian 9+, SLES 12 SP2+

Internet
Information
Services

8.0, 8.5, 10 -

Client

Browser Microsoft Internet Explorer 11
Microsoft Edge
Google Chrome (v50 or higher)
Mobile Safari
Firefox (v57 and above)
Safari (macOS 10 and higher)
Safari (iOS 10 and higher)
Safari (iPadOS 13)

Limitations of .NET Core support:

Since there is no design-time support for Code-Based Section reports in WinForms .NET Core projects, you
need to link reports and use .NET Framework WinForms Designer for the design-time experience in .NET Core.
See Designing Code-based Section Reports in .NET Core for more information.
You need to register encodings before using ActiveReports with ASP.NET Core MVC. See how to register
encodings in Troubleshooting page.
You need to update few references for some Microsoft Data Providers that do not appear in DataSource
Editor in .NET Core. See how to resolve this in Troubleshooting page.
While working with Section reports with scripts in WinForms Viewer, WPF Viewer, and Windows Designer
components in .NET Core applications, it is mandatory to install 'System.Text.Encoding.CodePages' nuget
package and update the Program.cs file accordingly. Otherwise 'System.NotSupportedException' is thrown on
previewing the report. For more information, see Troubleshooting page.

Install ActiveReports
This topic elaborates the steps to install ActiveReports 14, lists the files that are installed, and about Visual Studio
Integration.

Installing ActiveReports 14 using MSI file

The complete setup of ActiveReports 14 can be installed using MSI file.

ActiveReports 14 30

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Before you begin with the following steps, download the installer (ActiveReports-v14.x.x.0.msi) from the website
and follow these steps.

1. Double-click the ActiveReports-v14.x.x.0.msi file or right-click the file and select Install.
2. On the End-User License Agreement screen that appears, go through the terms in the License Agreement.

If you want to continue with the default installation settings, select the check box to accept the license
agreement and click Install to continue with installation.
If you want to change the default installation path and the way product features are installed, do the
following:

1. Select Advanced and click Change.

2. Specify the path for the installation and click OK.

3. Click Next and select how controls, features, and samples are installed and integrated with Visual Sudio
versions.

4. Select Install.

3. On the User Account Control screen, select Yes to allow ActiveReports software installation on your PC.
4. Once the installation finishes, a screen notifying the completion of installation appears. Select Activate now check

box and click Finish to close the window and complete the installation process.
5. Click Yes on the User Account Control screen to continue with activating the license. See License Your

ActiveReports for information on licensing.

Installed Files

You can verify the installation via installer by following the steps below:

1. Open Visual Studio.
2. From the Visual Studio Help menu, select About Microsoft Visual Studio and verify that ActiveReports 14

appears in the installed products list.

When you run the installer (ActiveReports-v14.x.x.0.msi), you get necessary utilities such as standalone designer and
viewer applications, import tool, and license manager, along with NuGet packages, localization resources, etc. If you use
all of the default settings, files are installed in the following folders:

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\GrapeCity

File (or Folder) Description

ActiveReports
(folder)

Shortcut to the folder containing stand-alone applications and Samples folder. See the next
dropdown for further details.

GrapeCity License
Manager

Shortcut to the License Manager application.

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\GrapeCity\ActiveReports 14

File (or Folder) Description

ActiveReports 14 Designer Shortcut to the stand-alone designer application.

ActiveReports 14 Import Shortcut to the ActiveReports Import wizard application.

ActiveReports 14 Theme Editor Shortcut to the ActiveReports Theme Editor application.

ActiveReports 14 31

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/activereportsnet

ActiveReports 14 User Guide(CHM) Shortcut to the Compiled HTML help file for ActiveReports.

ActiveReports 14 User Guide(PDF) Shortcut to the PDF help file for ActiveReports.

ActiveReports 14 User Guide(Web) Shortcut to the Online help file for ActiveReports.

ActiveReports 14 Viewer Shortcut to the stand-alone ActiveReports Viewer application.

C:\Program Files\GrapeCity\ActiveReports 14 (C:\Program Files (x86)\GrapeCity\ActiveReports 14 on a 64-bit
Windows operating system)

Folder Description

Deployment Includes templates for WPF.

Icons Includes associated Icons image files.

Localization Includes Resource and DOS batch files for localizing ActiveReports components.

NuGet Contains NuGet packages. See Available Packages for more information.

Tools Includes all ActiveReports application, XML configuration files, and localization
resources for designer and import tool in Chinese environment.

VisualStudio Includes Microsoft Visual Studio application extension and bootstrapper application.

GrapeCity.ActiveReports.config XML configuration file.

C:\ProgramData\GrapeCity\gclm

File or Application Description

gclm.exe License Manager setup file.

gclm.exe.config License Manager setup XML configuration file.

C:\Program Files\Grapecity\ActiveReports 14\Tools (C:\Program Files (x86)\GrapeCity\ActiveReports 14\Tools on
a 64-bit Windows operating system)

File or Application Description

zh-CN folder Includes resource files for the Chinese environment.

GrapeCity.ActiveReports.Designer.exe Stand-alone designer setup file.

GrapeCity.ActiveReports.Designer.exe.config Stand-alone designer setup XML configuration file.

GrapeCity.ActiveReports.Designer.VisualElementsManifest.xml Stand-alone designer's .VisualElementsManifest xml file.

GrapeCity.ActiveReports.Imports.exe ActiveReports Import application setup file.

GrapeCity.ActiveReports.Imports.exe.config ActiveReports Import application setup XML
configuration file.

GrapeCity.ActiveReports.Imports.Win.exe ActiveReports Import wizard setup file.

GrapeCity.ActiveReports.Imports.Win.exe.config ActiveReports Import wizard setup XML configuration
file.

ActiveReports 14 32

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.ThemeEditor.exe ActiveReports Theme Editor setup file.

GrapeCity.ActiveReports.ThemeEditor.exe.config ActiveReports Theme Editor setup XML configuration file.

GrapeCity.ActiveReports.Viewer.exe Stand-Alone ActiveReports Viewer setup file.

GrapeCity.ActiveReports.Viewer.exe.config Stand-Alone ActiveReports Viewer setup XML
configuration file.

GrapeCity.ActiveReports.WpfViewer.exe Stand-Alone ActiveReports WPF Viewer setup file.

GrapeCity.ActiveReports.WpfViewer.exe.config Stand-Alone ActiveReports WPF Viewer setup XML
configuration file.

GrapeCity.ActiveReports.Chart.dll Chart control assembly file.

GrapeCity.ActiveReports.Core.DataProviders.dll Data Providers assembly.

GrapeCity.ActiveReports.Core.Drawing.Gc.dll Drawing Gc assembly file.

GrapeCity.ActiveReports.Core.Drawing.Gdi.dll Drawing Gdi assembly file.

GrapeCity.ActiveReports.Export.Excel.dll Excel Export assembly file.

GrapeCity.ActiveReports.Core.Export.Excel.Page.dll Excel Export (for Page report) assembly file.

GrapeCity.ActiveReports.Export.Html.dll HTML Export assembly file.

GrapeCity.ActiveReports.Core.Export.Html.Page.dll HTML Export (for Page report) assembly file.

GrapeCity.ActiveReports.Export.Image.dll Image Export assembly file.

GrapeCity.ActiveReports.Core.Export.Image.Page.dll Image Export (for Page report) assembly file.

GrapeCity.ActiveReports.Export.Pdf.dll HTML Export assembly file.

GrapeCity.ActiveReports.Core.Export.Pdf.Page.dll HTML Export (for Page report) assembly file.

GrapeCity.ActiveReports.Core.Export.Svg.Page.dll Svg Export assembly file.

GrapeCity.ActiveReports.Core.Export.Text.Page.dll Text Export (for Page report) assembly file.

GrapeCity.ActiveReports.Export.Word.dll Word Export assembly file.

GrapeCity.ActiveReports.Core.Export.Word.Page Word Export (for Page report) assembly file.

DocumentFormat.OpenXml.dll OpenXML assembly file.

Gcef.Data.DataEngine.dll Gcef's DataEngine assembly file.

Gcef.Data.ExpressionInfo.dll Gcef's ExpressionInfo assembly file.

Gcef.Data.VBFunctionLib.dll Gcef's VBFunctionLib assembly file.

GrapeCity.ActiveReports.Design.Win.dll Windows Designer assembly file.

GrapeCity.ActiveReports.Document.dll Document assembly file.

GrapeCity.ActiveReports.Export.Rdf.dll RDF Export assembly file.

GrapeCity.ActiveReports.Export.Xml.dll XML Export assembly file.

GrapeCity.ActiveReports.Interop.dll Native functions assembly file.

ActiveReports 14 33

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.Core.Rdl.dll RDL assembly file.

GrapeCity.ActiveReports.Core.Rendering.dll Rendering assembly file.

GrapeCity.ActiveReports.dll Run time engine assembly file.

GrapeCity.ActiveReports.Viewer.Win.dll Windows Viewer assembly file.

GrapeCity.ActiveReports.Viewer.Wpf.dll WPF Viewer assembly file.

GrapeCity.DataVisualization.dll Data visualization assembly file.

GrapeCity.Documents.Common.dll Assembly file used by Documents PDF.

GrapeCity.Documents.Common.Windows.dll Assembly file required for providing support for font
linking specified in the Windows registry and access to
native Windows imaging APIs, improving performance
and adding some features (e.g. TIFF support)

GrapeCity.Documents.DX.Windows.dll Assembly file used by
GrapeCity.Documents.Common.Windows.dll.

GrapeCity.Documents.Imaging.dll Assembly file for image handling.

GrapeCity.Documents.Pdf.dll Documents Pdf assembly file to handle the PDFs.

System.IO.Compression.dll Compression/decompression assembly file.

GrapeCity.ActiveReports.Imports.Access.dll Microsoft Access Import assembly file.

GrapeCity.ActiveReports.Imports.Crystal.dll Crystal Reports Import assembly file.

GrapeCity.ActiveReports.Imports.Excel.dll Excel Import assembly file.

GrapeCity.ActiveReports.Imports.RPX.dll RPX Import assembly file.

Note: Samples and data used in the samples are not included with the installer. You need to download them
separately from GitHub.

Visual Studio Integration

The ActiveReports installation provides you with following Visual Studio Integrations that help you configure projects
and design reports.

Project Templates

Create a report layout using built-in sample application templates:

ActiveReports 14 Page Report Application
ActiveReports 14 RDL Report Application
ActiveReports 14 Section Report Application (xml-based)
ActiveReports 14 Section Report Application (code-based)
ActiveReports 14 JSViewer Core MVC Application
ActiveReports 14 JSViewer MVC Application

ActiveReports 14 34

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/

Item Templates

Add following item templates to your project:

ActiveReports 14 Page Report
ActiveReports 14 RDL Report
ActiveReports 14 Section Report (xml-based)
ActiveReports 14 Section Report (code-based)

Toolbox with Report Controls

A new ActiveReports 14 tab is automatically added in the toolbox with the controls in sync with the references.

Integrated Designer

ActiveReports offers an integrated designer that lets you create report layouts in Visual Studio and edit them at design
time, visually, and through code and scripts. Along with the designer, you can use:

Report Explorer to view the report elements in tree view,
Group Editor to manage grouping in Tablix data region,
Layers List to view layers in a report,
Reports Library to view list of reports and controls added in the reports.

Conversion Tool

Use the conversion or upgrade tool - Convert to ActiveReports 14 - to easily upgrade to the latest version. This tool is
available under Tools menu option of Visual Studio.

To Remove Visual Studio Integration

In case you want to disable or uninstall GrapeCity ActiveReports 14 Visual Studio integration, do following.

1. Go to Tools menu and click Extensions and Updates
OR
In Visual Studio 2019, go to Extensions > Manage Extensions.

2. Navigate to GrapeCity ActiveReports 14 and click Disable or Uninstall.

ActiveReports 14 35

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In case you want to install the integration again, follow these steps.

1. Go to the installation folder - C:\Program Files (x86)\GrapeCity\ActiveReports 14\VisualStudio.
2. Run the VSIX as per your Visual Studio Version.

Note:

It is not possible to install ActiveReports 14 and ActiveReports 13 side-by-side.
It is not possible to use different versions of ActiveReports for .NET within a single Visual Studio project.
If you are creating an ActiveReports 14 application in Visual Studio 2017 or Visual Studio 2019, and you also
have ActiveReports 13 installed, then you may get few errors in the property grid such as 'Object does not
match target type' or 'Object reference not set to an instance of Object'. This issue is related to Visual Studio;
you just need to restart Visual Studio to resolve the issue. Before restart, save the project, if necessary.
When using our Integrated Designer in Visual Studio 2019, you may observe invisible controls in our smart
panels or tool windows (such as Report Explorer or Layers List). To solve this issue, navigate to Tools > Options
> Environment > General and clear the 'Optimize rendering for screens with different pixel densities'
checkbox.

Available Packages
Following packages are available for download.

ActiveReports 14 36

Copyright © 2020 GrapeCity, Inc. All rights reserved.

NPM

Download the packages for viewer and designer from NPM, a JavaScript package manager .

Reference Purpose

ActiveReports JSViewer Provides the report viewer based on JavaScript.

ActiveReports WebDesigner Provides the report designer based on HTML5/JS technology stack.

NuGet

Download the following packages from NuGet, an open source package manager.

Reference Purpose

GrapeCity.DataVisualization Adds all the references that enable you to use Data visualization
assembly file.

Grapecity.ActiveReports GrapeCity ActiveReports is a set of assemblies that enable you to
create, render, print, and export reports in a .NET or .NET Core
application. This package includes the core engine assemblies required
to create and render pixel perfect, WYSIWYG, reports.

Grapecity.ActiveReports.Export.Xml This package includes assemblies needed to export ActiveReports files
to XML.

Grapecity.Activereports.Export.Image This package includes assemblies needed to export ActiveReports files
to Image.

Grapecity.Activereports.Export.Word This package includes assemblies needed to export ActiveReports files
to Word (Doc/Docx).

Grapecity.Activereports.Export.Html This package includes assemblies needed to export ActiveReports files
to HTML.

Grapecity.Activereports.Chart This package includes the core engine assemblies required to create
and render pixel perfect, WYSIWYG, reports.

Grapecity.Activereports.Export.Rdf GrapeCity ActiveReports RDLX->RDF bridge components.

Grapecity.Activereports.Export.Pdf This package includes assemblies needed to export ActiveReports files
to PDF.

GrapeCity.ActiveReports.Design.Win This package includes assemblies needed to design reports and report
layouts. Multiple designers are included for your convenience. Among
them are Windows Forms (desktop) based designer, Visual Studio
integrated designer, and JavaScript, and web based designer.

Grapecity.Activereports.Document This package includes the core engine assemblies required to create
and render pixel perfect, WYSIWYG, reports.

Grapecity.Activereports.Export.Excel This package includes assemblies needed to export ActiveReports files

ActiveReports 14 37

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.npmjs.com/search?q=@grapecity/ar
https://www.npmjs.com/package/@grapecity/ar-viewer
https://www.npmjs.com/package/@grapecity/ar-designer
https://www.nuget.org/packages?q=GrapeCity.ActiveReports
https://www.nuget.org/packages/Grapecity.DataVisualization
https://www.nuget.org/packages/Grapecity.ActiveReports
https://www.nuget.org/packages/Grapecity.ActiveReports.Export.Xml
https://www.nuget.org/packages/Grapecity.ActiveReports.Export.Image
https://www.nuget.org/packages/Grapecity.ActiveReports.Export.Word
https://www.nuget.org/packages/Grapecity.ActiveReports.Export.Html
https://www.nuget.org/packages/Grapecity.ActiveReports.Chart
https://www.nuget.org/packages/Grapecity.ActiveReports.Export.Rdf
https://www.nuget.org/packages/Grapecity.ActiveReports.Export.Pdf
https://www.nuget.org/packages/GrapeCity.ActiveReports.Design.Win
https://www.nuget.org/packages/Grapecity.ActiveReports.Document
https://www.nuget.org/packages/Grapecity.ActiveReports.Export.Excel

to Excel.

Grapecity.Activereports.Core.Export.Image.Page ActiveReports Image export library.

Grapecity.Activereports.Core.Export.Html.Page ActiveReports HTML export library.

Grapecity.Activereports.Core.Export.Pdf.Page ActiveReports Pdf export library.

Grapecity.Activereports.Core.Drawing.Gc ActiveReports rendering with GcDocs implementation.

Grapecity.Activereports.Core.Export.Text.Page ActiveReports JSON and CSV export library.

Grapecity.Activereports.Core.Rendering ActiveReports common rendering implementation.

Grapecity.Activereports.Core.Export.Svg.Page ActiveReports SVG export library.

Grapecity.Activereports.Core.Export.Excel.Page ActiveReports Excel export library.

Grapecity.Activereports.Core.Export.Word.Page ActiveReports Word export library.

Grapecity.Activereports.Core.Drawing.Gdi ActiveReports rendering with GDI+ implementation.

Grapecity.Activereports.Core.Rdl ActiveReports report template object model definition.

Grapecity.Activereports.Core.DataProviders ActiveReports data providers facility.

Grapecity.ActiveReports.Aspnet.Viewer

Grapecity.ActiveReports.Aspnetcore.Viewer

GrapeCity ActiveReports is a set of assemblies that enable you to
create, render, print, and export reports in a .NET or .NET Core
application. The packages include assemblies needed to display reports
in ASP.NET report viewer. The viewer is customizable and includes
printing and exporting features.

Grapecity.ActiveReports.Web GrapeCity ActiveReports is a set of assemblies that enable you to
create, render, print, and export reports in a .NET or .NET Core
application. This package includes assemblies needed to display
reports in report viewers. Multiple viewers are included for your
convenience. Among them are viewers for Windows Forms, WPF,
ASP.NET, and JavaScript. These viewers are customizable and include
printing and exporting features.

Grapecity.ActiveReports.Web.Viewer GrapeCity ActiveReports is a set of assemblies that enable you to
create, render, print, and export reports in a .NET or .NET Core
application. This package includes internal assemblies needed to
display reports in report viewers.

Grapecity.ActiveReports.Aspnet.Designer

Grapecity.ActiveReports.Aspnetcore.Designer

GrapeCity ActiveReports is a set of assemblies that enable you to
create, render, print, and export reports in a .NET or .NET Core
application. Th packages include assemblies needed to design reports
and report layouts. Multiple designers are included for your
convenience. Among them are Windows Forms (desktop) based
designer, Visual Studio integrated designer, and JavaScript (web) based
designer.

Gcef.Data.DataEngine GrapeCity data processing engine.

Gcef.Data.ExpressionInfo GrapeCity expression evaluation.

ActiveReports 14 38

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Export.Image.Page
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Export.Html.Page
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Export.Pdf.Page
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Drawing.Gc
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Export.Text.Page
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Rendering
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Export.Svg.Page
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Export.Excel.Page
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Export.Word.Page
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Drawing.Gdi
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.Rdl
https://www.nuget.org/packages/Grapecity.ActiveReports.Core.DataProviders
https://www.nuget.org/packages/Grapecity.ActiveReports.Aspnet.Viewer
https://www.nuget.org/packages/Grapecity.ActiveReports.Aspnetcore.Viewer
https://www.nuget.org/packages/Grapecity.ActiveReports.Web
https://www.nuget.org/packages/Grapecity.ActiveReports.Web.Viewer
https://www.nuget.org/packages/Grapecity.ActiveReports.Aspnet.Designer
https://www.nuget.org/packages/Grapecity.ActiveReports.Aspnetcore.Designer
https://www.nuget.org/packages/Gcef.Data.DataEngine
https://www.nuget.org/packages/Gcef.Data.ExpressionInfo

Gcef.Data.VBFunctionLib GrapeCity VB functions implementation.

Manage ActiveReports Dependencies
The ActiveReports dependencies in Visual Studio projects can be added, updated, or removed using NuGet package
manager. How the dependencies are managed depends on the location of package - at a local source or public source.
The ActiveReports packages are available in the local directory on installing ActiveReports using the installer. The
packages are also available publically on the NuGet website. For the list of packages, see Available Packages.

The following sections elaborate adding the ActiveReports assemblies in your project by either installing NuGet
packages from local source or directly from the NuGet website.

Installing Packages from Local Source

You must first run the installer to obtain the NuGet packages locally - C:\Program Files (x86)\GrapeCity\ActiveReports
14\NuGet. See Install ActiveReports for the steps on installation using MSI file. Then, create the NuGet package source to
add the NuGet feed URL into your NuGet settings in Visual Studio, as follows:

1. Configure local NuGet package source

1. Open NuGet.Config file placed here:
C:\Users\[UserName]\AppData\Roaming\NuGet.

2. Modify the content of NuGet.Config as follows. This adds a key that directs to the path where NuGet packages are
available locally.

NuGet.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <packageSources>
 <add key="nuget.org" value="https://api.nuget.org/v3/index.json"
protocolVersion="3" />
 <add key="ActiveReports" value="C:\Program Files (x86)\GrapeCity\ActiveReports
14\NuGet" />
 </packageSources>
</configuration>

2. Install Packages

1. Open Visual Studio.
2. Create any application (any target that supports .NET Standard 2.0).
3. Right-click the project in Solution Explorer and choose Manage NuGet Packages.
4. In the Package source on top right, select ActiveReports (key added in NuGet.config).
5. Click Browse tab on top left and search for 'GrapeCity.ActiveReports'.
6. On the left panel, select GrapeCity.ActiveReports.

ActiveReports 14 39

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.nuget.org/packages/Gcef.Data.VBFunctionLib
https://www.nuget.org/packages?q=GrapeCity.ActiveReports

7. On the right panel, click Install.
8. In the License Acceptance dialog, select I Accept to proceed the installation.

Installing Packages from NuGet

GrapeCity ActiveReports 14 references are available through NuGet and can be obtained directly from website -
https://www.nuget.org/packages?q=GrapeCity.ActiveReports. When you add reference to GrapeCity.ActiveReports
package, a set of core engine assemblies are added to the application. Use following steps to find and install the NuGet
packages in your application:

1. Open Visual Studio.
2. Create any application (any target that supports .NET Standard 2.0).
3. Right-click the project in Solution Explorer and choose Manage NuGet Packages.
4. In the Package source on top right, select nuget.org.
5. Click Browse tab on top left and search for 'GrapeCity.ActiveReports'.
6. On the left panel, select GrapeCity.ActiveReports.

7. On the right panel, click Install.
8. In the License Acceptance dialog, select I Accept to proceed the installation.

For more information on NuGet configurations, please see Common NuGet configurations and NuGet Configuration
Settings articles by Microsoft.

Note: The assemblies are available in the packages at the following location:

if installer is used: C:\Program Files (x86)\GrapeCity\ActiveReports 14\NuGet\{Package name}\lib\net462\
{Assembly}
if a package is installed in an application: [App name]\packages\{Package name}\lib\net462\{Assembly}

ActiveReports 14 40

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.nuget.org/packages?q=GrapeCity.ActiveReports
https://docs.microsoft.com/en-us/nuget/consume-packages/configuring-nuget-behavior
https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file
https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file

GrapeCity Copyright Notice
Information in this document, including URLs and web site references, is subject to change without notice. Unless
otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places
and events depicted herein are fictitious, and no association with any real company, organization, product, domain name,
e-mail address, logo, person, place or event is intended or should be inferred. Complying with all applicable copyright
laws is the responsibility of the user. No part of this document may be reproduced, stored in, or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photo copying, recording, or otherwise), or for
any purpose, without the express written permission of GrapeCity, inc.

The ActiveReports License Agreement constitutes written permission for Professional Edition licensees to copy
documentation content for distribution with their end user designer applications so long as GrapeCity is given credit
within the distributed documentation.

ActiveReports and the ActiveReports logo are registered trademarks of GrapeCity, inc.

All other trademarks are the property of their respective owners. See Open Source Software used in ActiveReports.

End User License Agreement
The End-User license agreement is available online at https://www.grapecity.com/legal/eula.

Please read carefully before installing this software package. Your installation of the package indicates your acceptance of
the terms and conditions of this license agreement. Contact GrapeCity Inc. if you have any questions about this license.

Redistributable Files
ActiveReports is developed and published by GrapeCity, Inc. You may use it to develop applications in conjunction with
Microsoft Visual Studio or any other programming environment that enables the user to use and integrate the control(s).
You may also distribute, free of royalties, the following Redistributable Files with any such application you develop to the
extent that they are used separately on a single CPU on the client/workstation side of the network:

DocumentFormat.OpenXml.dll
Gcef.Data.DataEngine.dll
Gcef.DataExpressionInfo.dll
Gcef.Data.VBFunctionLib.dll
GrapeCity.ActiveReports.Chart.dll
GrapeCity.ActiveReports.Aspnetcore.Viewer.dll
GrapeCity.ActiveReports.Aspnet.Viewer.dll
GrapeCity.ActiveReports.Aspnetcore.Designer.dl
GrapeCity.ActiveReports.Aspnet.Designer.dll
GrapeCity.ActiveReports.Core.DataProviders.dll
GrapeCity.ActiveReports.Core.Diagnostics.dll
GrapeCity.ActiveReports.Core.Export.Html.Page.dll
GrapeCity.ActiveReports.Core.Export.Text.Page.dll
GrapeCity.ActiveReports.Core.Export.Excel.Page.dll
GrapeCity.ActiveReports.Core.Drawing.Gdi.dll
GrapeCity.ActiveReports.Core.Rdl.dll
GrapeCity.ActiveReports.Core.Rendering.dll
GrapeCity.ActiveReports.Document.dll

ActiveReports 14 41

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/legal/eula

GrapeCity.ActiveReports.Export.Html.dll
GrapeCity.ActiveReports.Export.Excel.dll
GrapeCity.ActiveReports.Export.Image.dll
GrapeCity.ActiveReports.Export.Pdf.dll
GrapeCity.ActiveReports.Export.Rdf.dll
GrapeCity.ActiveReports.Export.Svg.dll
GrapeCity.ActiveReports.Export.Text.dll
GrapeCity.ActiveReports.Export.Word.dll
GrapeCity.ActiveReports.Export.Xml.dll
GrapeCity.ActiveReports.Imports.Access.dll
GrapeCity.ActiveReports.Imports.Crystal.dll
GrapeCity.ActiveReports.Interop.dll
GrapeCity.ActiveReports.OracleClient.dll
GrapeCity.ActiveReports.Serializer.dll
GrapeCity.ActiveReports.dll
GrapeCity.ActiveReports.Viewer.Win.dll
GrapeCity.ActiveReports.Viewer.Wpf.dll
GrapeCity.ActiveReports.VisualStudio.dll
DefaultWPFViewerTemplates.xaml
GrapeCity.ActiveReports.Viewer.Html.css
GrapeCity.ActiveReports.Viewer.Html.js
GrapeCity.ActiveReports.Viewer.Html.min.js
jsViewer.min.js
jsViewer.min.css
web-designer.js
web-designer.css
Newtonsoft.Json.dll
System.IO.Compression.dll

The following Redistributable Files require the Professional Edition license for redistribution:

GrapeCity.ActiveReports.Design.Win.dll
GrapeCity.ActiveReports.Web.dll

Note: See Install ActiveReports for the location of the files listed above.

Open Source Software
ActiveReports supports multiple types of Open Source software (hereinafter, referred to as "OSS") programs based on
their license agreement and usage rights. OSS is distributed in the hope that it will be useful, but without warranty of any
kind, either expressed or implied.

OSS can be used freely for any purpose; however there are terms and conditions for distribution and modification. Please
read the Agreement carefully before using it. The following OSS are included as a part of this software.

Open Source Software used in ActiveReports

The OSS's used in ActiveReports according to their usage:

Visual Studio integration

ActiveReports 14 42

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Microsoft.VisualStudio.DpiAwareness
Copyright (c) Microsoft Corporation
(Microsoft Visual Studio)
VSIXBootstrapper
Copyright (c) Microsoft Corporation
(MIT)
NuGet.VisualStudio
Copyright (c) Microsoft Corporation
(Apache-2.0)

Excel and Word Import/Export

DocumentFormat.OpenXml
Copyright (c) Microsoft Corporation
(MIT)
ColorMine
(MIT)

HTML Export

SvgNET
Copyright (c) 2003 RiskCare Ltd.
Copyright (c) 2010 SvgNet & SvgGdi Bridge Project
Copyright (c) 2015-2019 Rafael Teixeira, Mojmír Němeček, Benjamin Peterson and Other Contributors
(BSD-3-Clause)

PDF Export

Portable.BouncyCastle
Copyright (c) 2000-2011 The Legion Of The Bouncy Castle
(MIT)

Data Providers

Newtonsoft.Json
Copyright (c) 2007 James Newton-King
(MIT)

Polygon Clipping

MartinezClipper
Copyright (c) 2016 BrightBit
(MIT)

FormattedText reader

SgmlReader
(Apache-2.0)

RPX to RDLX Converter

Rtf2Html
(Apache-2.0)

ActiveReports 14 43

Copyright © 2020 GrapeCity, Inc. All rights reserved.

RDF document

MemoryTributary
(CPOL)

End User Designer UI

FlagEnumUIEditor
(CPOL)

Barcode

Okapi Barcode
(Apache-2.0)
ZXing-CSharp
(Apache-2.0)

Query Designer

SharpExpress
Copyright (c) 2014 Sergey Todyshev
(MIT)
Irony
Copyright (c) 2019 Irony Project
(MIT)
jQuery
(MIT)
Knockout
Copyright (c) 2010 Steven Sanderson, the Knockout.js team, and other contributors
(MIT)
Bootstrap
Copyright (c) 2011-2020 Twitter, Inc.
Copyright (c) 2011-2020 The Bootstrap Authors
(MIT)
spin.js
Copyright (c) 2011-2018 Felix Gnass
(MIT)
korest
Copyright (c) 2014 Sergey Todyshev
(MIT)

Open Source Software used in JSViewer

JSViewer

abortcontroller-polyfill
(MIT)
classnames
Copyright (c) 2017 Jed Watson.
(MIT)
core-js
(MIT)

ActiveReports 14 44

Copyright © 2020 GrapeCity, Inc. All rights reserved.

downloadjs
(MIT)
i18next
(MIT)
i18next-browser-languagedetector
(MIT)
immutability-helper
(MIT)
jquery
(MIT)
moment
(MIT)
preact
(MIT)
whatwg-fetch
(MIT)

GrapeCity products used in ActiveReports

GrapeCity.DataVisualization
Newtonsoft.Json
Copyright (c) 2007 James Newton-King
(MIT)
GrapeCity.Documents.Imaging
ImageSharp
(Apache)
GrapeCity.Documents.Common
GrapeCity.Documents.Common.Windows
GrapeCity.Documents.Pdf
Portable.BouncyCastle
Copyright (c) 2000-2020 Legion of the Bouncy Castle Inc.
(MIT)
GrapeCity.Documents.DX.Windows

GrapeCity products used in JSViewer

@grapecity/core-ui
@grapecity/core-ui-preact
memoize-one
(MIT)
raf
(MIT)
@grapecity/core-ui-react
deep-object-diff
(MIT)
memoize-one
(MIT)
raf
(MIT)

ActiveReports 14 45

Copyright © 2020 GrapeCity, Inc. All rights reserved.

@grapecity/viewer-core
moment
(MIT)

GrapeCity products used in WebDesigner Application

@grapecity/ar-designer
@grapecity/core-ui-react
deep-object-diff
(MIT)
memoize-one
(MIT)
raf
(MIT)

@grapecity/ar-viewer (JSViewer)
(same as previous section)

License Your ActiveReports
You can use the GrapeCity License Manager utility to license ActiveReports during installation or if you already have a trial
version installed. This section gives an overview of all aspects of licensing in ActiveReports.

Topic Content

License Types Learn about the types of licenses in ActiveReports.

Licensing a Developer Machine Learn about licensing a developer machine.

Licensing a Project Learn about licensing a project.

Licensing Compiled Code Learn about licensing a compiled code.

Licensing with Pipelines Learn about licensing with pipelines.

Licensing Errors Find out solution to common licensing errors.

Contacting Support Find out how to contact us in case you have problems related to licensing the product.

License Types
See ActiveReports Editions to learn which features are exclusive to the Professional Edition.

License Type Description

Evaluation Trial key is required. Evaluation banners display on all reports and controls, and the product
stops functioning after 30 days from the date of installation. The first key is already activated
when you download the trial. If needed, you can request a new key from the Sales department for
an additional 30 day trial.

Standard Standard Edition product key is required. Evaluation banners appear only on features that are
exclusive to the Professional Edition. You receive this key by email when you purchase
ActiveReports Standard Edition or upgrade from a previous version of ActiveReports Standard

ActiveReports 14 46

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Edition.

Professional Professional Edition product key is required. All reporting functionality and controls appear
without any evaluation banners. You receive this key by email when you purchase ActiveReports
Professional Edition or upgrade from a previous version of ActiveReports Professional Edition.

If you cannot find your email with the product key, please contact activereports.sales@grapecity.com to have it looked up.

Licensing a Developer Machine
You need to license the machine, on which, you open the ActiveReports or compile the ActiveReports projects in Visual Studio.

Tip: Always run the License Manager as an Administrator.

To license a machine with ActiveReports during installation or to license a trial without reinstalling

1. Go to the Start menu and select GrapeCity License Manager to open the licensing manager window. This window
appears automatically during the product installation.

2. In the GrapeCity License Manager window, click Activate.
3. Enter the serial key, you have received from GrapeCity (including all the capital letters and special characters), and click

Activate.

ActiveReports 14 47

Copyright © 2020 GrapeCity, Inc. All rights reserved.

mailto:activereports.sales@grapecity.com

4. An activation message appears on the window. Click OK to complete the licensing process.
To see the license details such as the license type (Trial or Product), edition (Professional or Standard), and the date of
activation and expiry, click Details in the licensing window.

To license ActiveReports on a machine without an internet connection

1. Go to the Start menu and select GrapeCity License Manager to open the licensing manager window. This window
appears automatically during the product installation.

2. In the GrapeCity License Manager window, if you try to enter the serial key and click Activate, a network error is shown
on the window. So, in such a case, click Offline Activate to proceed further with the licensing process.

ActiveReports 14 48

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Copy the Activation Key from the GrapeCity License Manager window.

ActiveReports 14 49

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Visit the following website https://sa2.grapecity.com on the other machine (having an internet connection), and click
Activation to use offline Activation key to activate the license.

Note: Do not close the activation dialog on your original machine until the activation process is completed.

ActiveReports 14 50

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://sa2.grapecity.com/

5. Enter the Activation Key you have copied in step 3 on the website, and click Activate again.

6. After a successful activation on the website, copy the License Data from the website and paste it in the licensing window.

ActiveReports 14 51

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Click Activate and then OK to complete the licensing process.

To activate a license for ActiveReports on multiple machines

You can activate a single developer license key for ActiveReports on three machines for use by one developer.

If you have used all the three license activations and you wish to license a fourth machine, for example, a virtual machine for use
by the same licensed developer, then you must deactivate the license key from one of the three machines. For more information
on this, see the section "To deactivate an ActiveReports license."

After you have deactivated licensing on one of the machines, you can then activate ActiveReports on the other machine.

Note: Deactivate your ActiveReports license before formatting a machine to avoid loss of activation. If this happens by
accident, you can contact our support team for help.

To deactivate an ActiveReports license

When you have used all the three of your license activations and you still want to license an another machine for your own use.
So, in such a case you can deactivate an ActiveReports license on any of three machines to license the fourth machine.

Follows these steps to deactivate an ActiveReports license on a machine:

ActiveReports 14 52

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Go to the Start menu and select GrapeCity License Manager to open the licensing manager window.
2. In the GrapeCity License Manager window, click Deactivate.
3. In the Deactivation page, click Deactivate again to confirm the deactivation process.
4. Click OK to complete the deactivation process.

To upgrade or downgrade a license

Note: In order to upgrade or downgrade a license on a machine, you need to install both the Professional and Standard
licenses on the machine. If you have not, then the Upgrade/Downgrade column does not appear in the GrapeCity License
Manager window. And, in case, you have only one of the licenses and you wish to install the other, then you must first
deactivate the installed license. Once you deactivate the license, the Upgrade/Downgrade column is automatically added at
that point.

Follow these steps to change your ActiveReports license type:

Upgrade from a Standard to a Professional License:

1. Go to the Start menu and select GrapeCity License Manager to open the licensing manager window.
2. In the GrapeCity License Manager window, click Upgrade to Professional License under the Upgrade/Downgrade

column.
3. Follow the activation steps from Step 3 onwards of To license an ActiveReports Trial without reinstalling to upgrade.

Downgrade from a Professional to a Standard License:

1. Go to the Start menu and select GrapeCity License Manager to open the licensing manager window.
2. In the GrapeCity License Manager window, click Downgrade to Standard License under the Upgrade/Downgrade

column.
3. In the Deactivate ActiveReports 14 page, click the Next button.
4. In the Confirm the Product screen, confirm that the correct product is being downgraded and click the Next button.
5. After a successful completion, a Deactivation Successful screen appears with the Product Name as ActiveReports 14 and

the Current Status as Standard License.

Note: You can upgrade a license only if you buy an upgrade from Standard Edition to Professional Edition.

To determine whether a machine is licensed

1. Open any sample in Visual Studio from the included samples located in C:\Users\USERNAME\Documents\GrapeCity
Samples\ActiveReports 14 and click the Preview tab.

2. Scroll to the bottom of the report and check for any red evaluation text. If there is any, it means your machine is not
licensed.

Note: To check for Professional Edition licensing, open a sample from the Professional folder, run it, and look for the
evaluation messages.

Licensing a Project
Tips:

To deploy using XCOPY, you must include the DLLs for all of your ActiveReports references in your bin/debug
folder. To do this, in the Visual Studio Solution Explorer, select each reference, and in the Properties window,
set Copy Local to True and rebuild your solution.

To avoid having to change the version number each time you install an ActiveReports service pack. You need

ActiveReports 14 53

Copyright © 2020 GrapeCity, Inc. All rights reserved.

to select each reference in the Visual Studio Solution Explorer, and in the Properties window, set Specific
Version to False.

To license Windows Forms projects made on the trial version

These steps assume that you have an ActiveReports licensed edition installed on your system.

1. Open the project in Microsoft Visual Studio.

Note: If another application calls the one containing ActiveReports features, you must license the calling
application to avoid evaluation banners after deployment.

2. In Visual Studio, go to the Build menu and select Rebuild Solution.
3. To verify that the application is licensed, open the licenses.licx file and compare it to the Required references

section below.

The executable application is now licensed, and no nag screens or evaluation banners will appear when you run it. You can
also distribute the application to the unlicensed machines without facing any nag screens or evaluation banners.

Required references in the licenses.licx file (for Standard and Professional Editions)

The licenses.licx file must contain the following references to ActiveReports if you are using both the Section and Page
reports, and both the Windows and WPF viewers. See the table for the references to the ActiveReports version and the
reference to the Viewer control.

Note: The Version, Culture, and PublicKeyToken information is added automatically, but they can be removed, and
are preferred to be removed, if the version is wrong.

Paste INSIDE the licenses.licx file.

GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports
GrapeCity.ActiveReports.PageReport, GrapeCity.ActiveReports
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win
GrapeCity.ActiveReports.Viewer.Wpf.Viewer, GrapeCity.ActiveReports.Viewer.Wpf

The below table lists all the license strings that you may need:

Component License String

Section report engine GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports

Page and RDL report engine GrapeCity.ActiveReports.PageReport, GrapeCity.ActiveReports

WinForms viewer control GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win

WPF viewer control GrapeCity.ActiveReports.Viewer.Wpf.Viewer, GrapeCity.ActiveReports.Viewer.Wpf

PRO (some features) PDF
export

GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport, GrapeCity.ActiveReports.Export.Pdf

PRO ONLY:
WebViewer, HTTP handlers

GrapeCity.ActiveReports.Web.WebViewer, GrapeCity.ActiveReports.Web

PRO ONLY: End-user GrapeCity.ActiveReports.Design.Designer, GrapeCity.ActiveReports.Design.Win

ActiveReports 14 54

Copyright © 2020 GrapeCity, Inc. All rights reserved.

designer

PRO ONLY: JSViewer GrapeCity.ActiveReports.Aspnet.WebViewer, GrapeCity.ActiveReports.Aspnet.Viewer

PRO ONLY: Web Designer GrapeCity.ActiveReports.Aspnet.WebDesigner, GrapeCity.ActiveReports.Aspnet.Designer

Note: When using the PDF export filter in your project, make sure you check the licenses.licx file for reference to the
PDF Export Assembly.

To license Web Forms projects made on the trial version

Follow these steps after you have licensed ActiveReports on your machine:

1. Open the Web Forms project in Microsoft Visual Studio.
2. In Visual Studio, go to the Build menu and select Rebuild Solution.
3. The web site application is now licensed. You can distribute the web site application to unlicensed machines and no

evaluation banners will appear.

To license Web Site applications

Follow these steps after you license ActiveReports on your machine.

1. Open the project in Visual Studio.
2. In the Solution Explorer, right-click the licenses.licx file and select Build Runtime Licenses to create the

App_Licenses.dll file.
3. The web site application is now licensed. You can distribute the web site application to unlicensed machines

without facing any evaluation banners.

To license a class library project

Follow these steps after you have licensed ActiveReports on your machine.

1. Open the project for the root-level calling application, that is, the executable that calls your class library, in Visual
Studio.

2. From the Project menu, select Add New Item, and select an ActiveReports report. (You can delete it later. This is
only to add the references to the project.)

3. In Visual Studio, go to the Build menu and select Rebuild Solution.
4. Check the licenses.licx file and verify that ActiveReports licensing is added for all of the features used in your

project.

Note:

If you use some other features of ActiveReports in your class library that are still showing an evaluation
banner, for example, features exclusive to the Professional Edition, you can add those references manually and
rebuild the solution.
The Web Key Generator and Application License Generator utilities have been removed in ActiveReports
14. You should use above steps to license the project.

To license a project that use Web Designer and JSViewer nuget packages

The Web Designer and JSViewer nuget packages do not include a licenses.licx file, so the file needs to be added and
configured manually in your project. Follow these steps to add license file in your Web Application in Visual Studio:

ActiveReports 14 55

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Go to Project menu and select Add New Item.
2. Select a new text file and rename it to licenses.licx.
3. Open the blank licenses.licx file and populate the file with the following entries:

Paste INSIDE the licenses.licx file.

GrapeCity.ActiveReports.SectionReport,
GrapeCity.ActiveReportsGrapeCity.ActiveReports.PageReport,
GrapeCity.ActiveReportsGrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf

4. Run the project.
You should not face any licensing errors, assuming that you have a licensed ActiveReports Professional Edition.

Licensing Compiled Code
This section describes how to generate the license for the compiled code or specifically for the applications deployed on
Azure Functions application. By default, licensing is applied to your main application. In case ActiveReports is embedded
in a custom library, that is called by another application, a "license not found" error is shown. Therefore, you need to
generate a license file for the target application.

For example, there is a 'UserControlLibrary' project with ActiveReports libraries embedded and a 'MainApp' project that
references the 'UserControlLibrary'. To generate license for the specified target application, follow these steps:

1. Open the command line on Windows and change the working directory to:
C:\ProgramData\GrapeCity\gclm

2. Run the command as:
gclm.exe "de456e2c-d2e3-4246-94e8-9648bbd6fbf0" -lc "[output dir].gclicx [entry
assembly name].[calling assembly name].dll"

For example,
C:\ProgramData\GrapeCity\gclm>gclm.exe "de456e2c-d2e3-4246-94e8-9648bbd6fbf0" -lc
./.gclicx "MainApp.UserControlLibrary.dll"

To license an application on an Azure Functions application, run the following command:
gclm.exe "de456e2c-d2e3-4246-94e8-9648bbd6fbf0" -lc .\.gclicx
Microsoft.Azure.WebJobs.Script.WebHost.[assembly name].dll

It generates a .gclicx file in the output directory.

Note: You must specify the application name while generating a license. Also, the generated license can not
be used in other applications with different names.

3. Copy the .gclicx file and paste it into your application (in this case, UserControlLibrary) where ActiveReports
assemblies are used, in any folder.

4. Change the build action of .gclicx to Embedded Resource.
5. Rebuild the solution and run the project.

Our control will now be able to lookup license for the 'MainApp' from the 'UserControlLibrary' assembly.

In case of licensing the application on Azure Functions application, deploy the application on Azure Function.

ActiveReports 14 56

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This licensing process requires an internet connection.
For the license to apply at runtime, you must call gclm.exe with the target name, for example,
'AppName.PluginLibraryName.dll'.
The build action of .gclicx file in the project must set to Embedded Resource.

Licensing with Pipelines
The GrapeCity License Manager (gclm) tool identifies the machine via the host-name. However, in pipeline
environments, the build actions work in virtual machines or dockers on cloud, so the host-name would be different in each
build process. The environments may also be reset before every build so that the activated license is removed.

The steps to license the applications with pipelines are as follows:

1. Deploy the application. If the gclm tool is not already installed, it will be installed by NuGet packages if the pipeline
has access to it. The gclm tool is also available on CDN here: https://cdn.grapecity.com/license/gclm_deploy.exe
Note that the project is built with Trial License for 30 days.

2. Activate the serial key. Run the following command in the command line:
gclm.exe "de456e2c-d2e3-4246-94e8-9648bbd6fbf0" -a [serial key]

3. Rebuild the application with the activated license. This step is required since the gclm tool is run and the license is
validated.

4. Run the deployed application using dotnet command. For example:
dotnet JSViewerApplication.dll

5. Deactivate the license activated in Step#2. Run the following command in the command line:
gclm.exe "de456e2c-d2e3-4246-94e8-9648bbd6fbf0" -d [serial key]

The license should be activated.

Licensing Errors
Here are some common licensing errors and their causes.

Error Cause

Application cannot run
because it was built with no
license.

Licensing is not present in the application or the calling application. See below for
information on how to license the calling application.

License for XXXX (control
name) could not be found.

Extra lines for components that you do not use are in the licenses.licx file. Delete
unnecessary information and Rebuild the project.

Licensing has not been
correctly applied to the
application.

Check the three key points below.

Exception (LicenseException) Check the three key points below.

 'No License' message on
running .NET Core

This is so because Visual Studio 2017 does not support core license compilation.

ActiveReports 14 57

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://cdn.grapecity.com/license/gclm_deploy.exe

applications in Visual Studio
2017

1. Ensure that the license file is added to the appropriate project.

The licenses.licx file is automatically generated in the project where ActiveReports is used. But if your application is
composed of multiple projects and another project calls the reports defined in your class library, you need to
register it in the calling project rather than just in your report project.

When you add an ActiveReports web service to a Page report, RDL report, or XML-based Section report project, the
licenses.licx file is not created automatically, and the license strings are not added. You also need to manually add
licensing to your application if you want to create a control at run time or use the HTTP handlers.

To manually add licensing to the calling application

Note: In a C# Windows Forms project, the license file is in the Properties folder. In a Visual Basic project, it is
in the My Project folder.

 1. In your application that contains ActiveReports components, check that the proper licensing strings are in the
licenses.licx file. (See the table of license strings below.)

 2. Copy the ActiveReports strings from the file into the licenses.licx file in the calling application.
 a. If there is no license file, from the Project menu, select Add New Item.
 b. From the listed templates, select Text file and change the name to "licenses.licx."
 c. In the Solution Explorer, double-click the newly created licenses.licx file to open it, and paste in the
licensing strings for all components you use.

 3. From the Build menu, select Rebuild Project to embed the licensing.

Note: If your project is a web site, the bin folder has the licenses embedded in the App_Licenses.dll file.

2. Ensure that the contents of the license file are correct.

Depending on which features of ActiveReports you use in your application, the license file may need to contain
multiple license strings.

You will find a full list of license strings that you may need in the Required references in the licenses.licx file (for
Standard and Professional Editions) section above.

3. Ensure that the Build Action property is configured correctly for the license file.

ActiveReports 14 58

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the Solution Explorer, select licenses.licx (you may need to click the Show all files button to see it).

2. In the Properties window, ensure that the Build Action property is set to Embedded Resource.

4. Ensure that .NET Core applications are always run on Visual Studio 2019

.NET Core applications should be run only in Visual Studio 2019 since Visual Studio 2017 does not support core
license compilation.

Contacting Support
If you still face problems licensing ActiveReports, please contact our Support Team using any of these methods:

World Wide Web site https://www.grapecity.com/support/contact

E-mail activereports.sales@grapecity.com

Phone1 (412) 681-4738

1Phone support is available for customers that have Platinum Support included with their purchased products or issues
related to licensing or installation of a product. Monday through Friday during regular business hours (EST).

For information on Platinum Support, visit our website at https://www.grapecity.com/support/plans/.

Quick Start
Quickly begin using ActiveReports by following the steps of some of the most commonly used features. See Install ActiveReports topic
to see how to add references to GrapeCity.ActiveReports from nuget.org.

Add ActiveReports Controls to Toolbox

You can add an ActiveReport to a project without using the Visual Studio toolbox, but in order to use the Viewer control, any of the
exports, the Designer and related controls, or the WebViewer control, you need to have them in your toolbox.

ActiveReports 14 59

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/support/contact
mailto:activereports.sales@grapecity.com
https://www.grapecity.com/support/plans/

On installing NuGet packages, the controls are automatically added to the toolbox in Visual Studio 2017 and Visual Studio 2019, in an
ActiveReports 14 tab.

Visual Studio 2013 and Visual Studio 2015

If you are using Visual Studio 2013 or Visual Studio 2015, the NuGet packages do not add the controls on the toolbox by default. You
need to add the controls manually as follows.

1. Install the NuGet packages (in WinForms or WebForms application).
2. Right-click anywhere on the toolbox and select Add Tab.
3. Right-click the newly added tab and select Choose Items.
4. In the Choose Toolbox Items dialog with .NET Framework Components tab selected, click Browse.
5. Select the assembly present inside the package you installed in the application. The path to the assembly is similar to the

following:
[App name]\packages\{Package name}\lib\net462\{Assembly}

The added control(s) should now display in the tab.

Limitation: Items for ActiveReports 14 cannot be added if the toolbox already contains items for ActiveReports 13. This is because
assembly names in both ActiveReports versions are the same. To resolve this issue, remove the toolbox items for ActiveReports 13,
and then add the items for ActiveReports 14.

Add an ActiveReport to a project

1. From the Visual Studio Project menu (or Website menu in Web projects), select Add New Item.
2. Select the type of report that you want to add (for information on the differences, see Report Types):

Section Report (code-based)
Section Report (xml-based)
Page Report
RDL Report

ActiveReports 14 60

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. In the Name box, type a name for the report, and click Add. The selected report type is added to your project and opens in the
report designer.

Add an ActiveReport to a project at run time

1. In Visual Studio, create a new Windows Forms Application or open an existing one.
2. From the Visual Studio toolbox, drag the Viewer control onto your Windows Form.
3. Set the Viewer's Dock property to Fill to show the complete Viewer control on the form.
4. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
5. Add the following code inside the Form_Load event.

Page Report

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Create a new Page report instance
Dim pageReport As New GrapeCity.ActiveReports.PageReport()
Dim Page As New GrapeCity.ActiveReports.PageReportModel.Page()
Dim fixedPage As New GrapeCity.ActiveReports.PageReportModel.FixedPage()

' Add a textbox to your Page report
Dim textbox1 As New GrapeCity.ActiveReports.PageReportModel.TextBox()
textbox1.Name = "TextBox1"
textbox1.Height = "1cm"
textbox1.Width = "10cm"
textbox1.Left = "2cm"
textbox1.Top = "0.5cm"

ActiveReports 14 61

Copyright © 2020 GrapeCity, Inc. All rights reserved.

textbox1.Value = "Sample Page Report"
Page.ReportItems.Add(textbox1)
fixedPage.Pages.Add(Page)
pageReport.Report.Body.ReportItems.Add(fixedPage)

' Create a Page document and load it in Viewer
Dim pageDocument As New GrapeCity.ActiveReports.Document.PageDocument(pageReport)
viewer1.LoadDocument(pageDocument)

C# code. Paste INSIDE the Form Load event.

// Create a new Page report instance
GrapeCity.ActiveReports.PageReport pageReport = new GrapeCity.ActiveReports.PageReport();
GrapeCity.ActiveReports.PageReportModel.Page Page = new
GrapeCity.ActiveReports.PageReportModel.Page();
GrapeCity.ActiveReports.PageReportModel.FixedPage fixedPage = new
GrapeCity.ActiveReports.PageReportModel.FixedPage();

// Add a textbox to your Page report
GrapeCity.ActiveReports.PageReportModel.TextBox textbox1 = new
GrapeCity.ActiveReports.PageReportModel.TextBox();
textbox1.Name = "TextBox1";
textbox1.Height = "1cm";
textbox1.Width = "10cm";
textbox1.Left = "2cm";
textbox1.Top = "0.5cm";
textbox1.Value = "Sample Page Report";
Page.ReportItems.Add(textbox1);
fixedPage.Pages.Add(Page);
pageReport.Report.Body.ReportItems.Add(fixedPage);

// Create a Page document and load it in Viewer
GrapeCity.ActiveReports.Document.PageDocument pageDocument = new
GrapeCity.ActiveReports.Document.PageDocument(pageReport);
viewer1.LoadDocument(pageDocument);

RDL Report

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Create a new RDL report instance
Dim rdlReport As New GrapeCity.ActiveReports.PageReport()

' Add a textbox to your RDL report
Dim textbox1 As New GrapeCity.ActiveReports.PageReportModel.TextBox()
textbox1.Name = "TextBox1"
textbox1.Height = "1cm"
textbox1.Width = "10cm"
textbox1.Left = "2cm"
textbox1.Top = "0.5cm"
textbox1.Value = "Sample RDL Report"
rdlReport.Report.Body.ReportItems.Add(textbox1)

' Create a Page document and load it in Viewer
Dim rdlDocument As New GrapeCity.ActiveReports.Document.PageDocument(rdlReport)

ActiveReports 14 62

Copyright © 2020 GrapeCity, Inc. All rights reserved.

viewer1.LoadDocument(rdlDocument)

C# code. Paste INSIDE the Form Load event.

// Create a new RDL report instance
GrapeCity.ActiveReports.PageReport rdlReport = new GrapeCity.ActiveReports.PageReport();

// Add a textbox to your RDL report
GrapeCity.ActiveReports.PageReportModel.TextBox textbox1 = new
GrapeCity.ActiveReports.PageReportModel.TextBox();
textbox1.Name = "TextBox1";
textbox1.Height = "1cm";
textbox1.Width = "10cm";
textbox1.Left = "2cm";
textbox1.Top = "0.5cm";
textbox1.Value = "Sample RDL Report";
rdlReport.Report.Body.ReportItems.Add(textbox1);

// Create a Page document and load it in Viewer
GrapeCity.ActiveReports.Document.PageDocument rdlDocument = new
GrapeCity.ActiveReports.Document.PageDocument(rdlReport);
viewer1.LoadDocument(rdlDocument);

Section Report

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Create a new Section report instance
Dim sectionReport As New GrapeCity.ActiveReports.SectionReport()

' Create a Detail section
sectionReport.Sections.Add(GrapeCity.ActiveReports.Document.Section.SectionType.Detail, "Body")

' Add a textbox to your Section report
Dim textbox1 As New GrapeCity.ActiveReports.SectionReportModel.TextBox()
textbox1.Name = "TextBox1"
textbox1.Height = 1.5F
textbox1.Width = 10.0F
textbox1.Left = 0.5F
textbox1.Top = 0.5F
textbox1.Value = "Sample Section Report"
sectionReport.Sections(0).Controls.Add(textbox1)

' Load the Section report in the Viewer
sectionReport.Run()
viewer1.LoadDocument(sectionReport)

C# code. Paste INSIDE the Form Load event.

// Create a new Section report instance
GrapeCity.ActiveReports.SectionReport sectionReport = new GrapeCity.ActiveReports.SectionReport();

// Create a Detail section
sectionReport.Sections.Add(GrapeCity.ActiveReports.Document.Section.SectionType.Detail, "Body");

// Add a textbox to your Section report

ActiveReports 14 63

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.SectionReportModel.TextBox textbox1 = new
GrapeCity.ActiveReports.SectionReportModel.TextBox();
textbox1.Name = "TextBox1";
textbox1.Height = 1.5F;
textbox1.Width = 10F;
textbox1.Left = 0.5F;
textbox1.Top = 0.5F;
textbox1.Value = "Sample Section Report";
sectionReport.Sections[0].Controls.Add(textbox1);

// Load the Section report in the Viewer
sectionReport.Run();
viewer1.LoadDocument(sectionReport);

Add a Data Source to a Report

The first thing you probably want to do when you create a report is to add data. You can accomplish this in a variety of ways, depending
on the type of report you are using.

Page Report/RDL Report Data

With page reports or RDL reports, you basically connect to a data source, and then add a dataset. You can also create a shared data
source if you use the same one for many reports. For information on how to perform these tasks, see Work with Data in the How To
section. For more information on each item in the associated dialogs, see Data Sources and Datasets in the Concepts section.

For more advanced ways to connect data, see the Walkthroughs section for step by step instructions on using Reports with Stored
Procedures, or creating a Custom Data Provider.

Section Report Data

With section reports, you bind a report to any of a variety of data sources and select the data using a SQL query or XPath expression in
the Data Source Dialog. You can also use code to create an unbound data source or to change the data source at run time. For more
information on all of these methods of binding reports to data, see Work with Data in the Section Report How To section.

Add an ActiveReports application to a Project

ActiveReports provides an in-built sample application that includes a report template along with the Viewer control. You learnt about
creating a report and viewing it in the preceding sections. With this Windows Forms application you only need to create a report layout
and run the application to view the report, effectively skipping the manual process of adding a Viewer and template separately and
creating an instance of the report.

1. From the Visual Studio File menu, select New, then Project.
2. In the New Project dialog that appears, under your desired language (VB.NET or C#), click the Reporting node.
3. Select the type of report application that you want to add (for information on the differences, see Report Types):

ActiveReports 14 Page Report Application
ActiveReports 14 RDL Report Application
ActiveReports 14 Section Report Application (xml-based)
ActiveReports 14 Section Report Application (code-based)

ActiveReports 14 64

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. In the Name field, enter a name for the report application, and click OK. The selected report type is added to your project.
5. Go to the Visual Studio Solution Explorer and double-click Form1.cs or Form1.vb. Notice that the Viewer control already

appears on the form.

ActiveReports 14 65

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Add Fields in Reports

Fields provide data to display on a report page. ActiveReports has two types of fields; a bound or database field and a calculated field.

Bound or Database field: A field where the value is returned by a query. See the Query dropdown in the Dataset Dialog for
further information on queries in page reports and RDL reports.
Calculated field: A field where the value is an expression created with functions, formulas and operators. Use the following
instructions to add calculated fields in a report.

To create a calculated field in a Section Report

In a section report, once you connect to a data source, bound fields automatically appear under the Fields > Bound node in the Report
Explorer. However, you have to add calculated fields manually under the Fields > Calculated node. The following steps guide you
through the process.

1. In the Report Explorer, expand the Fields node.
2. Right-click the Calculated node and select Add. This action creates an unbound field with a default name like field1.

3. In the Report Explorer, with field1 selected, go to the Properties Window and set a value for the field in the Formula ('Formula

ActiveReports 14 66

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property' in the on-line documentation) property. For e.g., for a calculated field Inventory, in the Formula field, enter the
expression =UnitsInStock - ReorderLevel.

You can change the name of the field in the Name ('Name Property' in the on-line documentation) property.
4. Drag the field from the Calculated node onto the detail section of the report. This action creates a TextBox object, and sets its

DataField property to the name of the calculated field.

Note: You can also add C# expressions in a Bound Field's DataField property to modify it. See Add Field Expressions for more
information.

To create a calculated field in a Page Report/RDL Report

In a page report or a RDL report, all fields irrespective of their type appear under the corresponding DataSet node in the Report
Explorer. To create a calculated field, you can add the new field in the DataSet dialog.

The following steps guide you through the process.

Note: These steps assume that you have added a DataSet in your report. See Add a Dataset for further information.

1. In the Report Explorer, right-click the data set node and select Edit.
2. In the DataSet dialog that appears, go to the Fields page and click the Add (+) button to add an empty field to the list.

ActiveReports 14 67

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Under Name, enter the name of the field. By default it appears as Field1.
4. Under Value, click the dropdown arrow and select <Expression...>, to open the Expression Editor dialog.
5. In the Expression Editor dialog, create an expression you want to use as the value for the calculated field. For e.g., for a calculated

field Cost, in the Formula field, enter the expression =[Quantity]*[Price]. See Expressions for further information.
6. Click OK to close the Expression Editor and then the DataSet dialogs.
7. From the Report Explorer, drag the calculated field from that now appears as a field under the DataSet node onto the design

surface. This action creates a TextBox object, and sets its Value property to the name of the calculated field expression.

Upgrade Reports
This section summarizes information on migration of ActiveReports, importing Microsoft Access reports, Crystal reports,
and Microsoft Excel; and coexistence of ActiveReports .NET designers of different versions.

Topic Content

Breaking Changes Describes changes from the previous version

Migration Types Describes the migration types and layouts

ActiveReports 14 68

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Migrating from Previous
Versions

Describes migration from previous versions of ActiveReports for .NET

Migrating Execution
Environment

Describes about migration of execution environment

Migrating from ActiveReports 2
COM

Describes migration from ActiveReports COM (the ActiveX version)

ActiveReports 2 COM versus
ActiveReports for .NET

Describes the difference between ActiveReports COM and ActiveReports for .NET

Coexistence of ActiveReports
Designers

Describes the compatibility of different versions of ActiveReports designers and
Visual Studio

Breaking Changes
Breaking changes from ActiveReports 13 to ActiveReports 14

Installer

Simplified installation

The GAC installation is removed. You no more need administrator previleges to install or update references.

Assemblies moved to NuGet - https://www.nuget.org/packages/

NuGet packages are available instead of assemblies, so now you should install the latest NuGet packages available on the website. Installing a package automatically adds
references to the necessary dlls.
All dependencies are also available as NuGet packages through installer.

JSViewer and Web Designer are now available on NPM - https://www.npmjs.com/package/

Samples are moved to GitHub - https://github.com/activereports/

Removed HTML5Viewer

You should now use the improved JSViewer (available with Professional Edition).

Improved WebViewer

Changed UI of Html mode since we are using the new JSViewer internally.

ReportService settings in web.config (ActiveReportsXX section) are ignored.

Moved ReportsFolder property to the WebViewer control properties.

Changed WebViewer component API

Removed method: ClearCachedReport
Removed following events:

LocateDataSource1
LocateCredentials

Removed following properties:
HtmlExportOptions
MaxReportRunTime
PdfExportOptions
SlidingExpirationIntervals

The WebViewer and JSViewer are supported only in the Integrated pipeline mode. You will get PlatformNotSupportedException on using these Viewers in Classic pipeline mode.

Dropped Oracle Data Provider

The Oracle data provider is no more available since System.Data.OracleClient is deprecated. If you want, you can still add this data provider to your application. The sample
OracleDataProvider elaborates how to do that.

Modified Text Rendering

The text align is changed from Left to Center in last row of paragraph, if the last row contains only one character, and if the following properties are set: TextAlign = Justify and
TextJustify=DistributeAllLines. This change can be observed in designer, preview, and PDF, Word, Excel, and Image exports.

Changed PdfRenderingExtension (RDL reports)

PDF export dialog

ActiveReports 14 69

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.nuget.org/packages/
https://www.npmjs.com/package/package
https://github.com/activereports/

Hid GDI-related properties: WatermarkFont > GdiCharSet and WatermarkFont > GdiVerticalFont.
Removed OptimizeStatic property.

API

Removed CertificateRawData property.

Changed SVG Rendering extension

Removed internal assembly GrapeCity.ActiveReports.Export.Svg. Now, GrapeCity.ActiveReports.Core.Export.Svg.Page assembly is used internally to export complex report items
such as charts, map, etc. to HTML as SVG content.

Changed ImageRenderingExtension

Dropped EMF output format (updated ImageType enum).
Removed ColorDepth property from Settings class. This property was marked obsolete in ActiveReports 9.

Removed following assemblies

GrapeCity.ActiveReports.Core.Diagnostics.dll

RdfRenderingExtension

RdfRenderingExtension is now obsolete.

1Use SetLocateDataSource ('SetLocateDataSource Method' in the on-line documentation) method of the report service instead, as shown:

Application_Start(object sender, EventArgs e) {
this.UseReporting(settings =>
 {
 settings.UseFileStore(new DirectoryInfo(Server.MapPath("~")));
 settings.UseCompression = true;
 settings.SetLocateDataSource(args => { return LoadData(); });
 });
}

Also, you can set the LocateDataSource event handler for a report directly as in the following code example.

pageReport.Document.LocateDataSource += new LocateDataSourceEventHandler(Document_LocateDataSource);
webViewer.Report = pageReport;

Breaking changes from ActiveReports 12 to ActiveReports 13

1. Following is the list of changes in public classes and namespaces location:

Class/Namespace ActiveReports 12 ActiveReports 13 Impact

ResourceLocator, DefaultResourceLocator GrapeCity.ActiveReports.Extensibility.v12 GrapeCity.ActiveReports.Core.Rdl On creating
own resource
locator

GrapeCity.ActiveReports.PageReportModel.* GrapeCity.ActiveReports.v12 GrapeCity.ActiveReports.Core.Rdl On
creating reports
dynamically

GrapeCity.ActiveReports.Rendering.IO.* GrapeCity.ActiveReports.v12 GrapeCity.ActiveReports.Core.Rendering On rendering
to any
rendering
extension

GrapeCity.ActiveReports.Extensibility.Rendering.Components.* GrapeCity.ActiveReports.Extensibility.v12 GrapeCity.ActiveReports.Core.Rendering On creating
own rendering
extensions or
custom report
items

GrapeCity.ActiveReports.Extensibility.Data.* GrapeCity.ActiveReports.Extensibility.v12 - On using own
data providers

GrapeCity.ActiveReports.Dashboard.* GrapeCity.ActiveReports.Dashboard.v12 GrapeCity.ActiveReports.Core.Rendering -

GrapeCity.ActiveReports.Calendar.* GrapeCity.ActiveReports.Calendar.v12 Calendar is moved to samples -

GrapeCity.ActiveReports.Extensibility.Rendering.IRenderingExtension GrapeCity.ActiveReports.Extensibility.v12 GrapeCity.ActiveReports On creating
own rendering
extensions

ActiveReports 14 70

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.ReportData.DataProviders.* GrapeCity.ActiveReports.v12 GrapeCity.ActiveReports.Core.DataProviders On using CSV,
JSON, Object,
Xml, DataSet
data providers

GrapeCity.ActiveReports.ArsClient.* GrapeCity.ActiveReports.ArsClient.v12 removed -

GrapeCity.ActiveReports.OracleClient.* GrapeCity.ActiveReports.OracleClient.v12 GrapeCity.ActiveReports.Core.DataProviders -

2. The following assemblies have been removed:
GrapeCity.ActiveReports.ArsClient
GrapeCity.ActiveReports.Calendar
GrapeCity.ActiveReports.Dashboard
GrapeCity.ActiveReports.Export.Document
GrapeCity.ActiveReports.Export.Image.Unsafe
GrapeCity.ActiveReports.Export.Xaml
GrapeCity.ActiveReports.Extensibility

3. Following ActiveReports Core assemblies have been added:
GrapeCity.ActiveReports.Core.DataProviders
GrapeCity.ActiveReports.Core.Drawing.Gdi
GrapeCity.ActiveReports.Core.Rdl
GrapeCity.ActiveReports.Core.Rendering
GrapeCity.ActiveReports.Core.Export.Text.Page
GrapeCity.ActiveReports.Core.Export.Excel.Page
GrapeCity.ActiveReports.Core.Export.Html.Page

4. Assembly GrapeCity.ActiveReports.Diagnostics is renamed to GrapeCity.ActiveReports.Core.Diagnostics.
5. Following assemblies are added that have back-ends for JsViewer and Web Designer components:

GrapeCity.ActiveReports.Aspnetcore.Viewer.dll
GrapeCity.ActiveReports.Aspnet.Viewer.dll
GrapeCity.ActiveReports.Aspnetcore.Designer.dl
GrapeCity.ActiveReports.Aspnet.Designer.dll

6. Flash and Silverlight viewers are now obsolete.

7. HTML5 Viewer is deprecated and will be obsolete in the future version.

8. Custom Data Providers have been modified as:
Removed extra classes and interfaces - DbCommand, DbConnection and others have been removed to reuse standard System.Data.* classes. Now implement
System.Data.DataProviderFactory, System.Data.DbCommand, System.Data.DbConnection, System.Data.DbDataReader OR download any third-party implementation of
those standard interfaces.
Simplified using custom data providers - The customer may just configure ActiveReports to start using of any ADO component.

Note: Multivalue parameters, Credentials, and UI editor are available only if customer implements special adapter.
To support setting of credentials and multivalue parameters, implement GrapeCity.ActiveReports.ReportData.DataProviders.DbConnectionAdapter.

Created data provider should be configured using ActiveReports.config - Specify name and data provider factory type. You may specify custom editor, adapter type
(AdapterType attribute) and schema provider type (SchemaProviderType attribute).

9. LocateDataSourceEventArgs class which obtains data for LocateDataSource event has undergone following changes.
Following properties have been removed:

DataSetName:string
DataSourceName:string
Report:PageDocument

Following properties have been added:
DataSet:IDataSet
Report:ReportObjectModel.Report
Parameters:IReadonlyList<DataParameter>

ActiveReports 12 approach ActiveReports 13 approach

class LocateDataSourceEventArgs{

public object Data {get;set;}

public string DataSetName {get;}

public string DataSourceName {get;}

public PageDocument Report {get;}

}

class LocateDataSourceEventArgs{

public object Data {get;set;}

public IDataSet DataSet {get;}

public Report Report {get;}

public IReadonlyList<DataParameter> Parameters {get;}

}

Note: The ActiveReports 13 parameters are Query parameters, so if you want to obtain Subreport parameters (available in PageDocument in ActiveReports 12), you should
map them to Query parameters first.

10. Custom Report Items have been modified as:
Most of the extra methods of ICustomReportItem interface (required for Flash) were dropped.
Now CRIs should implement IReportItemRenderersFactory interface.

11. HTML RE ILinkProvider

ActiveReports 14 71

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Cleaned ILinkProvider interface with few new properties.

12. HTML RE
HTML RE no more inherits IDisposable interface with Dispose method from HtmlRenderingExtension class (for WebViewer).

Breaking changes from ActiveReports 11 to ActiveReports 12

The GrapeCity.ActiveReports.Expressions namespace is now GrapeCity.Enterprise.Data.DataEngine.Expressions.
The hybrid expressions like =Theme.Constants("Name") & " - " & [OrderDate].Year are now evaluated as 'render time' expressions.
ActiveReports 12 is not supported in Microsoft Visual Studio 2010.
Flash and Silverlight viewers are deprecated.

Breaking changes from Previous ActiveReports versions to ActiveReports 12

When you upgrade reports from previous versions of ActiveReports or Data Dynamics Reports, there are several breaking changes. In ActiveReports 12, data engine has been
revamped to improve the data manipulation tasks such as sorting, filtering, and grouping.

Control Changes

The Excel Transformation Device option, the File menu item Microsoft Excel WorkSheet - Data (XLS), is no longer available for RDL reports in the default export dialogs of the
viewer and designer applications shipped with the product. For backward compatibility, the Excel Transformation Device API is still available, but it does not support the new Tablix
control. In order to successfully export reports using the new Tablix control, please use the Excel Rendering Extension option, the File menu item Microsoft Excel WorkSheet -
Layout (XLS, XLSX).

The Matrix data region has been replaced in the toolbox with the new Tablix data region. However, it is still available in the API for backward compatibility.

The OleObject control is now hidden by default in the toolbox for Section reports. To show this control in Visual Studio, open the GrapeCity.ActiveReports.config file and change the
EnableOleObject value to true, and include this file with your application. You can find this file here: C:\Program Files (x86)\Common Files\GrapeCity\ActiveReports
12.

To show the OleObject control in the Designer control in your own end users designer applications, select the Designer control and, in the Properties window, change the
EnableOleObject property to True.

The WebViewer control is now AJAX-based, and requires ActiveReports.ReportService.asmx to be in the root of the Web site or Web application. This is added automatically when
you drop a WebViewer control on a Web form, or you can add it from the Add New Item dialog by selecting ActiveReports 12 Web Service, or manually by copying it from
C:\Program Files (x86)\Common Files\GrapeCity\ActiveReports 12. ExceptionOccurring, QueuingReport, ReportCreating and ReportDisposing events are no longer available
in WebViewer class.

The Viewer control no longer has Annotations turned on by default. To enable Annotations, set the AnnotationDropDownVisible property of the Viewer control to
True. DataDynamics.ActiveReports.Viewer.ReportViewer.MultiplePageMode property is now integrated into ViewType property of Viewer class.
Viewer.ReportViewer.PaperColor property has been removed. Viewer.PageOffset property's type has been changed from Integer to System.Drawing.Point.

The Toolbar is now a Windows ToolStrip. Please see the MSDN ToolStrip Class for more information.

In RDL and Page reports, the default behavior of the Series Border Style setting for Area, Pie and Doughnut chart types has been changed. Now, the default value of this setting is
None, thus no style formatting is applied.

Other Changes

Rendering Extensions (Image): ColorDepth is an obsolete property of GrapeCity.ActiveReports.Export.Image.Page.Settings class.

Expressions: In Page report and RDL report expressions, "True" and "False" values are now handled as String, and not as Boolean values.
For example, =IIF(Fields!FieldName.Value = "True", 1, 0) is now an invalid expression when FieldName.Value returns a Boolean value, instead,
use =IIF(Fields!FieldName.Value = True, 1, 0) expression.

Classes in Different Namespaces

In ActiveReports 12, some classes have been moved to different namespaces from previous versions of ActiveReports and Data Dynamics Reports. Drop down the table below to see
some of the most commonly used classes that are in new namespaces.

Namespace Changes and Restructuring

Some of the changes that are not picked up by the upgrade tool may cause some issues in your code. The two most frequently encountered changes are:

DataDynamics.ActiveReports.ActiveReport is now GrapeCity.ActiveReports.SectionReport
DataDynamics.ActiveReports.Document.Document is now GrapeCity.ActiveReports.Document.SectionDocument

These are all of the assemblies and namespaces that have changed, with any major changes noted.

ActiveReports is now GrapeCity.ActiveReports.v12

ActiveReport class is now called SectionReport.
BarWidth property is now called NarrowBarWidth.

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports
GrapeCity.ActiveReports
GrapeCity.ActiveReports.SectionReportModel
GrapeCity.ActiveReports.Data

DataDynamics.ActiveReports.DataSources GrapeCity.ActiveReports.Data

ActiveReports 14 72

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip?view=netframework-4.8

DataDynamics.ActiveReports.Interop GrapeCity.ActiveReports

DataDynamics.ActiveReports.Options GrapeCity.ActiveReports.SectionReportModel

ActiveReports.Chart is now GrapeCity.ActiveReports.Chart.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Chart GrapeCity.ActiveReports.Chart

DataDynamics.ActiveReports.Chart.Annotations GrapeCity.ActiveReports.Chart.Annotations

DataDynamics.ActiveReports.Chart.Graphics GrapeCity.ActiveReports.Chart.Graphics

ActiveReports.Design is now GrapeCity.ActiveReports.Design.Win.v12

The Report property is now an Object that gets or sets a GrapeCity.ActiveReports.Document.SectionDocument or GrapeCity.ActiveReports.Document.PageDocument.

The ColorTheme property of the Designer class is deprecated.

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Design GrapeCity.ActiveReports.Design

DataDynamics.ActiveReports.Design.ReportExplorer GrapeCity.ActiveReports.ReportExplorer

DataDynamics.ActiveReports.Design.Toolbox GrapeCity.ActiveReports.Design.Toolbox

ActiveReports.Document is now GrapeCity.ActiveReports.Document.v12

The Document class is now called SectionDocument.

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports GrapeCity.ActiveReports

DataDynamics.ActiveReports.Document
GrapeCity.ActiveReports.Document
GrapeCity.ActiveReports.Document.Section
GrapeCity.ActiveReports.Extensibility.Printing(GrapeCity.ActiveReports.Extensibility.v12)

DataDynamics.ActiveReports.Export GrapeCity.ActiveReports.Export

DataDynamics.ActiveReports.Export.Html GrapeCity.ActiveReports.Export.Html

DataDynamics.ActiveReports.Document.Annotations GrapeCity.ActiveReports.Document.Section.Annotations

ActiveReports.HtmlExport is now GrapeCity.ActiveReports.Export.Html.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Export.Html GrapeCity.ActiveReports.Export.Html.Section

ActiveReports.PdfExport is now GrapeCity.ActiveReports.Export.Pdf.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Export.Pdf GrapeCity.ActiveReports.Export.Pdf.Section

DataDynamics.ActiveReports.Export.Pdf.Signing GrapeCity.ActiveReports.Export.Pdf.Section.Signing

ActiveReports.RtfExport is now GrapeCity.ActiveReports.Export.Word.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Export.Rtf GrapeCity.ActiveReports.Export.Word.Section

ActiveReports.Silverlight is now GrapeCity.ActiveReports.Viewer.Silverlight.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports GrapeCity.ActiveReports

ActiveReports.TextExport is now GrapeCity.ActiveReports.Export.Xml.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Export.Text GrapeCity.ActiveReports.Export.Xml.Section

ActiveReports.TiffExport is now GrapeCity.ActiveReports.Export.Image.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

ActiveReports 14 73

Copyright © 2020 GrapeCity, Inc. All rights reserved.

DataDynamics.ActiveReportsExport.Tiff GrapeCity.ActiveReports.Export.Image.Tiff.Section

ActiveReports.Viewer is now GrapeCity.ActiveReports.Viewer.Win.v12

The History class is now an interface, IHistoryApi, that resides in the GrapeCity.Viewer.Common namespace.
The SearchResultsForeColor property now gets applied as the border around the searched text.
The DisplayUnits and RulerVisible properties of the Viewer class have been removed as the Viewer no longer uses a ruler.
The TabTitleLength property of the Viewer class is not available as the tab function of the Viewer has been removed.
The ViewerToolbar.DisplayToolTips property of the Viewer.ViewerToolbar class is now ViewerToolbar.ToolStrip.ShowItemToolTips.
The ViewerToolbar.Enabled property of the Viewer.ViewerToolbar class is now ViewerToolbar.ToolStrip.Enabled.
The ViewerToolbar.Visible property of the Viewer.ViewerToolbar class is now ViewerToolbar.ToolStrip.Visible.
The TargetView enumeration now has two enumeration values (Primary and Secondary).
The ToggleVisibility() method is now Visible property that determines whether sidebar is visible or hidden.
The Print ('Print Method' in the on-line documentation) method is implemented as an extension method of the PrintExtension.Print ('Print Method' in the on-line
documentation) method, which is present in Grapecity.ActiveReport namespace of GrapeCity.ActiveReports.Viewer.Win.v12 assembly.

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Toolbar The viewer now uses Visual Studio ToolStrips. Please see MSDN ToolStrip Class for more information.

DataDynamics.ActiveReports.Viewer
GrapeCity.ActiveReports.Viewer.Win
GrapeCity.Viewer.Common

Note: GrapeCity.ActiveReports.Viewer.Win.v12.dll does not get added automatically to the project references when the report layout is added. You need to either add the Viewer
control or manually add the reference to this assembly.

ActiveReports.Web is now GrapeCity.ActiveReports.Web.v12

The Report property is now an Object that gets or sets a SectionDocument or ReportDocument.

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Web GrapeCity.ActiveReports.Web

DataDynamics.ActiveReports.Web.Controls GrapeCity.ActiveReports.Web.Controls

DataDynamics.ActiveReports.Web.ExportOptions GrapeCity.ActiveReports.Web.ExportOptions

DataDynamics.ActiveReports.Web.Handlers GrapeCity.ActiveReports.Web.Handlers

ActiveReports.XlsExport is now GrapeCity.ActiveReports.Export.Excel.v12

ActiveReports Namespace (previous versions) ActiveReports 12 Namespace

DataDynamics.ActiveReports.Export.Xls GrapeCity.ActiveReports.Export.Excel.Section

DataDynamics.SpreadBuilder GrapeCity.SpreadBuilder

DataDynamics.SpreadBuilder.Cells GrapeCity.SpreadBuilder.Cells

DataDynamics.SpreadBuilder.Imaging GrapeCity.SpreadBuilder.Imaging

DataDynamics.SpreadBuilder.Printing GrapeCity.SpreadBuilder.Printing

DataDynamics.SpreadBuilder.Style GrapeCity.SpreadBuilder.Style

Migration Types

Migration from ActiveReports for .NET (1 / 2 / 3 / 6 / 7 / 8/ 9/
10/11/12/13)

ActiveReports 14 74

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip?view=netframework-4.8

You can migrate to all the three types of reports - Section report, Page, or an RDL report in ActiveReports 14 using the file
converter.

Migrating from ActiveReports 2 COM

You can migrate only the design information of ActiveReports 2 COM by saving the report as an RPX file. You can load
and use the file after migrating to ActiveReports for .NET 11. No special migration tools are required.

Migrating from MS Access, Crystal Reports, and Excel workbook

You can use the Import Wizard to migrate reports to RPX files (Section reports) or RDLX files (Page and RDL reports).
When migrating from MS Excel, it is possible to migrate only to RDLX file. You can load and use the file after migrating to
ActiveReports for .NET 12.

Migrate from Previous Versions
This section explains how to migrate projects created with previous versions of ActiveReports to ActiveReports 14.

This section contains information about:

Topic Content

ActiveReports Version Up History Describes the history of changes in the ActiveReports for .NET product.

Migrate to ActiveReports 14 Describes how to migrate ActiveReports versions starting from ActiveReports 1
to ActiveReports 14.

Reference Migration Describes how to migrate assembly (DLL) references.

License Migration Describes how to migrate license information in a project.

ds Variable Describes how to migrate the public variable 'ds' automatically generated by the
previous version of ActiveReports.

WebViewer Migration Describes how to migrate the WebViewer control included in ActiveReports
Professional Edition.

ActiveX Viewer Migration Describes how to migrate the ActiveX Viewer included in ActiveReports 1, 2, and
3.

Compatibility Guidelines Describes compatibility issues between ActiveReports 14 and older versions of
ActiveReports.

ActiveReports Version Up History
Please refer to this link for the history of changes that ActiveReports for .NET have undergone due to version upgrade.

ActiveReports File Converter

ActiveReports 14 75

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/controls/activereports/version-history

The ActiveReports file converter allows you to upgrade your existing reports from previous versions of ActiveReports
(ActiveReports 13, 12, 11, 10, 9, 8, 7, 6, 3, 2, and 1) to the latest version.

To use the file converter

1. In Visual Studio, open an existing ActiveReports project.

Caution: If you are migrating a project from a different version of Visual Studio, a Visual Studio conversion
wizard will run automatically to convert the project.

2. From the Visual Studio Tools menu, select Convert to ActiveReports 14. In the ActiveReports 14 Upgrade
tool window that appears, you can see a list of report files to be converted.

ActiveReports 14 76

Copyright © 2020 GrapeCity, Inc. All rights reserved.

File Type Extension

Report file *.rdlx, *.rpx, *.vb, *.cs

Form with a viewer *.vb, *.cs, *.xaml

ASP.NET Web Form with a WebViewer *.aspx, *.aspx.vb, *.aspx.cs

Project file *.vbproj, *.csproj, Web.confg

License file licenses.licx

3. Click OK to convert the files. After the files are successfully converted, all of the reference files are updated and the
reports are converted to C# or Visual Basic class files. The old files are copied to ARConverterBackup folder
generated under the root folder of the project. You can delete these files from the project if you do not need them.

Caution: When converting from version 6 or below, you may observe the following warnings on migrating a
form with the viewer control. These warnings are due to API modifications in ActiveReports 7 or above. You
can ignore these warnings or delete them manually.

'Public Property Text() As String' is an old format: 'Not used anymore'
'Public Property TabTitleLength() As Integer' is an old format: 'Not used anymore'

Note: In addition to the above conversions, you may also observe some formatting changes, such as code
breaks, while using this converter tool.

ActiveReports 14 77

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. After running the converter, you need to manually update all the project references. For more details, see
Migrating from Previous Versions.

Migrate to ActiveReports 14
The following steps explain how to migrate previous ActiveReports versions to ActiveReports 14.

1. From the Visual Studio Tools menu, select Convert to ActiveReports 14.
If the assembly version of reference files does not automatically change to ActiveReport 13 after running the
converter, you need to manually update the reference files. For more details, see Reference Migration.
If the license information is not displayed correctly after running the converter, you need to
manually update the license information. For more details, see License Migration.

2. See details below to migrate any of the following versions that contain specific classes or properties:

ActiveReports 1

If you export to PDF and use the Version property, you need to change the casing in the PdfVersion
enumerated values as follows:

Before migration: PDFVersion.PDF13
After migration: PdfVersion.Pdf13

If you are using the public variable 'ds' within the report, see ds Variable.
If you are using the WebViewer control, see WebViewer Migration.
If you are using the ActiveX viewer (ARVIEW2.CAB file) in a Web application, see ActiveX Viewer Migration.

ActiveReports 2

If you are using the public variable 'ds' within the report, see ds Variable.
If you are using the WebViewer control, see WebViewer Migration.
If you are using the ActiveX viewer (ARVIEW2.CAB file) in a Web application, see ActiveX Viewer Migration.

ActiveReports 3

If you are using the ActiveReport3 class in your project, you need to change ActiveReport3 class to
SectionReport class.

Before migration: DataDynamics.ActiveReports.ActiveReport3
After migration: GrapeCity.ActiveReports.SectionReport

If you are migrating from an initial version of ActiveReports 3 and use the Barcode control's Style and
BackColor properties, then the size of the Barcode control may change on migration. You can set the
BackColor property of the Barcode control to White, or manually change the size.

Property Value

Style ('Style Property' in the on-line
documentation)

QRCode, Code49, JapanesePostal, Pdf417,
EAN128FNC1 (Any of these)

BackColor ('BackColor Property' in the on-line
documentation)

System.Drawing.Color.Transparent

If you are using the public variable 'ds' within the report, see ds Variable.
If you are using the WebViewer control, see WebViewer Migration.

ActiveReports 14 78

Copyright © 2020 GrapeCity, Inc. All rights reserved.

If you are using the ActiveX viewer (ARVIEW2.CAB file) in a Web application, see ActiveX Viewer Migration.

From ActiveReports 6 to ActiveReports 12

If you are using the WebViewer control, see WebViewer Migration.
3. Check the Compatibility Guidelines.
4. From the Build menu, select Rebuild Solution to rebuild the entire solution.

Note: Between versions 1 and 14, we have updated several class names. This may cause syntax errors on
migration. To resolve these errors, see the Breaking Changes topic.

Reference Migration
This topic explains how to upgrade your project references (.dlls) in your project. ActiveReports 14 does not
support references to previous versions, so you need to remove the old references and add new ones.

To upgrade your references

1. In Visual Studio, open an existing ActiveReports project.
2. In the Project Explorer, expand the References node, and remove the old references.

Here are the ActiveReports version numbers by product name.

Product Name Assembly Version

ActiveReports 1 3.x.x.xxxx

ActiveReports 2 4.x.x.xxxx

ActiveReports 3 5.x.x.xxxx

ActiveReports 6 6.x.x.xxxx

ActiveReports 7 7.x.x.xxxx

ActiveReports 8 8.x.x.xxxx

ActiveReports 9 9.x.x.xxxx

ActiveReports 10 10.x.x.xxxx

ActiveReports 11 11.x.x.xxxx

ActiveReports 12 12.x.x.xxxx

ActiveReports 13 13.x.x.xxxx

ActiveReports 14 14.x.x.xxxx

3. Add references to ActiveReports 14. In the Solution Explorer, right-click the References node and select Manage
NuGet Packages.

4. In the Package source on top right, select nuget.org.

5. Click Browse tab on top left and search for the packages corresponding to the removed assemblies in Step 2.

6. On the right panel, click Install.

ActiveReports 14 79

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. In the License Acceptance dialog, select I Accept to proceed the installation.

Please see Installed Files for details on the list of assemblies required in ActiveReports 14.

License Migration
This topic explains how to migrate license information for your ActiveReports project from an older version.

The process of licensing an ActiveReports application is different for each version. Migrate license information for
Windows or Web projects as follows.

Windows Application

In your Windows application, check that the licenses.licx file contains the appropriate licensing strings. When upgrading
from a previous version, remove the old information and update the license strings in the licenses.licx file. You can find the
full list of license strings that you may need for licensing in the License Your ActiveReports topic Required references in
the licenses.licx file (for Standard and Professional Editions) section.
Here are how the licensing strings appear before and after migration.

Before migration (ActiveReports 1/2/3)
DataDynamics.ActiveReports.ActiveReport, ActiveReports
Before migration (ActiveReports 6)
DataDynamics.ActiveReports.ActiveReport, ActiveReports
DataDynamics.ActiveReports.Viewer.Viewer, ActiveReports.Viewer6
DataDynamics.ActiveReports.Export.Pdf.PdfExport, ActiveReports.PdfExport
Before migration (ActiveReports 7)
GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports.
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win.
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf.
Before migration (ActiveReports 9)
GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports.v9
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win.v9
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf.v9
Before migration (ActiveReports 10)
GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports.v10
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win.v10
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf.v10
Before migration (ActiveReports 11)
GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports.v11
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win.v11
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf.v11
Before migration (ActiveReports 12)
GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports.v12
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win.v12

ActiveReports 14 80

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf.v12
Before migration (ActiveReports 13)
GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf
After migration (ActiveReports 14)
GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports
GrapeCity.ActiveReports.Viewer.Win.Viewer, GrapeCity.ActiveReports.Viewer.Win
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf

Web Application

When migrating from ActiveReports versions 1, 2, and 3, you can find the license strings in the Web.config file. In
ActiveReports 6 or above, the license strings are in the licenses.licx file. You can remove the old information from the
Web.config file and update the necessary licensing strings in the project. For more details, please see the License Your
ActiveReports topic Required references in the licenses.licx file (for Standard and Professional Editions) section.

Before migration (Web.Config file)

The following information is not required in ActiveReports 6 or above.

<Configuration>
 (...)
<appSettings>
　　<add key="DataDynamicsARLic" value="xxxxxxx,xxxxxxxxxx,xxxxxxxxxx,xxxxxxxxxxxxx"
/>
</appSettings>
 （...）
</Configuration>
After migration (licenses.licx file)

For example, if you are creating a Web application that uses the WebViewer, add the following strings to
the licenses.licx file in the project.

GrapeCity.ActiveReports.SectionReport, GrapeCity.ActiveReports
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport,
GrapeCity.ActiveReports.Export.Pdf
GrapeCity.ActiveReports.Web.WebViewer, GrapeCity.ActiveReports.Web
You may also face an error due to the compiled license information of previous version mentioned in the Bin folder
of the project. If the error occurs even after including the correct information in the license file, remove
App_Licenses.dll available in the Bin folder

ds Variable

Migration Requirements

ActiveReports 14 81

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In ActiveReports 2 or below, when you create a data connection using the Report Data Source dialog, a public variable
'ds' is generated automatically by the report designer. This variable is not generated in ActiveReports 3 or above. If you
use this variable in your code for making data connection settings of subreport, you need to change the code as follows.

To migrate code with public variable 'ds'

Before migration

Me.ds.ConnectionString 'Visual Basic

this.ds.ConnectionString; //C#

After migration

CType(Me.DataSource, GrapeCity.ActiveReports.Data.OleDBDataSource).ConnectionString
'Visual Basic

((GrapeCity.ActiveReports.Data.OleDBDataSource)(this.DataSource)).ConnectionString; //C#

WebViewer Migration
This topic explains how to upgrade the WebViewer control available in the Professional edition of ActiveReports.

The ASP.NET Web form or the Web.config file included in the WebViewer control is upgraded automatically
on running the ActiveReports file converter. However, the converter does not upgrade the Flash viewer since flash viewer
is obsolete.

The license file should also get updated while conversion, but in some cases due to the project configuration, you may
need to manually update the license file. For more information on upgrading license, see License Migration.

ActiveX Viewer Migration
This topic explains how to migrate the ActiveX viewer included in ActiveReports 3, 2, and 1.

Migration Requirements

In ActiveReports 6 or above, ActiveX viewer (ARVIEW2.CAB) is not provided with the product installer. You need to migrate
a web application that includes ActiveX viewer on the Web form or contains the WebViewer with ViewerType property set
to ActiveXViewer. In ActiveReports 14, you can use the PDF export feature instead of ActiveX Viewer.

Note: To use the ActiveX viewer associated with previous version
In ActiveReports 14, you cannot use the ActiveX viewer of previous version. You can obtain the expected display or
print results as per the report, however, such usage methods are not included in the product operational guarantee.

Alternative Approach

For both Professional and Standard editions, use PDF export to preview or print a report with quality similar to that
observed with ActiveX viewer.

ActiveReports 14 82

Copyright © 2020 GrapeCity, Inc. All rights reserved.

For ActiveReports Professional edition
WebViewer (PDF)
PDF Export

For ActiveReports Standard edition
PDF Export

Precautions

You can use print and preview features with same quality as mentioned in alternate approach, however, some print
features are disabled.

Not available in ActiveReports 14 Available in ActiveReports 14

Important Features ActiveX
Viewer

WebViewer (ActiveX) Professional
Edition

WebViewer (PDF) Professional
Edition

PDF
Export

Direct printing from client
printer

○ ○ ○ ○

Direct printing from client
printer without preview

○ ○ ○ ○

Direct printing from client
printer without preview
(Windows print dialog is
hidden ※1)

○ ○ × ×

Direct printing from client
printer after changing
settings (printer type,
paper size etc.)

○
(※3)

○
(※3)

○
(※2)

○
(※2)

Auto scaling × × × ×

Automatic setting of page
orientation

× × × ×

※1: In client printing, if you click Print button, Windows Print dialog is displayed. In ActiveX viewer you can hide the
Windows Print dialog.

※2: In Windows Print dialog, similar to general Office application, you can select paper size or orientation.

※3: In addition to point ※2, the developer can set the desired page size or page orientation in the printer through client
scripting before the user displays the Windows print dialog.

To migrate project that uses ActiveXViewer as the ViewerType

If the ViewerType property is set to ActiveXViewer, you need to change it to AcrobatReader. For example, modify the code
marked in red like the following code.

Before migration

ActiveReports 14 83

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic

' Set the type of the selected view in ViewerType property of the WebViewer.
Dim selection As String = Me.cboViewerType.Items(Me.cboViewerType.SelectedIndex).Text
Select Case selection
　Case "AcrobatReader"
　　Me.arvWebMain.ViewerType = DataDynamics.ActiveReports.Web.ViewerType.AcrobatReader
　Case "ActiveX viewer"
　　Me.arvWebMain.ViewerType = DataDynamics.ActiveReports.Web.ViewerType.ActiveXViewer
　Case "HTML viewer"
　　Me.arvWebMain.ViewerType = DataDynamics.ActiveReports.Web.ViewerType.HtmlViewer
　Case "RawHtml"
　　Me.arvWebMain.ViewerType = DataDynamics.ActiveReports.Web.ViewerType.RawHtml
End Select

C#

// Set the type of the selected view in ViewerType property of the WebViewer.

{
 string selection = this.cboViewerType.Items(this.cboViewerType.SelectedIndex).Text;
 switch (selection) {
 case "AcrobatReader":
 this.arvWebMain.ViewerType =
DataDynamics.ActiveReports.Web.ViewerType.AcrobatReader;
 break;
 case "ActiveX viewer":
 this.arvWebMain.ViewerType =
DataDynamics.ActiveReports.Web.ViewerType.ActiveXViewer;
 break;
 case "HTML viewer":
 this.arvWebMain.ViewerType =
DataDynamics.ActiveReports.Web.ViewerType.HtmlViewer;
 break;
 case "RawHtml":
 this.arvWebMain.ViewerType =
DataDynamics.ActiveReports.Web.ViewerType.RawHtml;
 break;
 }
}

After migration

Visual Basic

ActiveReports 14 84

Copyright © 2020 GrapeCity, Inc. All rights reserved.

' Set the type of the selected view in ViewerType property of the WebViewer.
Dim selection As String = Me.cboViewerType.Items(Me.cboViewerType.SelectedIndex).Text
Select Case selection
　Case "AcrobatReader"
　　Me.arvWebMain.ViewerType = GrapeCity.ActiveReports.Web.ViewerType.AcrobatReader
　Case "HTML viewer"
　　Me.arvWebMain.ViewerType = GrapeCity.ActiveReports.Web.ViewerType.HtmlViewer
　Case "RawHtml"
　　Me.arvWebMain.ViewerType = GrapeCity.ActiveReports.Web.ViewerType.RawHtml
End Select

C#

// Set the type of the selected view in ViewerType property of the WebViewer.

{
 string selection = this.cboViewerType.Items(this.cboViewerType.SelectedIndex).Text;
 switch (selection) {
 case "AcrobatReader":
 this.arvWebMain.ViewerType =
GrapeCity.ActiveReports.Web.ViewerType.AcrobatReader;
 break;
 case "HTML viewer":
 this.arvWebMain.ViewerType =
GrapeCity.ActiveReports.Web.ViewerType.HtmlViewer;
 break;
 case "RawHtml":
 this.arvWebMain.ViewerType = GrapeCity.ActiveReports.Web.ViewerType.RawHtml;
 break;
 }
}

To migrate project that uses PDF Export

Re-create the application by referring the following basic operation or sample. Note that you don't need to re-create
everything.
The basic difference between ActiveX viewer and PDF export is in the format of the data received from the web server to
the client. An RDF file is generated on the Web server with ActiveX viewer and binary data of PDF format is created on the
web server with PDF export. The other operations are common in ActiveX viewer and PDF export, there is no need to re-
create the existing applications that are created using the ActiveX viewer. See Custom Web Exporting for more
information.

ActiveReports 14 85

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Compatibility Guidelines
This topic guides you regarding the compatibility between the previous versions and ActiveReports 14. You may face issues related to following after
the migration.

Show Method

In ActiveReports 6.0 and above, the Show method has been removed from the report class and as a result, the dependency to the main assembly
(ActiveReports6.dll) and the viewer assembly (Viewer6.dll) is no longer available. Earlier, the main assembly and the viewer assembly in the execution
environment were required to be added even for the applications that did not required preview. In ActiveReports 6 or above, you no longer need to
add the viewer assembly.
If you are previewing reports using the following code in a previous version, you need to change it to the preview method that uses the Viewer
component.

Before migration

Visual Basic

Private Sub Form1_Load(...) Handles MyBase.Load
　Dim rpt As New SampleReport
　rpt.Show()
End Sub

C#

private void Form1_Load(object sender, System.EventArgs e)
{
　SampleReport rpt = new SampleReport();
　rpt.Show();
}

In the following code, Form1 has been placed in the Viewer control. Here, if you set Document property of the report and then run the report,
results obtained are similar to that with Show method.

After migration

Visual Basic

Private Sub Form1_Load(...) Handles MyBase.Load
　Dim rpt As New SampleReport
　Me.Viewer1.Document = rpt.Document
　rpt.Run()
End Sub

C#

private void Form1_Load(object sender, System.EventArgs e)
{
　SampleReport rpt = new SampleReport();
　this.viewer1.Document = rpt.Document;
　rpt.Run();
}

Print Method

In ActiveReports 7, the internal implementation of the Document.Print method has been changed. The Print method that was available in Document
class upto ActiveReport 6 has been replaced by an extension method in PrintExtension class of Grapecity.ActiveReports namespace

ActiveReports 14 86

Copyright © 2020 GrapeCity, Inc. All rights reserved.

(GrapeCity.ActiveReports.Viewer.Win.dll) introduced in ActiveReports 7. Therefore in ActiveReports 7 and above, you need to import namespace in
order to use the Print method. For more details, see Print Methods.

Custom Toolbar

ActiveReports 7 onward, toolbar has been reformed to use ToolStrip class. Also, the Viewer feature has been added to the toolbar and as a result, the
display order of toolbar buttons has also changed. For more details, see Customizing the Viewer Control.

In case you have set the toolbar as Hidden, modify the code as follows:

Before migration

Visual Basic

‘Code for ActiveReports 6
Me.Viewer1.Toolbar.Tools(23).Visible = False 'Hide the [Annotation] button
Me.Viewer1.Toolbar.Tools(4).Visible = False ‘Hide the copy button

C#

//Code for ActiveReports 6
this.Viewer1.Toolbar.Tools(23).Visible == false //Hide the [Annotation] button
this.Viewer1.Toolbar.Tools(4).Visible == false //Hide the copy button

After migration

Visual Basic

‘Viewer1.Toolbar.ToolStrip.Items.RemoveAt(37)
‘[Annotation] button is hidden in ActiveReports 7, we don't have to mention it.
 Viewer1.Toolbar.ToolStrip.Items.RemoveAt(5) ‘Hide the copy button

C#

//Viewer1.Toolbar.ToolStrip.Items.RemoveAt(37);
//[Annotation] button is hidden in ActiveReports 7, we don't have to mention it.
　Viewer1.Toolbar.ToolStrip.Items.RemoveAt(5); //Hide the copy button

In case you have set additional buttons in the toolbar through the code, you need to replace it with the new API code.

Before migration (from Version 6)

Visual Basic

'Delete the existing Annotation button and add [Add Custom Annotation] button

Dim image As System.Drawing.Icon
image = New
System.Drawing.Icon(Me.GetType.Module.Assembly.GetManifestResourceStream("CustomAnnotations.NOTE16.ICO"))
Viewer1.Toolbar.Images.Images.Add(image)

Dim btn As DataDynamics.ActiveReports.Toolbar.Button
btn = New DataDynamics.ActiveReports.Toolbar.Button

btn.ButtonStyle = DataDynamics.ActiveReports.Toolbar.ButtonStyle.TextAndIcon

btn.ImageIndex = 14 'Add new image in Toolbar.Images
btn.Id = ToolIds.Annotation 'Set unique ID in the button
btn.Caption = "Custom Annotation"
btn.ToolTip = "Set confirmation mark"
Viewer1.Toolbar.Tools.RemoveAt(23) 'Delete the existing Annotation button.
Viewer1.Toolbar.Tools.Insert(23, btn)

ActiveReports 14 87

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Private Sub Viewer1_ToolClick(ByVal sender As Object, ByVal e As
DataDynamics.ActiveReports.Toolbar.ToolClickEventArgs) Handles Viewer1.ToolClick

'Describe about the event fired while pressing the annotation button

End Sub

C#

//Delete the existing Annotation button and add [Add Custom Annotation] button

System.Drawing.Icon image = default(System.Drawing.Icon);
image = new
System.Drawing.Icon(this.GetType.Module.Assembly.GetManifestResourceStream("CustomAnnotations.NOTE16.ICO"));
Viewer1.Toolbar.Images.Images.Add(image);

DataDynamics.ActiveReports.Toolbar.Button btn = default(DataDynamics.ActiveReports.Toolbar.Button);
btn = new DataDynamics.ActiveReports.Toolbar.Button();

btn.ButtonStyle = DataDynamics.ActiveReports.Toolbar.ButtonStyle.TextAndIcon;

btn.ImageIndex = 14; //Add new image in Toolbar.Images
btn.Id = ToolIds.Annotation; //Set unique ID in the button
btn.Caption = "Custom Annotation";
btn.ToolTip = "Set confirmation mark";
Viewer1.Toolbar.Tools.RemoveAt(23); //Delete the existing Annotation button.
Viewer1.Toolbar.Tools.Insert(23, btn);

private void Viewer1_ToolClick(object sender, DataDynamics.ActiveReports.Toolbar.ToolClickEventArgs e)
{
//Describe about the event fired while pressing the annotation button

}

After migration (from Version 6)

Visual Basic

'Delete the existing Annotation button and add [Add Custom Annotation] button

Dim image As System.Drawing.Icon
image = New
System.Drawing.Icon(Me.GetType.Module.Assembly.GetManifestResourceStream("CustomAnnotations.NOTE16.ICO"))

Dim btn As New ToolStripButton("Custom Annotation")
btn.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText
btn.Image = image.ToBitmap
btn.ToolTipText = "Set confirmation mark"

‘Viewer1.Toolbar.ToolStrip.Items.RemoveAt(37) ‘The annotation button is by default hidden in ActiveReports
7, so it doesn't need description.
Viewer1.Toolbar.ToolStrip.Items.Add(btn)
‘Viewer1.Toolbar.ToolStrip.Items.Insert(37,btn) ‘Create event handler if you want to place button in a
specified location during the button click.
AddHandler btn.Click, AddressOf tsbAnnotation_Click

Private Sub tsbAnnotation_Click(sender As Object, e As EventArgs)

‘Describe about the event fired while pressing the annotation button

End Sub

C#

ActiveReports 14 88

Copyright © 2020 GrapeCity, Inc. All rights reserved.

//Delete the existing Annotation button and add [Add Custom Annotation] button

System.Drawing.Icon image = default(System.Drawing.Icon);
image = new
System.Drawing.Icon(this.GetType.Module.Assembly.GetManifestResourceStream("CustomAnnotations.NOTE16.ICO"));

ToolStripButton btn = new ToolStripButton("Custom Annotation");
btn.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText;
btn.Image = image.ToBitmap;
btn.ToolTipText = "Set confirmation mark";

//Viewer1.Toolbar.ToolStrip.Items.RemoveAt(37); //The annotation button is by default hidden in
ActiveReports 7, so it doesn't need description.
Viewer1.Toolbar.ToolStrip.Items.Add(btn);
//Viewer1.Toolbar.ToolStrip.Items.Insert(37,btn); //Create event handler if you want to place button in a
specified location during the button click.
btn.Click += tsbAnnotation_Click;

private void tsbAnnotation_Click(object sender, EventArgs e)
{
//Describe about the event fired while pressing the annotation button
}

In C# code, remove the additional code of Viewer.ToolClick event handler in XXX.Designer.cs.

Control Borders

ActiveReports 6 or above does not provide support the use of control borders of the Line control. As a result, control border of the Line control set in
the previous version will not get rendered after migrating to ActiveReports 7 or above.

You cannot set the control border in the following controls:

Line
PageBreak
CrossSectionBox
CrossSectionLine

HTTP Handler (Professional edition only)

In ActiveReports 2 or above, the upper case and lower case characters of hyperlink strings used for directly referring the report layout file have been
clearly distinguished. This may affect the working after the migration if upper case and lower case characters are not used correctly.

WebViewer Control (Professional edition only)

There are certain modifications in the properties available within the property window. In ActiveReports 1, you can use Report property to specify the
report to be displayed. In ActiveReports 2 or above ReportName property has been introduced to replace Report property.
Please note that the Report property is removed from the property window but not from the WebViewer object, and hence there is no change in the
code.

The type to set the Report property and ReportName property are different.

Report ('Report Property' in the on-line documentation) property: Object type
ReportName ('ReportName Property' in the on-line documentation) property: String type

Migrate Execution Environment
In .NET and .NET Core frameworks, there is an assembly recognition mechanism with which the executable files or
assembly files created in Visual Studio identify the assembly they depend. Therefore, it is necessary to have the same
product version while building an application as that distributed in the run-time environment.

ActiveReports 14 89

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In case the product version is changed after distributing the application, the application will not run by simply changing
the component (DLL file) in the run-time environment. To migrate the run-time environment of application to
ActiveReports 14, migrate the development environment, migrate the project, and then re-create the application by
rebuilding the solution. After doing, this you can deploy the created application along with ActiveReports 14 component.

Migrate from ActiveReports 2 COM
The reports in ActiveReports 2 COM, which is ActiveX version of ActiveReports, are saved in DSR/DSX format unlike .NET
versions which saves report layouts in the XML based RPX format. Therefore, to migrate from ActiveReports 2 COM to
ActiveReports for .NET, you need to save reports in ActiveReports 2 COM as .rpx file and embed it in ActiveReports 14
project. When you save the report layout as .rpx, ActiveReports only saves the code in the script editor. Any code behind
the report is not saved to the RPX file, therefore, the code in the .cs or .vb file needs to be re-written.

Embedding an RPX file in a Visual Studio Project

Note: Adding an ActiveReports 2 COM report layout file (.rpx) directly to a project is not supported. Be sure to
migrate using the following steps.

1. From the Solution Explorer, select the project in which you want to add the item.
2. From the Project menu, select Add New Item.
3. From the Template pane, select ActiveReports 14 Section Report (code-based) or ActiveReports 14 Section Report

(xml-based) file and click Add.
4. From the Report menu, select the Load Layout option.
5. Navigate to the location of the .rpx file, select the .rpx file, and click Open.

Note:
Script codes such as Visual Basic and C# are not imported properly.
The border shadow (Border.Shadow property) is not migrated.

ActiveReports 2 COM versus ActiveReports 14
This section explains about the difference between ActiveReports 2 COM (ActiveX version) and ActiveReports 14.

Comparison between Section Report Controls

The following table compares the controls available in Section Report in ActiveX product and ActiveReports 14 (.NET Core
product).

ActiveX product .NET Core product

Field TextBox

Label Label

CheckBox CheckBox

Image Picture

Line Line

OleObject OleObject

ActiveReports 14 90

Copyright © 2020 GrapeCity, Inc. All rights reserved.

PageBreak PageBreak

RichEdit RichTextBox

Shape Shape

SubReport SubReport

ActiveX control (includes Barcode) ×（※１）

Frame ×（※２）

ADO Data Control OLEDataSource（※３）

XML Data Control XMLDataSource（※４）

RDO Data Control ×

DAO Data Control ×

－ Chart（※５）

－ CrossSectionBox（※６）

－ CrossSectionLine（※７）

－ ReportInfo（※８）

- InputField （※9）

※１ It will only get migrated as basic class ARControl.

※２ Control placed inside the Frame will be migrated.

※３ Only Source (SQL) and ConnectionString properties set at design time are migrated.

※４ Only FileURL/RecordSetPattern property set at design time are migrated.

※５ Control that renders 2D/3D graph.

※６ Control that renders a rectangle across multiple sections.

※７ Control that renders a straight line across multiple sections.

※８ A control that renders the execution date and time of report, page number, and total number of pages in a specified
format.

※ 9 A control that provides editable fields on exporting a report to PDF. This is a Professional Edition feature.

Important properties that have been changed in .NET Core product

Property Name

Control names in
Section Report (.NET
Core product)

ActiveX product .NET Core product Remarks

GroupHeader GrpKeepTogether GroupKeepTogether The type itself is different

Repeat RepeatStyle The type itself is different

ActiveReports 14 91

Copyright © 2020 GrapeCity, Inc. All rights reserved.

CheckBox
TextBox
Label

WordWrap WrapMode The type itself is different

TextBox DataValue Value

SummaryDistinctField DistinctField

CheckBox Alignment CheckAlignment The type itself is different

Value Checked

Picture Picture Image The type itself is different

Shape Shape Style

SubReport Object Report

Important properties added in .NET Core product

Control names in Section Report
(.NET Core product)

Property Name Description

GroupHeader ColumnGroupKeepTogether Make groups as one block on the same column

Detail RepeatToFill Adds an empty line

CheckBox
TextBox
Label

Padding Sets the blank space inside a control

TextBox
Label

CharacterSpacing Sets the character pitch(interval) in points units

LineSpacing Sets the line spacing in point units

TextJustify Sets equal allocation

VerticalText Optimize character shape for vertical writing

ShrinkToFit Shrink the character according to the Control size

Picture Description Sets the visual explanation of Picture's appearance
(valid when exporting Html)

Line AnchorBottom Draw the end of the ruled line till the adjacent
section

Shape RoundingRadius Sets the roundness of round cornered rectangle in
percentage unit

SubReport CloseBorder When a sub-report spans multiple pages, it sets
whether to close it with a ruled line or not

The above table lists only those properties that are frequently used, although, in addition to the above properties, there
are some newly added properties and changed properties in the .NET Core product.

Also, the properties and methods of OleObject control and RichTextBox (RichEdit) control have been significantly

ActiveReports 14 92

Copyright © 2020 GrapeCity, Inc. All rights reserved.

changed. If you are using these controls, refer to "Class Library Reference" and adjust the settings as necessary.

Difference in Export Function

Export function of .NET Core product is developed to export the reports of .NET Core product.
Compared with the ActiveX products, various enhancements have been made in the Export function of .NET Core products
along with the changes in properties and events.

For more information, please refer to the content below.

PDF Export

Subject ActiveX product .NET Core product

PDF Version 1.1～1.3 1.1～1.7

PDF image quality
setting of internal
image

JPGQuality property in settings (1～
100)

ImageQuality (three levels - Lowest, Medium, and Highest)
and ImageResolution (75～2400 dpi) property in settings

Non embedding of
Japanese font

× (always embedded) ○ (※1, always embedded in Standard Edition)

Bold characters of
Japanese font

× (output with normal thickness) ○ (※1)

Foreign letters × (no output) ○ (※1)

Electronic Signature
Time Stamp

× ○: Signature property (※1)

GIF and transparent
elements of meta
images

× (present in non-transparent state) ○

Output of bookmark ○: OutputTOCAsBookmarks
property

○: ExportBookmarks property

Document property × ○: Options property (※2)

Document display
state

△: ShowBookmarksInAcrobat (only
display bookmarks are
configurable)

○: PdfDocumentOptions.DisplayMode property (※3)

Display window
setting

× ○: PdfDocumentOptions property (※4)

UI setting × ○: PdfDocumentOptions property (※5)

Print only × ○: PdfDocumentOptions.OnlyForPrint property

Gets the state of
progress

○: OnProgress event ×

※1　Can be set only for Professional Edition.

ActiveReports 14 93

Copyright © 2020 GrapeCity, Inc. All rights reserved.

※2　Five items - Title, Author, Subject, Keywords, and Application can be set.

※3　Four types - None, Outlines, Thumbs, and FullScreen can be set.

※4　CenterWindow, FitWindow, and DisplayTitle can be set.

※5　Display permission of Menu bar (HideMenubar), Toolbar (HideToolbar), and UI Window (HideWindowUI) can be set.

Excel Export

Excel export (XlsExport class)

Subject ActiveX product .NET Core product

Save File File version Excel 95/97 Excel 95/97/2007 (OpenXML)

Layout Space between cell and borders to prevent
overlapping of cells

○：BorderSpace Property ×

Column appearance in the output ○：DoubleBoundaries
Property

×

Generate page break automatically ○：GenPageBreaks
property

△: (always output the page
break)

Display space between the report elements
and the report margin

○：ShowMarginSpace
property

×

Print scale ○：SizeToFit property ×

Remove vertical space ○：TrimEmptySpace
property

○：RemoveVerticalSpace
property

Version ○：Version property ○：FileFormat property

Display grid line × (display fixing) ○：DisplayGridLines property

Merge cells × ○：UseCellMerging property

Color palette × (always keep palette in
workbook）

○：UseDefaultPalette property

Printing Paper size × (dependent on excel
default settings)

○：PageSettings.PaperSize
property

Page orientation × (dependent on excel
default settings)

○：PageSettings.Orientation
property

Security Read password × ○：Security.Password property

Write password × ○：Security.WritePassword
property

Save as read only × ○：

Security.ReadOnlyRecommended
property

Username responsible to password protect × ○：Security.ProtectedBy property

ActiveReports 14 94

Copyright © 2020 GrapeCity, Inc. All rights reserved.

an Excel sheet

State of
progress

○：OnProgress event ×

Excel export (SpreadBuilder API)

Subject ActiveX product .NET Core product

Implementation
method

control in SpreadBuilder
object

control in Workbook object

Save File File version Excel 95/97 Excel 95/97/2007
（OpenXML）

prior error check ○：GetSaveCaps method ×（processing due to
Exception）

Layout Cell merge/unmerge × ○: Merge/UnMerge method

Display grid line × (always display) ○: DisplayGridLines property

Line striking through a text × ○: FontStrikeOut property

Format setting by range specification × ○: Use DDCells class

Color palette × (always keep palette in
workbook)

○: UseDefaultPalette
property

Printing Page setup Setting available in
DDSheet object

Use settings in PageSetup
class

Black and white print × ○: BlackAndWhite property

Print without graphics × ○: Draft property

Scale print to fit page ○：SizeToFit property ○: FitToPage property

Vertical scale page count × (set to one page) ○: FitToPagesTall property

Horizontal scale page count × (set to one page) ○: FitToPagesWide property

Scale factor × (set to 100%) ○: Zoom property

Paper size × (depends on excel
default settings)

○: PaperSize property

First page number × (automatic) ○: FirstPageNumber
property

Header height × ○: HeaderMargin property

Footer height × ○: FooterMargin property

Page orientation × (set from 'left to right') ○: Order property

Print setting of cell notes × (set to 'none') △: PrintNotes property
※only 'screen display image'

ActiveReports 14 95

Copyright © 2020 GrapeCity, Inc. All rights reserved.

can be set

Security Read password × ○: Password property

Write password × ○: WritePassword property

Save as read only × ○: ReadOnlyRecommended
property

Username responsible to password
protect an Excel sheet

× ○: ProtectedBy property

Workbook protection password × ○:
ProtectWorkbookPassword
property

TIFF export

Subject ActiveX product .NET Core product

Compression
scheme

Decided by the method to use Setting available in
CompressionScheme property

Compression
format

none × ○：”None”

Lzw × ○：”Lzw”

Rle
(PackBits)

○：Export/ExportTIFF method ○：”Rle” (however, default is black and
white)

CCITT
Group3

○：FaxExportCITT3 method ○：”Ccitt3”

CCITT
Group4

○：FaxExport method ○：”Ccitt4”

Dithering ○：only FaxExport or FaxExportCITT3 methods
can be used (※1)

○：Dither property (※2)

Resolution ○：only ExportTIFF method can be used ○：DpiX, DpiY property

State of
progress

○：OnProgress event ×

※1　The white threshold can be set within the range of 0～765.

※2　Valid only for “Rle”, ”Ccitt3”, ”Ccitt4”. Also, this property is of Boolean type.

HTML export

Subject ActiveX product .NET Core product

File output Image save location ○：AuxOutputPath
property

× (always same path as HTML in
output)

Whether to embed CSS style inside ○：CreateCSSFile property × StyleStream property

ActiveReports 14 96

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the html file

Output file name FileNamePrefix property
setting

Specified by argument of Export
method

File output location HTMLOutputPath property
setting

Specified by argument of Export
method

JPEG compression ratio ○: JPEGQuality property ×

Output in MHT format ○: MHTOutput property ×

Output setting for multiple pages MultiPageOutput property
setting

MultiPage property setting

Output of bookmarks ○: TableOfContents
property (※1)

○: BookmarkStyle property (※2)

Layout Insert code just before HEAD tag ○: HeadExtraInnerText
property

×

HTML version setting ○: HTMLVersion property ○: OutputType property

Remove vertical space × ○: RemoveVerticalSpace
property

Add HTML just before page output ○: ExportPageStart event ×

Add HTML just after page output ○: ExportPageEnd event ×

State of progress ○: OnProgress event ×

※1　Either of these properties can be set - None, <DL>tag format, DHTML format, or XML format.

※2　Either of these properties can be set - None, HTML.

Text export

Subject ActiveX product .NET Core product

Encoding △: Unicode property (※1) ○: Encoding property

Obtaining state of progress ○: OnProgress event ×

※1　Unicode format and ASCII format configurable only from either of them.

RTF export

Subject ActiveX product .NET Core product

Obtaining state of progress ○: OnProgress event ×

Difference in Barcode Control

The barcodes and their properties available in .NET Core product are different from that available in ActiveX product.
While in ActiveX product, the barcode is rendered as an ActiveX control, in the .NET Core product, the Barcode is available
as a control. For full list of barcodes available in ActiveReports, see Barcode topic.

ActiveReports 14 97

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Barcode formats

ActiveX product .NET Core product Remarks

CODE39 Code39, Ansi39 ※1

CODE39(Full ASCII) Code39x, Ansi39x

CODE49 Code49

CODE93 Code_93 Only Uppercase of letters,%, $, *, ., +, -, Space, number can be set.

Code93x whole letter of ASCII letter set can be set

CODE128 Code_128auto ※2

Code_128_A CODE-A fixed format

Code_128_B CODE-B fixed format

Code_128_C CODE-C fixed format

JAN8 EAN_8

JAN13 EAN_13

EAN128 UCCEAN128 ※2, 3, 4

EAN128FNC1 ※2, 3, 4

ITF Code25intlv ※5, 6

POSTNET5, 9, 11 PostNet without depending on data number of digits, symbol can be generated

UPC/A UPC_A

UPC/E UPC_E0, UPC_E1 ※7

UPC/E Addon2, Addon5 UPC_E0, UPC_E1

NW-7(CODABAR) Codabar

Customer Barcode JapanesePostal

※1　Code39 (Code39x) and Ansi39 (Ansi39x) have the same bar code configuration specifications, but the default width
ratio of narrow bar and wide bar is different. The former is 1: 2, whereas the latter is 1: 3.

※2　Start character setting of CODE128 is different for ActiveX product and .NET Core product.

※3　In CODE128 format, there is no function to arbitrarily switch code sets.

※4　In CODE128 (EAN128) format, there is no function to insert FNC2 to FNC4 in arbitrary place.

※5　Check digit is not calculated automatically. For .NET Core products, you need to set a value with check digit added.

※6　Bearer bar is not supported.

※7　UPC_E0 is compressed zero type of UPC symbol and can only set only numbers. UPC_E1 is generally used in retail
shops price labels and it supports six numeric characters.

Important ActiveX product properties that are not supported by .NET Core product

ActiveReports 14 98

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The properties that do not exist in .NET Core product but affect generated barcode are listed as follows:

Property name Description

BarRatio Set bar ratio. We can set relative width ratio of fine module to thick module in the range of 1:2 to
1:3 using NWRatio property.

LongModuleSize Set thick module width.

TargetDpiX Set the resolution of screen in the horizontal direction.

TargetDpiY Set the resolution of screen in the vertical direction.

About ActiveReport Object

The ActiveReport object (the base of ActiveX product report), included not just the engine and the report layout
information, but also the viewer function. The .NET Core product provides SectionReport class (the base class of section
report) and the viewer function, and the Viewer class is reconfigured.
Also, In ActiveX product the generated page information was stored in the Pages class but in .NET Core product it has
been reconfigured to the Document class and PagesCollection class. Along with these configuration updates, some
methods and events have also been modified. The following table lists the important changes:

Difference in property

ActiveX product .NET Core product Remarks

Class Property name

AllowSplitters Viewer AllowSplitter

documentName SectionDocument Name

PageBorder × × ※1

Pages SectionDocument Pages ※2

Printer SectionDocument Printer

RulerVisible × × Ruler does not exist.

ShowMessages × × ※3

ScriptDebuggerEnabled SectionReport EnableScriptDebugging

Status SectionReport State

TOC SectionDocument Bookmarks

TOCEnabled TOCPanel (Viewer.Sidebar) Enabled

TOCVisible TOCPanel (Viewer.Sidebar) Visible ※4

TOCWidth Sidebar(Viewer) Width

Toolbar Viewer Toolbar

ToolbarVisible ToolStrip (Viewer.Toolbar) Visible

Zoom Viewer Zoom

ActiveReports 14 99

Copyright © 2020 GrapeCity, Inc. All rights reserved.

※1 Draw border in CrossSectionBox control and other controls.

※2 In ActiveX product, it is the collection of Canvas objects but in .NET Core product, it is the collection
of Document.Page.

※3 If an exception is thrown due to an error in the .NET Core product, use Try and Catch Statement.

※4 Use the ToggleVisibility method of the Viewer.Sidebar object to display headings.

Difference in method

ActiveX product .NET Core product

Class Method name Remarks

Export (each export filter) Export

PageSetup × × ※1

PrintReport SectionDocument
PageDocument
Viewer

Print

Refresh × × ※2

※1 Implemented using PageSetupDialog Class.

※2 Reset the report document using Document property and LoadDocument method.

Difference in event

ActiveX product .NET Core product

Class Event name Remarks

Error × × ※1

FindProgress Viewer Find

HyperLink Viewer HyperLink

PromptDialogClosed SectionReport ParameterUIClosed

TOCClick Viewer TableOfContentsClick

TOCSelChange Viewer TableOfContentsSelectedIndexChanged

ToolbarClick × × ※2

※1 If an exception is thrown due to an error in the .NET Core product, use Try and Catch Statement.

※2 Implement using Viewer.Toolbar.ToolStrip class. For more information please see Customize the Viewer Control.

Coexistence of ActiveReports Designers
ActiveReports 14 can be installed and used on the same machine in which other older versions of ActiveReports for .NET
(except ActiveReports 13) have been installed.

ActiveReports 14 100

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/exceptions/how-to-use-the-try-catch-block-to-catch-exceptions?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.pagesetupdialog?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/how-to-use-the-try-catch-block-to-catch-exceptions?redirectedfrom=MSDN

Compatibility of ActiveReports designer with Visual Studio

ActiveReports designer of different versions can be used by integrating the designer with Visual Studio IDE (Integrated
development environment). The following table shows the Visual Studio versions corresponding to the ActiveReports
designer versions that are supported.

VS
.NET

2002

VS
.NET

2003

VS

2005

VS

2008

VS

2010

VS

2012

VS

2013

VS

2015

VS

2017

VS

2019

ActiveReports 1 ○ ○ × × × × × × × ×

ActiveReports 2 × ○ ○ × × × × × × ×

ActiveReports 3 × ○ ○ × × × × × × ×

ActiveReports 6 × × ○ ○ ○ × × × × ×

ActiveReports 7 × × × ○ ○ ○ ○ × × ×

ActiveReports 8 × × × ○ ○ ○ ○ × × ×

ActiveReports 9 × × × × ○ ○ ○ ○ × ×

ActiveReports 10 × × × × ○ ○ ○ ○ × ×

ActiveReports 11 × × × × ○ ○ ○ ○ ○ ×

ActiveReports 12 × × × × × ○ ○ ○ ○
(VS
SP2+)

×

ActiveReports 13 × × × × × ○ ○ ○ ○
(VS
SP2+)

○

ActiveReports 14 × × × × × × ○ ○ ○
(VS
SP2+)

○

To switch the designers of versions prior to ActiveReports 14, use the switcher tool. See ActiveReports 13 help file for
more information.

Import Reports
This section explains about importing reports in ActiveReports using the ActiveReports Import Wizard.

Topic Content

Importing Crystal/MS Access
Reports

This section describes about importing Crystal and MS Access reports in ActiveReports.

ActiveReports 14 101

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://help.grapecity.com/activereports/webhelp/AR13/webframe.html#Common.html

Import Excel This section describes about importing MS Excel reports in ActiveReports.

Import RPX This section describes how to import ActiveReports section reports to
ActiveReports Page or RDL reports.

Import Crystal Reports/MS Access Reports
You can import a Crystal Reports report, a Microsoft Access report, an Excel file, or an ActiveReports section report in
ActiveReports by running the ActiveReports Import Wizard.

To learn about importing Excel files, please see Importing Excel.

To learn about importing ActiveReports section reports, please see Importing RPX.

Importing Crystal reports/MS Access Reports in the ActiveReports Import Wizard

1. Run the ActiveReports Import Wizard. The wizard can be run from the start menu or by
executing GrapeCity.ActiveReports.Imports.Win.exe from C:\Program Files (x86)\GrapeCity\ActiveReports
14\Tools location.

2. In the ActiveReports Import Wizard that appears, click Next.

3. Choose Microsoft Access (mdb or accdb) or Crystal Reports (rpt) as the input format and click Next.

4. Click the ellipsis button to browse to the location that contains the files that you want to import. A list of files that
you can import appears.

5. Select the reports to import, click Open, and then click Next to analyze them.

6. Use the ellipsis button to select a destination folder to store the converted reports. Also select an output format
(Section Report, Page Report or RDL Report or Both) for each report in the Output Format column.

ActiveReports 14 102

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Click Next to start the conversion.

8. Once the conversion process is complete, click Finish to close the wizard and go the destination folder to view the
converted reports. You may optionally leave the check on for the Open Log file checkbox to see the results log.

The import wizard converts reports to the closest possible ActiveReports format, but due to differences between products
and versions, the extent to which your reports are converted depends on your specific report layout. You may have to
partially redesign the report and add script or code to get the same output as Microsoft Access Reports or Crystal
Reports.

When converting to Page Reports or RDL Reports, whether a report is imported as a Page Report or RDL Report, depends
on the following factors:

If a report has a single detail section it is imported as a Page Report.
If a report has a CrossTab control and its layout is composed of multiple sections it is imported as an RDL Report.

Note: Sections in a report appear as BandedList.

Please refer to the additional information below, to understand the conversion process in detail.

Importing Crystal Reports
To import Crystal Reports in ActiveReports, you need to install Visual Studio and Crystal Reports for Visual Studio on your
machine. The supported versions of Visual Studio and corresponding Crystal Reports are as follows:

Visual Studio Editions Crystal Reports Assembly
Version

ActiveReports 14 103

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2008 Professional, Team
System

Crystal Reports for Visual Studio 2008 10.5.3700.0

2010, 2012, 2013, 2015,
2017, 2019

... SAP Crystal Reports, developer version for Microsoft
Visual Studio

13.x.x.x

Crystal Report controls are converted in ActiveReports as follows:

Crystal
Report

Section
Report

Page
Report/RDL
Report

Note

Box Shape Container The LineWidth property and rounded boxes are not imported. If the Box control
extends to multiple sections, the box is imported as line controls.

CrossTab SubReport BandedList CrossTab control is not imported as it is.

Line Line Line The size of Dot and Dash (the LineStyle property) is not the same as the original
report.

Subreport SubReport Subreport Set the subreport in code after conversion.

TextObject Label Textbox Only page number, total page, page n of m in Special Fields are imported.

FieldObject TextBox Textbox Only page number, total page, page n of m in Special Fields are imported.

Picture ... Container Picture object is not converted.

Importing Microsoft Access Reports
To import Microsoft® Access® reports in ActiveReports, you must have Access 97, 2000, 2002, 2003, 2007, 2010, or
2013 installed on your system.

Microsoft Access report controls are converted in ActiveReports as follows:

Microsoft Access
Report

Section
Report

Page
Report/RDL
Report

Note

Rectangle Shape Container Controls placed inside the Rectangle control are also imported along
with the parent control.

CheckBox Label Textbox ...

Image ... Image Image control is not converted while converting to a Section Report.

Label Label Textbox ...

Textbox TextBox Textbox ...

Line Line Line ...

Page Break PageBreak Container In Page Reports and RDL Reports, the PageBreakAtEnd property is
automatically set to True on importing a Page Break control.

Subform/Subreport SubReport Subreport ...

ActiveReports 14 104

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Limitations in Crystal Report/MS Access conversion
Any controls, functions, and text formats which are not supported by ActiveReports are not imported.
The shadow property of a control is not imported while converting a report.
The OLE object is not imported in ActiveReports as it is treated as PictureObject in the object structure of Crystal
Reports.
In Microsoft Access reports, VBA code appears in as commented statements in script. You have to modify the code
after importing.

Import Excel
The migration from Microsoft Excel file to ActiveReports can now be accomplished by using the ActiveReports Import
Wizard. The ActiveReports Import Wizard is particularly useful when you want to convert multiple sheets of an Excel file to
ActiveReports. It saves the time and effort of a developer to manually replicate the layout of each sheet of an Excel file in
ActiveReports.

You can import a single sheet or multiple sheets of an Excel file to a Page or an RDL report with just a few clicks. A single
Excel sheet is imported as a report file, and the report name is the name of the sheet. An Excel file with multiple sheets is
by default imported as separate report files, and the report names are the name of the corresponding sheets in the Excel
file. You can also set Merge all sheets into a single report file option in the ActiveReports Import Wizard to import
multiple sheets of Excel file as different pages of the report.

Importing Excel files in the ActiveReports Import Wizard
Defining Table area in an Excel file
Naming Rules for defining a Table area in Excel
Conversion Rules for Table area in Excel
Supported Objects and Properties
Limitations

Note: The import formats that are not supported are .xls (Excel 97-2003) and .xlsm (Open XML with macro).

Importing Excel files in the ActiveReports Import Wizard

1. Run the ActiveReports Import Wizard. The wizard can be run from the start menu or by
executing GrapeCity.ActiveReports.Imports.Win.exe from C:\Program Files (x86)\GrapeCity\ActiveReports
14\Tools location.

2. In the ActiveReports Import Wizard that appears, click Next.

3. Choose Microsoft Excel (xlsx) as the input format and click Next.

ActiveReports 14 105

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Click the ellipsis button to browse to the location that contains the files that you want to import. A list of files that
you can import appears.

5. Select the sheets to import, click Open, and then click Next to analyze them.

6. Use the ellipsis button to select a destination folder to store the converted reports. You can set the following
options:

Report Type: Choose from Page report or RDL report formats to import the Excel file. Note that Page
report does not support multiple data sources. You should select RDL report type if you want to add
multiple data sources to the report.
Merge all sheets into single report file: Choose this option to import sheets of the Excel file as separate
pages of a Page report. The report name is the name of the first sheet of the Excel file.
Import Excel formula as text: Choose this option to import Excel formula as text. If you keep the option
unchecked, the Excel formula is imported as a calculated result.

7. Click Next to start the conversion.

8. Once the conversion process is complete, click Finish to close the wizard and go the destination folder to view the
converted reports. You may optionally leave the check on for the Open Log file checkbox to see the results log.

ActiveReports 14 106

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Defining Table area in an Excel file
Table area in Excel is the range of cells representing a Tabular data in the Excel.
If an Excel file has the table area that you want to import into ActiveReports as the Table data region, you must define the
Table area first and then run the ActiveReports Import Wizard. Otherwise, defining the table area is not required.

1. Open the Excel file and select the table area.
2. Right-click to view the context menu.
3. Select the Define Name option.
4. In the New Name dialog box, define the table area and the rows based on Naming Rules. These naming rules

must be followed for defining table areas in Excel.

5. Click OK.

Naming Rules for defining a Table area in Excel

To obtain the required table sections in ActiveReports' Table data region, you need to define the table area and its rows in
the Excel file. In general, the table area is defined as ARTable#.******, where:

is used to define more than one table areas. It can be any character, except symbol or character restricted by
Excel. For example, ARTable, ARTable_1, or ARTableAbc.
****** is the name of the row (section): Detail, TableHeader, TableFooter, GroupHeader, or GroupFooter.
In case of multiple rows (Table Header/Footer, Detail, Group Header/Footer), you need to set "#" for each row as
well (for example, GroupHeader1, GroupHeader2, etc.)

Example 1: To define a single table area

ActiveReports 14 107

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Action Naming Rule

Define whole table area ARTable

Define each row ARTable.Detail
ARTable.TableHeader
ARTable.TableFooter
ARTable.GroupHeader1
ARTable.GroupFooter1

Example 2: To define a multiple table area

Action Naming Rule

Define whole table area ARTable1

ARTable2

Define each row ARTable1.Detail
ARTable1.TableHeader
ARTable1.TableFooter
ARTable2.Detail
ARTable2.TableHeader
ARTable2.TableFooter

Conversion Rules for Table area in Excel
The table area of Excel is imported as a Table data region in ActiveReports based on the following conversion rules.

If the defined table area of Excel has three or more rows, the file data is converted to Table Header, Detail, and
Table Footer as:

Excel Table ActiveReports
Table

Top Row Table Header

Bottom Row Table Footer

Other Rows Detail

Note: For the Table Detail row, values for properties such as Value, Location, Size, etc. are imported from the cells of
the first row.

If the defined table area of Excel has two rows, the file data is converted as follows.

Excel Table ActiveReports
Table

First Row Table Header

Second Row Detail

If the defined table area of Excel has only one row, the file data is converted as follows.

ActiveReports 14 108

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Excel Table ActiveReports
Table

First Row Detail

Supported Objects and Properties

Excel Page/RDL Report

Item Property Item Property

Page Page setting Report -

 Size PaperSize

 Orientation: Portrait PaperOrientation: Portrait

 Orientation: Landscape PaperOrientation:
Landscape

Margins (Top, Bottom, Left, Right) Margins (Top, Bottom,
Left, Right)

Cell Value

Value

Location Location (Left, Top)

Size Size (Width, Height)

Alignment -

 Horizontal alignment: General TextAlign: General

 Horizontal alignment: Left (Indent) TextAlign: Left

 Horizontal alignment: Center TextAlign: Center

 Horizontal alignment: Right (Indent) TextAlign: Right

 Horizontal alignment: Justify TextAlign: Justify

 Horizontal alignment: Distributed (Indent) TextJustify:
DistributeAllLines

 Vertical alignment: Top VerticalAlign: Top

 Vertical alignment: Center VerticalAlign: Middle

 Vertical alignment: Bottom VerticalAlign: Bottom

 Text control: Wrap text WrapMode: WordWrap

 Text control: Shrink to fit ShrinkToFit: True

 Text direction: Left-to-Right Direction: LTR

 Text direction: Right-to-Left Direction: RTL

Font -

ActiveReports 14 109

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Name TextBox FontFamily

 Style: Regular FontStyle: Normal

 Style: Italic FontStyle: Italic

 Style: Bold FontWeight: Bold

 Style: Bold Italic FontWeight: Bold

 Size FontSize

 Color Color

 Underline: None TextDecoration: None

 Underline: Single TextDecoration: Single

Border -

 Line style (Top, Bottom, Left, Right): xlLineStyleNone BorderStyle: None

 Line style (Top, Bottom, Left, Right): xlContinuous BorderStyle: Solid

 Line style (Top, Bottom, Left, Right): xlDot BorderStyle: Dotted

 Line style (Top, Bottom, Left, Right): xlDash BorderStyle: Dashed

 Line style (Top, Bottom, Left, Right): xlDouble BorderStyle: Double

 Line color BorderColor

 Line weight: xlThin BorderWidth: 1pt

 Line weight: xlMedium BorderWidth: 2pt

 Line weight: xlThick BorderWidth: 3pt

Fill -

 Background color BackgroundColor

Table
area

Each cell in a table area is converted to TextBox report item.

Note: Whole table area is imported in ActiveReports even if table
data is filtered.

Table

Location (Left, Top)
Size (Width, Height)
FixedSize (Width, Height)

Picture

Picture object is converted to Image report item.

Image

Value
Source: Embedded
Sizing: FitProportional
Location (Left, Top)
Size (Width, Height)

Limitations
An Excel file that contains merged cells and table areas that are partially out of bounds, is not imported.

Merged cell - If merged cell starts within the page bounds and ends outside of them, the cell is not
imported.

ActiveReports 14 110

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Table area - If table area starts within the page bounds and ends outside of them, the table area is not
imported.

ActiveReports Import Wizard does not support conversion of a password protected Excel file.
The layout of only the first page of an Excel, as shown in the Page Break Preview option, is imported.
Vertical texts can not be imported.
The following Excel items are not imported to ActiveReports.

1. Page
Header/Footer

2. Cell
Number format (all categories, like Number, Date, Currency, etc.)
Strikethrough
Border (diagonal)
Fill effect
Fill pattern
Comment
Hyperlink
Table styles
Conditional formatting

3. Object
Table
Shape
Chart
Pivot Table
WordArt
ClipArt

Import RPX
The ActiveReports Import Wizard helps you to convert existing ActiveReports Section report(s) (rpx) to Page and RDL
reports.

Importing Section Report(s) (rpx) in the ActiveReports Import Wizard

1. Run the ActiveReports Import Wizard. The wizard can be run from the start menu or by
executing GrapeCity.ActiveReports.Imports.Win.exe from C:\Program Files (x86)\GrapeCity\ActiveReports
14\Tools location.

2. In the ActiveReports Import Wizard that appears, click Next.

3. Choose ActiveReports (rpx) as the input format and click Next.

ActiveReports 14 111

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Click the ellipsis button to browse to the location that contains section report(s).
5. Select the reports to import and then click Next to analyze them.

6. Specify the import options.

1. Use the ellipsis button to select a destination folder to store the converted reports.
2. Select the output format of the reports.

From the drop-down, select output format as Page, RDL, or Both. If 'Both' is selected, then the
converted Page and RDL reports are added with postfixes _page and _rdl, respectively in the destination
folder.

3. Select whether to use Banded List for Page report.
The option to select Use Banded List Mode is available if the output format of a report is Page report.

If you want all controls to be placed on one BandedList in the same way as in RDL report, you should
use banded list mode. In this case, the Fixed size for Page report needs to be set manually.
If you want to convert a Section report that has only one section (that is detail), you should not use
banded list mode. With 'Use Banded List Mode' not selected (default):

controls are not placed on BandedList
sections such as Report Header/Report Footer and Page Header/Page Footer are ignored
all converted controls are placed on one Page and treated as they have been on one section

The option to select Use New Chart lets you convert an existing chart to a new chart. By default, this option
is selected; if unselected, the chart converts to classic chart.

7. Click Next to start the conversion.

ActiveReports 14 112

Copyright © 2020 GrapeCity, Inc. All rights reserved.

8. Once the conversion process is complete, click Finish to close the wizard and go the destination folder to view the
converted reports. You may optionally leave the check on for the Open Log file checkbox to see the results log.

Important: At conversion, any script from the script editor is ignored.

Section report controls are replaced with the RDL or Page report controls as follows.

Section Report Control RDL/Page Report Control

Label TextBox

TextBox TextBox

CheckBox CheckBox

RichTextBox FormattedText

Shape Shape

Picture Image

Line Line

Barcode Barcode

SubReport SubReport

Chart Chart (New or Classic) (See the section Conversion Limitations for Chart Control
to New Chart.)

ReportInfo TextBox

CrossSectionLine Line
(in Page report when BandedList is not used)

CrossSectionBox Container
(in Page report when BandedList is not used)

PageBreak Container in RDL report with 'Height=0in' and 'PageBreakAtEnd=True'
Not supported in Page report

ActiveReports 14 113

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Conversion rules for Section report to Page report

The converted report inherits these properties of Section report - Paper Size, Orientation, and the Margins.
If controls are placed outside the paper size (red line appears), they are not converted.
If the sum of height of all sections (PageHeader, Detail, etc.) in a Section report is more than its paper height,
controls above or below the paper height are ignored.

Conversion rules for Section report to RDL report

The entire Section report is converted to an RDL report as the BandedList control.
PageHeader and PageFooter sections are automatically created at conversion. You must not remove these sections
even if no content is available for them.

Conversion Limitations (both Page and RDL)

The support of Chart, Subreport, and RichTextBox controls is limited to the basic functionality.
Unused database fields are not imported.
Calculated fields are converted into simple expressions.
PageTotal and PageCount summary functions are not supported.
Visual Basic functions are not supported. Expressions with function calls are imported as is.
Following properties of Section report, on conversion to Page/RDL report, are not supported.

Culture
DataMember
ExpressionErrorMessage
MaxPages
TrayHeight
TrayLargeIcon
UserData
Watermark (for RDL and Page (using banded list mode))

MaxLength property for RichTextBox control on conversion to Page/RDL report is not supported.

Conversion Limitations for Chart control to New Chart

BezierXY, Bubble, HiLo, HiLo Open Close, and LineXY chart types are not properly implemented.
Axis labels may be duplicated when using several Series with the same category grouping.
Colors may differ when set to default.
Marker labels may disappear when Field type doesn't match Format type and implicit type conversion is required.
Custom angle for labels are not supported (can be only fixed 0, 90, 270).
Multiple chart titles are not supported (can be only one title).
Stacked option for Charts is not supported.

Report Types
ActiveReports provides a number of ways to design a report. In this section, learn about the choosing a report type based
on your layout requirements. Depending on the type of report you select, you also get various file formats to create your
reports.

Topic Content

ActiveReports 14 114

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Page Report The new Page report offers you a way to create very specific styles of reports, ideal for
duplicating legacy paper forms.

Report Definition Language
(RDL) Report

Learn how to build interactive reports with unique features where controls can grow and
shrink.

Code-Based Section Report Create reports based on C# or Visual Basic in Visual Studio.

XML-Based Section Report Create reports based on XML layout in Visual Studio.

Report Layout Types
You can design reports using different layouts depending on your requirements. This section introduces these layout
types and describes the differences between them to allow you to select the one that suits your report.

Page Layout

In a Page Layout, you design reports at the page level without any banded sections. This lets you place controls anywhere
on the report.

In a Page report, controls do not change in size based on the data, but you can use an Overflow Place Holder to handle
any extra data.

RDL Layout

In a RDL report, controls grow vertically to accommodate data.Controls can grow and shrink, you can set up interactive
sorting, you can set up drill-down reports in which detail data is initially hidden, and can be toggled by other items, and
you can add drill-through links to other reports and to bookmark links within reports.

Section Layout

In a Section Layout, you design reports in banded sections. A PageHeader, Detail and PageFooter section appear by
default, and you can remove any but the detail section. Right-click the report and select Insert to add other section pairs
like ReportHeader and ReportFooter, or GroupHeader and GroupFooter.

A report section contains a group of controls that are processed and printed at the same time as a single unit. All sections
except the detail section come in pairs, above and below the detail section. When you use group headers and footers, the
detail section processes for each group, and then the next group processes a group header, related details, and group
footer. See Grouping Data for more information.

You can hide any section that you do not want shown by setting the Visible property of the section to False.

Report File Format Types
You can create reports in a number of file formats with a varied set of features. This section describes the use of each of
these file formats.

Report Template Formats

To create a report, a user must select one of the following templates containing the report layout. See Quick Start
and Install ActiveReports topics for details on available report templates and how to access these.

RDLX: This is an XML-based proprietary file format that provides custom extensions to the Report Definition
Language (RDL) files used by SQL Server Reporting Services. These are stand-alone files that you can process
without compiling them into your application. You can customize the report through the Script Tab by embedding

ActiveReports 14 115

Copyright © 2020 GrapeCity, Inc. All rights reserved.

script in the report.
See this msdn page for more on RDL report.
VB or CS: These are code-based reports, and are saved as C# or Visual Basic files that are compiled into your
applications. They have corresponding code views similar to Windows forms and provide a design and coding
experience in line with Visual Studio. This format is ideal for developers who are comfortable with coding in .NET
programming languages and would like to use the extensive event-based API provided by ActiveReports in the
code-behind rather than design view. You may also use the scripts in the Script Tab instead of the code behind.
RPX: This is an XML-based proprietary file format that the ActiveReports engine can process without compiling it
into an application. Instead of Visual Basic or C# code behind, you can customize the report with script embedded
in the report XML using the Script Tab. You can also use an RPX file with script as a stand-alone file in a Web
project.

Additional File Formats

ActiveReports also provides some additional file formats for reports. Each of these formats is used for a specific purpose
as described below.

RDLX-master: This is a master report file that you can reference from other RDLX report files for a standard layout,
for example, you can add company logo and address sections. This file is loaded each time the report is executed,
so you can change the logo on all of your reports by just changing it on the master report.
RDLX-theme: This is a theme file that consists of a collection of styles that you can apply to a report. See Themes
for further details.
RDSX: This is a proprietary format that is created when you share a data source, making it available to multiple
reports.
RDF: This is the Report Document Format, in which the data is static. You can save a report in this format to display
the data that is retrieved. Once a report has been saved to an RDF file, it can be loaded into the viewer control. See
Save and Load RDF Report Files for further details.

See the following list of file formats available in each layout.

Format Page Layout/RDL
Layout

Section Layout

RDLX ✓ ✘

VB or CS ✘ ✓

RPX ✘ ✓

RDLX-Master ✓ ✘

RDLX-Theme ✓ ✘

RDSX ✓ ✘

RDF ✘ ✓

Features comparison between report types

In ActiveReports, the features available in a report depend on the type of report you select. See the following comparison
list of features with each report type:

ActiveReports 14 116

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/sql/reporting-services/reports/report-definition-language-ssrs?redirectedfrom=MSDN&view=sql-server-ver15

Feature Section
report

Page
report

RDL report

Viewers & Editors

Visual Studio Integrated Designer ✓ ✓ ✓

Expressions Editor ✘ ✓ ✓

Designer Script Editor ✓ ✓ ✓

Windows Form Viewer ✓ ✓ ✓

WebViewer (Pro Edition). Includes viewer types HTML, RawHTML, and PDF. ✓ ✓ ✓

HTTP Handlers (Pro Edition) ✓ ✓ ✓

Report Controls

BandedList ✘ ✓ ✓

List ✘ ✓ ✓

Tablix ✘ ✓ ✓

Table ✘ ✓ ✓

OverflowPlaceHolder ✘ ✓ ✘

Chart ✓ ✓ ✓

Barcode ✓ ✓ ✓

Bullet ✘ ✓ ✓

CheckBox ✓ ✓ ✓

Container ✘ ✓ ✓

CrossSectionLine ✓ ✘ ✘

CrossSectionBox ✓ ✘ ✘

FormattedText ✘ ✓ ✓

Image ✘ ✓ ✓

Label ✓ ✘ ✘

Line ✓ ✓ ✓

PageBreak ✓ ✘ ✘

Picture ✓ ✘ ✘

ReportInfo ✓ ✘ ✘

RichTextBox ✓ ✘ ✘

Shape ✓ ✓ ✓

Sparkline ✘ ✓ ✓

ActiveReports 14 117

Copyright © 2020 GrapeCity, Inc. All rights reserved.

SubReport ✓ ✓ ✓

TextBox ✓ ✓ ✓

TableOfContents ✘ ✓ ✓

Interactivity

Hyperlinks ✓ ✓ ✓

Parameters ✓ ✓ ✓

Drill through ✘ ✓ ✓

Drill down ✓ ✓ ✓

Filtering ✘ ✓ ✓

Grouping ✓ ✓ ✓

Sorting ✘ ✓ ✓

Data Connections

Standard Data Sources supported (e.g. SQL, OleDB, XML) ✓ ✓ ✓

Unbound Data Source ✓ ✓ ✓

Shared Data Source ✘ ✓ ✓

Export

Export Filters ✓ ✓ ✓

Rendering Extensions ✘ ✓ ✓

PDF advanced export features: digital signatures, time stamp, bold font emulation
(Pro Edition)

✓ ✓ ✓

Miscellaneous

Master Reports ✓ ✘ ✓

Themes ✘ ✓ ✓

Collation ✘ ✓ ✓

Styles (through Report Settings dialog) ✓ ✘ ✘

Printing ✓ ✓ ✓

Stand-alone Applications

ActiveReports Viewer ✓ ✓ ✓

ActiveReports Theme Editor ✘ ✓ ✓

ActiveReports Designer (stand-alone application) ✓ ✓ ✓

Page Report

ActiveReports 14 118

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The new Page report offers you a way to create very specific styles of reports that are very difficult, if not impossible, in
other .NET reporting tools. You design this type of report on a page where none of the report controls can grow or shrink
at run time, making it ideal for duplicating legacy paper forms.

As with all Page reports, instead of report sections where you place report controls, you place data regions and controls
directly on the page. But with Page reports, there is no need to use code or add measurements to make sure that
everything fits. Unlike the RDL Report, the controls remain fixed at run time, so you can drop a table on the report, set a
property to size it exactly how you want it, and have something very close to a WYSIWYG report at design time.

One row of data per page or one group per page
By default, all of the records are in one group, but you can set page level grouping to render one row of data on each
page. This is ideal for something like a tax form that you want to print for every client or every employee, or an invoice
that you want to print for every customer. For more information, see Grouping in a fixed page.

Where does the rest of the data go?
If there is data that does not fit within the space allocated for the data region at design time, you can assign it to flow into
an OverflowPlaceholder control. This can go on the same page in a different area, for example, in the form of columns, or
it can go on a separate page. For more information, see OverflowPlaceholder and Overflow Data in a Single Page.

Additional pages
You can run an entire report using the same page layout for every page, which is useful for something like an invoice, but
does not satisfy every reporting need.

For other types of reports, you can add pages and create different layouts for each one, or duplicate a page you have
already created. This can save a lot of time and effort when you have a report with many precisely placed controls, and
you need additional pages that duplicate many of them. For example, when you need to provide employees with federal,
state, and city copies of tax forms that have only one label changed. For more information, see Overflow Data in Multiple
Pages.

You can also insert new pages between existing ones, and drag page tabs to rearrange them. With multiple pages, you
can also choose how to collate the pages at run time. For more information, see how to Themes and Collate Multiple
Copies of a Report.

Caution: Page Reports do not support nested data regions. A red border indicating overlapping of controls appears
around the nested data region, on placing one data region inside another.

Report Definition Language (RDL) Report
The Report Definition Language (RDL) report is the most interactive type of report that we offer. Controls can grow and
shrink, you can set up interactive sorting, you can set up drill-down reports in which detail data is initially hidden, and can
be toggled by other items, and you can add drill-through links to other reports and to bookmark links within reports.

ActiveReports 14 119

Copyright © 2020 GrapeCity, Inc. All rights reserved.

When you add a RDL report to a project, the OverflowPlaceholder control disappears from the toolbox, and the page tabs
disappear from below the report design surface.

Master Reports
One way in which RDL reports differ from Page reports is the ability to create and use master reports. A master report is
one that you use to add common report functionality like data, company logos, and page headers or footers,
while using the ContentPlaceHolder control to designate areas where content reports can add data. In this way, you can
quickly change the data source or company address and logo for an entire suite of reports in one convenient place. For
more information, see Master Reports.

Page Break
RDL reports provides you the ability to add a page break by using the PageSize setting or by specifying the
PageBreakBefore and PageBreakAfter properties of data region, group, and rectangle. In addition to the traditional
print preview mode that allows you to consider the sheet size while printing a report, it also provides a galley mode
wherein you can browse all your data in a single sheet. In RDL reports, you can easily verify data that does not include any
page breaks, therefore it can be more appropriately used for browsing laterally extended reports that use controls like
Tablix data region or for previewing reports that includes large amount of data.

Themes
Both Page and RDL reports can use themes to apply standard formatting to a range of report controls. Like using a master
report, this allows you to change the look of a whole suite of reports in one place. You can specify colors for text and
background, hyperlink colors, major and minor fonts, images, and constants, and then specify theme values in report
control properties. When you want to change the look, you can do it all in the *.rdlx-theme file and it will apply to each
report when it runs. For more information, see Create and Add Themes.

Data
RDL reports are ideal when you need to show data from different data sets, and when you do not need to control where
the data appears on the page. Use data regions to display data in the report, and after the controls grow to accommodate
your data, ActiveReports breaks it down into pages. For more information, see Data Sources and Datasets.

Shared Data Sources

RDL reports allow you to create and use shared data sources, so that you need not enter the same connection string every
time you create a report.

Custom Resource Locators

You can create a custom resource locator for items to use in your reports. In this way, you can locate images for reports,
or even reports to use in subreports or in drill-through links. For more information, see Custom Resource Locator.

Data Regions and Report Controls

All Rdl reports have controls that can display data differently than in section reports. You can use Sparkline and Bullet
report controls for dashboard reports, plus there is a List, Table, and Tablix data regions to display your data. You can use

ActiveReports 14 120

Copyright © 2020 GrapeCity, Inc. All rights reserved.

expressions in many of the properties to determine what to display and how to display it. For more information on these
and other report controls, see Toolbox.

Note: The PageHeader and PageFooter sections of RDL Reports do not display controls bound to dataset values at
run time. These sections only display controls with static data like labels or, you can also add parameters using
dataset values and use controls bound to parameter value in order to display dataset field values in these sections.

Data Visualizers

The Image and TextBox report controls have a Data Visualizer feature that allows you to display data in small, easy-to-
comprehend graphs. This is a powerful tool to really make your data pop. For more information, see Data Visualizers.

Grouping

You can group data within data regions by fields or expressions, control the scope of aggregates, and even create
recursive hierarchies in data with parent-child relationships. The Level function allows you to indent by level to show these
relationships visually. For more information, see Grouping Data (Page Layout).

Interactivity

Interactive Sorting

You can allow users to sort data in List, BandedList, Table, or Tablix data regions using the Interactive Sort properties of a
TextBox report control. For more information, see Allow Users to Sort Data in the Viewer.

Parameters

You can add parameters to reports that allow users to select which values to display in the report. These are also useful in
creating drill-through reports. For more information, see Add Parameters.

Drill Down

You can use the ToggleItem property in the Visibility section for report controls, data regions, table rows, and tablix row
and column groups to create drill-down reports. With these settings, you can initially hide items and set a toggle item that
users can click to drill into more detailed data. For more information, see Create a Drill-Down Report.

Drill Through

You can use the Action property in the Navigation settings available on text boxes, images, and chart data values to create
drill-through reports that let users click links to more detailed reports with parameters. Although you can create drill-
through links to reports without parameters, this may leave users searching a huge detailed report for relevant
information.

Bookmark Links

ActiveReports 14 121

Copyright © 2020 GrapeCity, Inc. All rights reserved.

You can also use the Action property in the Navigation settings to jump to a bookmark or URL.

Pagination
You can control where pages break in RDL reports using PageSize settings, as well as PageBreakBefore and
PageBreakAfter properties on data regions, groups, and rectangles.

Master Reports (RDL)
Master Reports are like dynamic templates you can design for use with content reports. This assists users in creating
reports that share common elements such as a logo in the page header or a web site link in the page footer. You design
the master report with controls, code, data sources, and layout properties that cannot be modified from content reports.

Master Reports differ from templates in that they are loaded each time the report is executed. Therefore, you can modify a
master report and the changes to the master report automatically appear in any reports that reference it.

Designing Master Reports
When designing a master report, you use controls, code, data sources, and layout properties in the same way that you do
in a normal report. A master report is valid on its own, and can be run without a content report. To prevent end users from
modifying a master report, you can set permissions on the file to Read Only for that user or group.

In an RDL report, you can create a master report by saving it as an RDLX-master file. You can then apply it like a template
to content reports.

A ContentPlaceHolder control appears in the toolbox when you convert an RDL report to a Master Report. This control
defines regions where users can add content after applying a master report template.

Note: In a section report (code-based report), there is a concept similar to Master Reports. However, here you create
a base report class in a standard report that other reports inherit. See Inherit a Report Template for further
information.

Creating Content Reports
The reports to which you apply the master report are content reports. A content report is not valid on its own, and cannot
be run without its specified master report.

When the user creates a new report and sets a master report on it, the design view is effectively the opposite of the
design view of the master report. Any report controls overlaid by ContentPlaceHolder controls are not visible in the
content report at design time, but are visible at run time. These are the only areas where users can add report controls.

While designing the content report the user can

Add elements that do not exist in the master report.
Add new data sources that do not exist in the master report.
Add new datasets from a data source in the master report.
Add images to the EmbeddedImages collection.
Add parameters to the ReportParameter collection.
Add any number of report controls into placeholder rectangles designated by the master report.
Modify the report name and description.
Add new custom code that does not exist in the master report.

ActiveReports 14 122

Copyright © 2020 GrapeCity, Inc. All rights reserved.

While designing the content report the user cannot

Modify or remove elements that exist in the master report (disabled grey area).
Remove a master report data source.
Remove a master report dataset or modify its query.
Modify the sort or filter on a master report dataset.
Remove images from the EmbeddedImages collection.
Remove parameters from the ReportParameter collection.
Modify the margins or page settings of the master report.

Note: Code in the master report is hidden in the content report, so in order to allow content report users to
access code, the master report developer must provide information.

Run-Time Sequence of Events

This is what happens behind the scenes when you run a content report.

1. ActiveReports loads the content report.
2. The loader parses the master report tag on the content report and requests the master report from the resource

resolver.
3. The master report is loaded into the definition.
4. As each ContentPlaceHolder in the content report is parsed, it finds the corresponding placeholder in the master

report and loads the content from the content report into it.
5. Data sources, datasets, and fields are merged. The master report has higher priority if there is a conflict.
6. Themes are merged. The master report has higher priority if there is a conflict.
7. Report properties from the content report are added to those of the master report. For the following properties,

the content report has a higher priority in case of conflict:
Report Description
Report Author
Report AutoRefresh
Report Custom
Report Language
Report DataTransform
Report DataSchema
Report ElementName
Report DataElementStyle
Dataset filters
Report Theme
Report Code
All content inside the ContentPlaceHolder controls

Modifying an Aggregated Report Definition

When you run a content report, the content report and its master combine to form an aggregated report definition. Using
the ReportDefinition API, you can save this aggregate at run time as a third report definition which has no master or
content report. Once this aggregate is saved as a normal report definition (*.rdlx file) you can edit it like any other report
definition.

Advantages of a Master Report

ActiveReports 14 123

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Implement common report functionality such as adding consistent page headers and footers within master reports.
Apply company-wide changes in information such as address changes to a single master instead of modifying each
report individually.
Apply widespread data-related changes (such as data source location) to a single master report instead of
modifying each report.
Create code, data sources, themes and page layouts that are shared across the application or enterprise.
Hide report complexity from end users who can use the stand-alone designer application to create content reports.

Advantages of a Shared Master Report
Shared master reports offer the advantages of a local master report, plus:

They make your reports portable
They allow multiple authors to use them

Code-Based Section Report
When you add an ActiveReports 14 Section Report (code-based) to your Visual Studio project, report layouts are saved as
C# or Visual Basic files within the project in which they are created. These files are compiled into the application when you
build it. Each report is composed of three files:

rptYourReportName.vb or .cs
rptYourReportName.Designer.vb or .cs
rptYourReportName.resx

In this way, layout information models the behavior of Windows Forms in the .NET framework.

The design surface of a section report has banded sections that repeat depending on the data and the type of section. For
more information, see Section Report Structure and Section Report Events.

Code
This type of report is the most flexible in terms of what a .NET developer can achieve using code. It has an extensive API
and is event-based, which allows you to control all aspects of the report and how it is generated. If you like, you can even
build a report completely in code. See details about the API in the Class Library (on-line documentation) section of the
help.

The API is also available with XML-based section reports, but you use VB or C# script instead of Windows Forms-like code.
For more information, see XML-Based Section Report .

Data
Code-based section reports connect to data either via settings that you specify in the Report Data Source dialog, or
through code. You can find more information on all of the ways to connect to data in a section report in the Report Data
topic.

Viewing and Exporting
To display a code-based report in the viewer, you use the LoadDocument method of the viewer. See Preview Reports for
more information. To export a code-based report, you use the Export method of the export you choose.

ActiveReports 14 124

Copyright © 2020 GrapeCity, Inc. All rights reserved.

XML-Based Section Report
When you add an ActiveReports 14 Section Report (xml-based) report to your Visual Studio project, the layout is saved as
a stand-alone Report XML (RPX) file. Since these files are not compiled into your application, they are a good option for
solutions in which you need to update or add reports frequently.

The RPX format cannot contain Visual Basic.NET or C# code. Instead, you can add VB.NET or C# script in the Script view of
the report.

For more information on using script with a layout file, see Scripting in Section Reports.

XML-based section reports are the same as Code-Based Section Report with regard to data, events, structure, and exports,
but everything is contained in a single, portable RPX file.

End User Report Designer
If you want to allow end users to edit and create section reports in a Windows Forms application you create with the
Designer control, these are XML-based, as there is nowhere to put Visual Studio code and no way to handle multiple files
for a code-based section report. For more information, see Creating a Basic End User Report Designer (Pro Edition).

Preview Reports
ActiveReports provides a number of ways to view your report output. You have an option of previewing the report as you
create it in a Visual Studio project at design time.

Previewing Reports at Design Time
ActiveReports makes it easy for you to preview your report while you are still creating it. Click the Preview tab at the
bottom of the designer and see the output as it appears in a viewer. See Designer Tabs for further information.

With the in-built Viewers for Windows Forms and Web, you can view your report in any of these platforms as well in a
separate viewer control. This section introduces all the available report viewing options.

Topic Content

Windows Forms
This section explains how to view a report in the Windows Forms Viewer and
demonstrates the Viewer's features, touch gestures and shortcut keys.

ActiveReports 14 125

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ASP.NET This section introduces the WebViewer where you can view your report output in various
types of viewers and provides key features of each viewer type.

JavaScript Viewer This section describes the JSViewer and how to configure a target ASP.NET backend
application with the JSViewer.

WPF This section describes the WPF Viewer toolbar, its additional features and how to view a
report in the WPF viewer.

Medium Trust Support Learn about the features and limitations available in Medium Trust Support
environment.

Viewing Reports from
Different Domains using
CORS

Learn about accessing the reports from different domains using Cross-Origin Resource
Sharing technology.

Windows Forms Viewer
Besides previewing your report at design time, you can also view the reports you design in the Viewer. This viewer
contains a toolbar and a sidebar with Thumbnails, Search results, Document map and Parameters panes.

Viewer Toolbar

The following table lists the actions you can perform through the Viewer toolbar.

Toolbar Element Name Description

First page Takes you to the first page of the report. This
button is enabled when a page other than the
first page is open.

Last page Takes you to the last page of the report. This
button is disabled on reaching the last page of
the report.

Previous page Takes you to the page prior to the current page.
This button is enabled when a page other than
the first page is open.

Next page Takes you to the page following the current page.
This button is disabled on reaching the last page
of the report.

Current page Opens a specific page in the report. To view a
specific page, type the page number and press
the Enter key.

Backward Takes you to the last viewed page. This button is
enabled when you move to any page from the
initial report page. Clicking this button for the first
time also enables the Forward button.

ActiveReports 14 126

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Forward Takes you to last viewed page before you clicked
the Backward button. This button is enabled once
you click the Backward button.

Back to parent report Returns you to the parent report in a drillthrough
report.

Default Allows you to specify a default mouse pointer
mode.

Pan mode A hand symbol serves as the cursor that you can
use to navigate.

Selection mode Allows you to select contents on the report. Click
the Copy icon (see image and description below)
to copy the selected content to the clipboard.

Snapshot mode Allows you to select content on the report that
you can paste as an image into any application
that accepts pasted images.

Toggle sidebar Displays the sidebar that includes the Thumbnails,
Parameters, Document map and Search results
panes.

Print Displays the Print dialog where you can specify
the printing options.

Galley mode Provides a viewer mode which removes automatic
page breaks from a Report Definition Language
(RDL) and displays data in a single scrollable
page. This mode maintains page breaks you
create in the report and removes only automatic
page breaks.

Copy Copies text that you select in the Selection mode
to the clipboard.

Note: In case the
GrapeCity.ActiveReports.Export.Xml.dll and
GrapeCity.ActiveReports.Export.Word.dll are
not available in GAC, you might need to add
references to these assembly files to enable
the viewer's Copy button.

Find Displays the Find dialog to find any text in the
report.

Zoom out Decreases the magnification of your report.

Current zoom Displays the current zoom percentage which can
also be edited.

ActiveReports 14 127

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Zoom in Increases the magnification of your report.

Fit width Fits the width of the page according to viewer
dimensions.

Fit page Fits the whole page within the current viewer
dimensions.

Single page view Shows one page at a time in the viewer.

Continuous view Shows all preview pages one below the other.

Multipage view Offers you an option to select how many pages to
preview in the viewer at one time.

Refresh Refreshes the report.

Caution: Refresh button gets disabled when
you load a section report in the Viewer
control through any of the following:

Document Property (on-line
documentation)
LoadDocument(SectionDocument)
Method ('LoadDocument Method'
in the on-line documentation)
LoadDocument(String) Method
('LoadDocument Method' in the on-
line documentation)

Cancel Cancels the report rendering.

Touch Mode

Allows you to select touch mode for the Viewer.

Note: The Touch Mode button only appears
on the toolbar while working on touch
enabled devices.

Viewer Sidebar

The Viewer sidebar appears on the left of the Viewer control when you click the Toggle sidebar button in the toolbar. By
default, this sidebar shows the Thumbnails and Search Results panes. The additional Document map and Parameters also
appear in this sidebar. You can toggle between any of the viewer panes by clicking the buttons for each pane at the
bottom of the sidebar.

Thumbnails pane

The Thumbnails pane appears by default in the sidebar when you click the Toggle sidebar button in the toolbar.

This pane is composed of a thumbnail view of all the pages in a report. Click any thumbnail to navigate directly to the
selected report page. You can also modify the size of the thumbnail when you click (+) or (-) button to zoom in and zoom
out.

ActiveReports 14 128

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Search results pane

The Search pane is the other default pane besides Thumbnails that appears in the sidebar when you click the Toggle
sidebar button. This pane lets you enter a word or phrase from which to search within the report.

To search in a report:

Enter the word or phrase in the search field.
Under Use these additional criteria, you may optionally choose to search for the whole word or match the case of
the search string while searching in the report.
Click the Search button to see the results appear in the Find results list.
Click an item in the list to jump to that item in the report and highlight it.

To start a new search or clear the current search results, click the Clear button under the Find results list.

Document map pane

The Documents map pane is enabled for reports where the Label property or the Document map label is set. This pane
displays each value for the text box, group, or sub report that you label, and you can click them to navigate to the
corresponding area of the report in the Viewer.

ActiveReports 14 129

Copyright © 2020 GrapeCity, Inc. All rights reserved.

If a report does not have the Label property or Document map label set, the Documents map pane does not appear in the
sidebar.

Parameters pane

The Viewer allows you to view reports with parameters. In the toolbar, click the Toggle sidebar button to open the Viewer
sidebar and if your report contains parameters, the Parameters pane shows up automatically.

1. In the Parameters pane, you are prompted to enter a value by which to filter the data to display.
2. Enter a value or set of values and click View report, to filter the report data and display the report.

If a report does not have parameters, the Parameters pane does not appear in the sidebar.

Note: ActiveReports stopped using the ClearType technology in rendering text in a font system by default.

Display Report Output in the Viewer

The following code examples demonstrate how you can display the report output in the Viewer.

1. In a Visual Studio Windows Forms application, from the Visual Studio toolbox, drag the Viewer control onto your
Windows Form.

2. Set the viewer's Dock property to Fill to show the complete Viewer control on the Form.
3. Double-click the title bar of the Form to create an event-handling method for the Form_Load event.
4. In the Form_Load event, add code like the following to run the report and display it in the viewer. Each of these

code snippets presumes a report in the project of the type indicated with the default name. (If you have renamed
your report, you need to rename it in the code as well)

To write the code in Visual Basic.NET

The following example demonstrates how you display a page report in the Viewer control.

Visual Basic. NET code. Paste INSIDE the Form_Load event.

Dim file_name As String = "..\..\PageReport1.rdlx"
Dim pageReport As New GrapeCity.ActiveReports.PageReport(New
System.IO.FileInfo(file_name))
Dim pageDocument As New GrapeCity.ActiveReports.Document.PageDocument(pageReport)
Viewer1.LoadDocument(pageDocument)

The following example demonstrates how you display a RDL Report in the Viewer control.

ActiveReports 14 130

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic. NET code. Paste INSIDE the Form_Load event.

Dim file_name As String = "..\..\RdlReport1.rdlx"
Dim pageReport As New GrapeCity.ActiveReports.PageReport(New
System.IO.FileInfo(file_name))
Dim pageDocument As New GrapeCity.ActiveReports.Document.PageDocument(pageReport)
Viewer1.LoadDocument(pageDocument)

The following example demonstrates how you can display a section report (code-based) in the Viewer control.

Visual Basic. NET code. Paste INSIDE the Form_Load event.

Dim sectionReport As New SectionReport1()
Viewer1.LoadDocument(sectionReport)

The following example demonstrates how you can display a section report (xml-based) in the Viewer control.

Visual Basic. NET code. Paste INSIDE the Form_Load event.

Dim sectionReport As New GrapeCity.ActiveReports.SectionReport()
Dim xtr As New System.Xml.XmlTextReader("..\..\SectionReport1.rpx")
sectionReport.LoadLayout(xtr)
xtr.Close()
Viewer1.LoadDocument(sectionReport)

To write the code in C#

The following example demonstrates how you display a page report in the Viewer control.

C# code. Paste INSIDE the Form_Load event.

string file_name = @"..\..\PageReport1.rdlx";
GrapeCity.ActiveReports.PageReport pageReport = new
GrapeCity.ActiveReports.PageReport(new System.IO.FileInfo(file_name));
GrapeCity.ActiveReports.Document.PageDocument pageDocument = new
GrapeCity.ActiveReports.Document.PageDocument(pageReport);
viewer1.LoadDocument(pageDocument);

The following example demonstrates how you display a RDL Report in the Viewer control.

C# code. Paste INSIDE the Form_Load event.

string file_name = @"..\..\RdlReport1.rdlx";
GrapeCity.ActiveReports.PageReport pageReport = new
GrapeCity.ActiveReports.PageReport(new System.IO.FileInfo(file_name));
GrapeCity.ActiveReports.Document.PageDocument pageDocument = new
GrapeCity.ActiveReports.Document.PageDocument(pageReport);
viewer1.LoadDocument(pageDocument);

The following example demonstrates how you can display a section report (code-based) in the Viewer control.

ActiveReports 14 131

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C# code. Paste INSIDE the Form_Load event.

SectionReport1 sectionReport = new SectionReport1();
viewer1.LoadDocument(sectionReport);

The following example demonstrates how you can display a section report (xml-based) in the Viewer control.

C# code. Paste INSIDE the Form_Load event

GrapeCity.ActiveReports.SectionReport sectionReport = new
GrapeCity.ActiveReports.SectionReport();
System.Xml.XmlTextReader xtr = new
System.Xml.XmlTextReader(@"..\..\SectionReport1.rpx");
sectionReport.LoadLayout(xtr);
xtr.Close();
viewer1.LoadDocument(sectionReport);

Additional Features
Following is an introduction to the additional capabilities of the Viewer to guide you on using it effectively:

Split windows

1. Run your viewer project.
2. Click above the vertical scrollbar to grab the splitter control and drag downward.
3. With the viewer split into two sections, you can easily compare report pages.

Advanced Printing Options

Viewer provides advanced printing options that allow you to control the report page layout and watermark settings
through the Page Setup dialog. In this dialog, you can also preview the report as it would appear with each print setting.
See Advanced Print Options for further details.

You can also set the PrintingSettings ('PrintingSettings Property' in the on-line documentation) property of the
Viewer to directly print without displaying a dialog or to switch from a ActiveReports print dialog to a .NET Framework
standard print dialog (System.Windows.Forms.PrintDialog) on clicking the Print button on the Viewer toolbar. You can set
the PrintingSettings property of the Viewer control from the Properties window.

PrintingSettings property provides the following options:

PrintingSettings Options Description

ShowPrintDialog Displays a dialog in which the user can set the printer options before printing.

ShowPrintProgressDialog Displays a print progress dialog, in which the user can cancel the printing job.

UsePrintingThread Specifies whether printing should be performed for individual threads or not.

UseStandardDialog Specifies whether to use the .NET Framework standard print dialog
(System.Windows.Forms.PrintDialog) while printing the document (section or page).

ActiveReports 14 132

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Exporting

Use the Export Filters to export a page or a section report to different formats directly from the Viewer. After you load the
document in the Viewer, you can use a sample code like the following which shows one overload of the Export ('Export
Method' in the on-line documentation) method with a PDF export filter. This code creates an outputPDF.pdf file in the
bin\debug folder of your project.

To write the code in Visual Basic.NET

Visual Basic. NET code. Paste INSIDE an event like Button_Click event.

Dim PDFEx As New GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport
Viewer1.Export(PDFEx, New FileInfo(Application.StartupPath + "\outputPDF.pdf"))

To write the code in C#

C# code. Paste INSIDE an event like Button_Click event.

GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport PDFEx = new
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport();
viewer1.Export(PDFEx, new System.IO.FileInfo (Application.StartupPath +
"\\outputPDF.pdf"));

Note: Make sure that you add a reference to the required export assembly in your project before setting the export
filter in code. See Export Filters further details.

Annotations Toolbar

You can use annotations when working with a report in the Viewer and add notes, special instructions or images directly
to the reports.

Annotations are added via the Viewer's toolbar, which is hidden by default. You can make the Annotations toolbar
available by setting the AnnotationDropDownVisible property to true in the viewer's properties grid.

Annotation Name Description

AnnotationText A rectangular box in which you can enter text.

AnnotationCircle A circle without text. You can change the shape to an oval.

AnnotationRectangle A rectangular box without text.

AnnotationArrow A 2D arrow in which you can enter text. You can change the
arrow direction.

AnnotationBalloon A balloon caption in which you can enter text. You can point
the balloon's tail in any direction.

AnnotationLine A line with text above or below it. You can add arrow caps to
one or both ends and select different dash styles.

AnnotationImage A rectangle with a background image and text. You can select
an image and its position, and place text on the image.

ActiveReports 14 133

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Keyboard Shortcuts

The following shortcuts are available on the Viewer:

Keyboard Shortcut Action

Ctrl + F Shows the find dialog.

Ctrl + P Shows the print dialog.

Esc Closes the find or print dialogs.

Page Down Moves to the next page.

Page Up Moves to the previous page.

Ctrl + T Shows or hides the table of contents.

Ctrl + Home Moves to the first page.

Ctrl + End Moves to the last page.

Ctrl + Right Navigates forward.

Ctrl + Left Navigates backward.

Ctrl + - Zooms out.

Ctrl + + Zooms in.

Left, Right, Up, Down Moves the visible area of the page in the corresponding
direction.

Ctrl + 0 (zero) Sets the zoom level to 100%.

Ctrl + rotate mouse wheel Changes the zoom level up or down.

Ctrl + M Turns on the continuous view.

Ctrl + S Turns off the continuous view.

Ctrl + I Shows multiple pages.

Ctrl + G Focuses on PageNumber area and selects content.

F5 Refreshes the report.

Home Moves to the start of the current page.

End Moves to the end of the current page.

Viewer's Thumbnails pane shortcut keys

You can use the following shortcut keys while using the thumbnails pane in the Viewer.

Keyboard Shortcut Action

Up Arrow Goes to the previous page.

Down Arrow Goes to the next page.

ActiveReports 14 134

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Right Arrow Goes to right page. If no thumbnail exist on the right, it goes to the next page.

Left Arrow Goes to left page. If no thumbnail exist on the left, it goes to the previous page.

Page Down Scroll to the next thumbnail's view port. It also keep the current selected page unchanged.

Page Up Scroll to the previous thumbnail's view port. It also keep the current selected page unchanged.

Home Goes to the first page.

End Goes to last page.

Touch Support
ActiveReports introduces touch support for Windows Viewer. This feature gives you the flexibility to interact with the
Viewer using simple touch gestures. Now you can install ActiveReports on any touch enabled Windows device and view
the reports anywhere you are.

You can switch to the touch mode by just clicking the Touch mode button on the Viewer toolbar.

Note: In touch mode, you can still use the mouse to perform ActiveReports operations.

Touch mode Toolbar

The following table lists the actions you can perform through the Viewer toolbar.

Icon Function Details

Sidebar Displays the sidebar that includes the Thumbnails, Parameters, Document map and Search
results panes.

Print Displays the Print dialog where you can specify the printing options.

Galley
mode

Provides a viewer mode which removes automatic page breaks from a Report Definition
Language (RDL) and displays data in a single page. This mode maintains page breaks you
create in the report and removes only automatic page breaks.

For RDL report only.

Copy Copies text that you select in the Selection mode to the clipboard.

Note: In case the GrapeCity.ActiveReports.Export.Xml.dll and
GrapeCity.ActiveReports.Export.Word.dll are not available in GAC, you might need to add
references to these assembly files to enable the viewer's Copy button.

Find Displays the Find dialog to find any text in the report.

Current
zoom

Displays the current zoom percentage which can also be edited.

ActiveReports 14 135

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Single
page view

Shows one page at a time in the viewer.

Continuous
page

Shows all preview pages one below the other.

Multiple
page

Offers you an option to select how many pages to preview in the viewer at one time.

Previous
page

Takes you to the page prior to the current page. This button is enabled when a page other than
the first page is open.

Current
page

Opens a specific page in the report. To view a specific page, type the page number and press
the Enter key.

Next page Takes you to the page following the current page. This button is disabled on reaching the last
page of the report.

Back to
parent
report

Returns you to the parent report in a drillthrough report.

Refresh Refreshes the Viewer.

Caution: Refresh button gets disabled when you load a section report in the Viewer
control through any of the following:

Document Property (on-line documentation)
LoadDocument(SectionDocument) Method ('LoadDocument Method' in the
on-line documentation)
LoadDocument(String) Method ('LoadDocument Method' in the on-line
documentation)

Cancel Cancels the report rendering.

Touch
mode

Allows you to select touch mode for the Viewer.

Context menu

To display the context menu, you must tap and hold in the preview area.

Icon Function Gesture Details

Pan
mode

Tap Hand cursor used to move the visible portion of the reports. Drag the hand tool in the
direction you want to move the report.

Selection
mode

Tap Allows you to select contents on the report. Click the Copy icon (see image and description
above) to copy the selected content to the clipboard.

Snapshot
mode

Tap Allows you to select content on the report that you can paste as an image into any
application that accepts pasted images.

ActiveReports 14 136

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Preview

Gesture Gesture
(Image)

Preview Area Element Details

Flick

Single Page View Flick in the vertical or horizontal direction moves to the next or
previous page. A single flick moves single page.

Continuous Page View Performs the page scrolling.

Tap Link Opens links (URL, drill-though links, etc).

Pan

Slider Moves the slider.

Border between Sidebar
and Preview Area

Moves the border.

Note: The pan gesture does not work in the report area where
ScrollbarEnabled property is set to False.

Selection mode, Snapshot
mode

Pan from selection start point to selection end point.

Pinch Preview Area Pinch to zoom out.

Stretch Preview Area Stretch to zoom in.

Double
tap

Preview Area
Tap twice to change the view mode (from the Single page view to the
Multiple page mode).

Tap and
hold

Selection mode, Snapshot
mode

Displays the context menu where you can select the pan, selection, or
snapshot mode.

Customize the Viewer ToolStrip
There are a number of ways in which you can customize the Viewer control to make it a perfect fit for your Windows
application. You can add and remove buttons from the toolbars, add and remove menu items, create custom dialogs, and
call them from custom click events.

You can use the methods listed in the System.Windows.Forms.ToolStripItemCollection documentation on MSDN to
customize each ToolStrip.

ToolStrip

TheToolStrip contains the following ToolStripItems by index number.

0 Toggle sidebar

ActiveReports 14 137

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstripitemcollection?view=netframework-4.8

1 Separator
2 Print
3 Galley mode
4 Separator
5 Copy
6 Find
7 Separator
8 Zoom out
9 Zoom In
10 Current Zoom
11 Separator
12 Fit width
13 Fit page
14 Separator
15 Single page
16 Continuous mode
17 Multipage mode
18 Separator
19 First page
20 Previous page
21 Current
22 Next page
23 Last page
24 Separator
25 History back
26 History forward
27 Separator
28 Back to parent
29 Separator
30 Refresh
31 Cancel button
32 Separator
33 Pan mode
34 Copy select
35 Snapshot
36 Separator
37 Annotations

You can access these ToolStripItems by index with the Insert and RemoveAt methods. Other methods, including Add and
AddRange, are described in the System.Windows.Forms.ToolStripItemCollection documentation on MSDN.

ToolStrip Implementation
When you add a new item to a ToolStrip, you need to add an ItemClicked event handler and an ItemClicked event for the
ToolStrip with the new item. At run time, when a user clicks the new ToolStrip item, they raise the ItemClicked event of the
ToolStrip containing the item

Add the event handler to the Load event of the Form that contains the Viewer control, and use the IntelliSense Generate
Method Stub feature to create the related event. For examples of the code to create an event hander, see the Customize
the Viewer Control topic, and the Custom Preview sample.

ActiveReports 14 138

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstripitemcollection?view=netframework-4.8

Customize the Viewer Control
ActiveReports includes a Viewer control for Windows Forms that lets you show report output in a custom preview form.
You can modify both viewer's mouse mode and touch mode toolbars and set custom commands. For example, in the
following sample codes we show customization specific to mouse mode toolbar and touch mode toolbar.

To create a basic preview form

1. In Visual Studio, create a new Windows Forms project.
2. From the Visual Studio toolbox on the ActiveReports 14 tab, drag the Viewer control onto the form. If you do not

have the Viewer in your toolbox, see Quick Start.
3. With the viewer control selected, in the Properties window, set the Dock property to Fill.
4. From the Project menu, select Add New Item.
5. Select ActiveReports 14 Section Report (code-based) and click the Add button.
6. Double-click in the title bar of the form to create a Form Load event.
7. Add the following code to run the report and display the resulting document in the viewer.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim rpt as new SectionReport1
Viewer1.LoadDocument(rpt)

To write the code in C#

C# code. Paste INSIDE the Form Load event.

SectionReport1 rpt = new SectionReport1();
viewer1.LoadDocument(rpt);

8. Press F5 to run the project.

Customize the Mouse Mode Toolbar

1. Add a second Windows Form to the project created above and name it frmPrintDlg.
2. Add a label to frmPrintDlg and change the Text property to This is the custom print dialog.
3. Add a button to frmPrintDlg and change the Text property to OK.
4. Back on the viewer form, double-click the title bar of the form to go to the Form Load event.
5. Add the following code to the Form Load event to remove the default print button and add your own.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

'Remove the print button.
Viewer1.Toolbar.ToolStrip.Items.RemoveAt(2)
'Remove the extra separator.
Viewer1.Toolbar.ToolStrip.Items.RemoveAt(1)
'Add a new button to the end of the tool strip with the caption "Print."
Dim tsbPrint As New ToolStripButton("Print")
Viewer1.Toolbar.ToolStrip.Items.Add(tsbPrint)
'Create a click event handler for the button.

ActiveReports 14 139

Copyright © 2020 GrapeCity, Inc. All rights reserved.

AddHandler tsbPrint.Click, AddressOf tsbPrint_Click

To write the code in C#

C# code. Paste INSIDE the Form Load event.

//Remove the print button.
viewer1.Toolbar.ToolStrip.Items.RemoveAt(2);
//Remove the extra separator.
viewer1.Toolbar.ToolStrip.Items.RemoveAt(1);
//Add a new button to the end of the tool strip with the caption "Print."
ToolStripButton tsbPrint = new ToolStripButton("Print");
viewer1.Toolbar.ToolStrip.Items.Add(tsbPrint);
//Create a click event handler for the button.
tsbPrint.Click += new EventHandler(tsbPrint_Click);

6. Add the following code to the Form class below the Load event to display frmPrintDlg when a user clicks the
custom print button.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste BELOW the Form Load event.

'Call the custom dialog from the new button's click event.
Private Sub tsbPrint_Click(sender As Object, e As EventArgs)
 Me.CustomPrint()
End Sub

'Call the custom print dialog.
Private Sub CustomPrint()
 Dim _printForm As New frmPrintDlg()
 _printForm.ShowDialog(Me)
End Sub

To write the code in C#

C# code. Paste BELOW the Form Load event.

//Call the custom dialog from the new button's click event.
private void tsbPrint_Click(object sender, EventArgs e)
{
 this.CustomPrint();
}

//Call the custom print dialog.
private void CustomPrint()
{
 frmPrintDlg _printForm = new frmPrintDlg();
 _printForm.ShowDialog(this);
}

ActiveReports 14 140

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Press F5 to run the project and click on the print button of main viewer to view custom print dialog.

Customize the Touch Mode Toolbar

1. Double-click in the title bar of the Viewer form to create a Form Load event.
2. Add the following code to add a custom Zoom out button.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim zoomOutButton = viewer1.TouchModeToolbar.ToolStrip.Items(8)
zoomOutButton.Visible = true

To write the code in C#

C# code. Paste INSIDE the Form Load event.

var zoomOutButton = viewer1.TouchModeToolbar.ToolStrip.Items[8];
zoomOutButton.Visible = true;

Caution: Any customization done in mouse mode does not apply to the touch mode and vice versa.

Although this topic and the sample both demonstrate using section reports, customized viewers support page reports and
RDL reports as well. The only difference is in the way that you load reports. For more information, see Windows Forms
Viewer.

WebViewer (ASP.NET)

Professional Edition
With the Professional Edition license, you can use the WebViewer control to quickly display reports in any of the three
viewer types: HtmlViewer, RawHtml, or AcrobatReader.

Important:

Before using the WebViewer control, you must first Configure HTTPHandlers in IIS 8 and IIS 10.

Standard Edition
With the Standard Edition license, you can export reports to use on the Web or use Web Services to distribute reports or
data sources. For more information on Web exporting, please see the Custom Web Exporting (Std Edition) section.

In this section

Topic Content

Getting Started with the
WebViewer

Explore the ways that the WebViewer control can save you time.

ActiveReports 14 141

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Using the HTML Viewer Learn about the features available with the HTML viewer, including parameters, table
of contents, search, and the toolbar.

Using Javascript with the HTML
Viewer

Learn about how you can use HTML Viewer using Javascript.

Getting Started with the WebViewer
The WebViewer control that is licensed with the Professional Edition allows you to quickly display reports in Web
applications. Once you drop the control onto a Web Form, you can look in the Visual Studio Properties grid and select
the ViewerType ('ViewerType Property' in the on-line documentation) that you want to use.

The WebViewer control supports the following types:

HTMLViewer (default): Provides a scrollable view of a single page of the report at a time. Downloads only HTML
and javascript to the client browser. Not recommended for printable output. See the Using the HTML Viewer topic
for details.
RawHTML: Shows all pages in the report document as one continuous HTML page. Provides a static view of the
entire report document, and generally printable output, although under some circumstances pagination is not
preserved.
AcrobatReader: Returns output as a PDF document viewable in Acrobat Reader.
Client requirements: Adobe Acrobat Reader

In a WebViewer, an RDL report can be rendered in two modes - Paginated and Galley. Using galley mode, you can
view the contents of the RDL report in a single and scrollable page. You can set Galley mode through UI of the WebViewer
or through code by setting RenderMode property to Galley ('RenderMode Enumeration' in the on-line
documentation).

Note: The WebViewer and JSViewer are supported only in the Integrated pipeline mode. You will
get PlatformNotSupportedException on using these Viewers in Classic pipeline mode.

To use the WebViewer control

1. In VSIDE, create a new ASP.NET Web Forms Application.
2. To install nuget pakage for GrapeCity.ActiveReports.Web, go to Tools > Nuget Package Manager > Manage

Nuget Packages for Solution..., browse for the package and click Install.
3. In Solution Explorer, right-click the project and select Add > New Item.
4. Select WebForm and click Add.
5. Go to the Design tab of the newly added WebForm and drag and drop the WebViewer control to the WebForm

designer.

Note: if you get an error on adding the WebViewer control, you should install or upgrade the
Microsoft.CodeDom.Providers.DotNetCompilerPlatform NuGet package. See Troubleshooting for details.

To preview Code-Based Section Reports in WebViewer control

You need to update the Global.asax file as follows:

ActiveReports 14 142

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Global.asax.cs

public class Global : System.Web.HttpApplication
 {
 protected void Application_Start(object sender, EventArgs e)
 {
 this.UseReporting(settings =>
 {
 settings.UseFileStore(new DirectoryInfo(Server.MapPath("~")));
 settings.UseCompression = true;
 settings.UseCustomStore(GetReport);
 });
 }
 public object GetReport(string reportName = "SectionReport")
 {
 SectionReport1 rpt = new SectionReport1();
 return rpt;
 }
 }

Global.asax.vb

Public Class _Global
 Inherits System.Web.HttpApplication
 Protected Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Me.UseReporting(Sub(settings)
 settings.UseFileStore(New
DirectoryInfo(Server.MapPath("~")))
 settings.UseCompression = True
 settings.UseCustomStore(AddressOf GetReport)
 End Sub)
 End Sub
 Public Function GetReport(ByVal Optional reportName As String = "SectionReport") As
Object
 Dim rpt As SectionReport1 = New SectionReport1()
 Return rpt
 End Function
End Class

Using the HTML Viewer
HTML Viewer is the default viewer type of the WebViewer control, and provides a scrollable view of the report one page at
a time. It includes HTML representations of the toolbar as well as the sidebar that contains Parameters, Export and
Search panes.

HTML Viewer Properties

ActiveReports 14 143

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Description

BookmarkStyle Specify whether to use HTML bookmarks, or none.

CharacterSet Select from 15 character sets to use for the report.

IncludePageMargins Specify whether to keep page margins on reports in the generated HTML.

OutputType Specify whether to use DHTML or HTML for the output.

RemoveVerticalSpace Specify whether to keep white space, for example at the end of a page not filled with data before
a page break.

The HTML Viewer downloads only HTML and javascript to the client browser.

HTML Viewer Sidebar

Sidebar
Element

Name Description

Display
Sidebar

Displays the sidebar that includes the Search, Export, and Parameters panes.

Search Displays the Search pane.

Export Displays the Export pane where you can select an export format and options for the report
you are previewing.

Parameters Displays the Parameters pane. If a report does not have parameters, the
Parameters button not displayed.

HTML Viewer Toolbar

The HTML viewer toolbar offers various ways to navigate through reports.

Toolbar
Element

Name Description

 Go to
First/Last
page

Jumps to the first or last page of a report.

ActiveReports 14 144

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Go to
Previous/Next
page

Navigates through a report page by page.

Current page Displays the current page number and page total. Enter the page number to view a
specific page.

Refresh Refreshes the report.

History: Back
to Parent

Returns to the parent report in a drill-down page report or RDL report.

History: Go
Back

Navigates to a previous page in a parent report in a drill-down page report or RDL report.

History: Go
Forward

Navigates to a next page in a parent report in a drill-down page report or RDL report.

 Move Tool A move tool that you can use to navigate the report.

Zoom Out Decreases the magnification of your report.

Zoom mode Displays the current zoom percentage which can also be edited. Allows you to select from
the available zoom options - 50%, 100%, 150%, 200%, 300%, Fit to Page, and Fit to
Width.

Zoom In Increases the magnification of your report.

Toggle
Fullscreen

Switches to a Fullsreen mode.

Print Displays the Print screen to specify printing options.

Single Page
View

Shows one page at a time in the viewer.

Continious
View

Shows all preview pages one below the other.

Galley mode Provides a viewer mode which removes automatic page breaks from an RDL report and
displays data in a single scrollable page. This mode maintains page breaks you create in
the report.

HTML Viewer Parameters

The HTML viewer allows you to view reports with parameters. The Parameters pane shows up automatically. To show or
hide the Parameters pane in the sidebar, click the Toggle Sidebar button in the Toolbar.

In the Parameters pane, you are asked to enter a value by which to filter the data to display.

To filter the report data, enter a value or set of values and click Preview.

ActiveReports 14 145

Copyright © 2020 GrapeCity, Inc. All rights reserved.

If a report does not have parameters, the Parameters pane of the sidebar is not displayed.

HTML Viewer Export

To display the Export pane, click Export in the sidebar. The Export pane lets you enter parameters for exporting a report
that you are previewing. The available format options are Excel 2003, Excel, Word 2003, Word, PDF, CSV, JSON, XML,
Tagged Image, and Web Archive.

After you set all necessary export properties, click Export.

HTML Viewer Search

ActiveReports 14 146

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Search pane lets you enter a word or phrase for which to search within the report. Under Use these additional
criteria, you may optionally select additional criteria. When you click Search, any results appear in the Find results list.
Click an item in the list to jump to the item you selected and highlight it.

Using Javascript with the HTML Viewer
To use JavaScript with the WebViewer, initialize the WebViewer's view model using the clientId returned from the
WebViewer. Once you initialize the view model, you can access its API methods and properties to modify the WebViewer.
You can also use the same view model to access the API for the side bar search panel and the toolbar.

Note: You can get the ClientId from the WebViewer control. By default, it is WebViewer1.

ViewerViewModel

To work with the API, first initialize the viewer's view model using the GetWebViewer(clientId) function. The clientId is
the WebViewer control's name, by default, WebViewer1. If there is no ViewerViewModel with the requested clientId, an
exception occurs.

Use code like the following to initialize the ViewerViewModel:

var viewModel = GetWebViewer(clientId);

JavaScript Viewer
The JSViewer is a Javascript component that you can easily customize and use in web applications to preview all types of
reports - page, rdl, and section reports. The JSViewer works on modern web application frameworks - ASP.NET MVC,
ASP.NET Core MVC, and major JavaScript Frameworks such as Angular, React, and Vue.js.

A responsive visualization allows the JSViewer to automatically adjust to the screen size, so you can use it on all desktop,
mobile and touch devices and modern browsers.

JSViewer UI

JSViewer Sidebar

ActiveReports 14 147

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sidebar
Element

Name Description

 Display
Sidebar

Displays the sidebar that includes the Search, Export, and Parameters panes.

 Search Displays the Search pane.

 Export Displays the Export pane where you can select an export format and options for the report you
are previewing.

 Parameters Displays the Parameters pane. If a report does not have parameters, the Parameters button is not
displayed.

 Table of
Contents

Displays the Table of Contents pane. If a report does not have the Label property or Document
map label set, the Table of Contents or Documents map pane does not appear.

JSViewer Top Toolbar

Toolbar
Element

Name Description

 Go to
First/Last
page

Jumps to the first or last page of a report.

 Go to
Previous/Next
page

Navigates through a report page by page.

Current page Displays the current page number and page total. Enter the page number to view a
specific page.

Refresh Refreshes the report.

History: Back
to Parent

Returns to the parent report in a drill-down page report or RDL report.

History: Go
Back

Navigates to a previous page in a parent report in a drill-down page report or RDL report.

History: Go
Forward

Navigates to a next page in a parent report in a drill-down page report or RDL report.

 Move Tool A move tool that you can use to navigate the report.

Zoom Out Decreases the magnification of your report.

Zoom mode Displays the current zoom percentage which can also be edited. Allows you to select from
the available zoom options - 50%, 100%, 150%, 200%, 300%, Fit to Page, and Fit to

ActiveReports 14 148

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Width.

Zoom In Increases the magnification of your report.

Toggle
Fullscreen

Switches to a Fullsreen mode.

Print Displays the Print screen to specify printing options. See Print in JSViewer topic for more
information on printing.

Single Page
View

Shows one page at a time in the viewer.

Continious
View

Shows all preview pages one below the other.

Galley mode Provides a viewer mode which removes automatic page breaks from an RDL report and
displays data in a single scrollable page. This mode maintains page breaks you create in
the report.

JSViewer Search

The Search pane lets you enter a word or phrase for which to search within the report. Under Use these additional
criteria, you may optionally select additional criteria. When you click Search, any results appear in the Find results list.
Click an item in the list to jump to the item you selected and highlight it.

JSViewer Export

To display the Export pane, click Export in the sidebar. The Export pane lets you enter parameters for exporting a report
that you are previewing. The available format options are Excel 2003, Excel, Word 2003, Word, PDF, CSV, JSON, XML,
Tagged Image, and Web Archive.

ActiveReports 14 149

Copyright © 2020 GrapeCity, Inc. All rights reserved.

After you set all necessary export properties, click Export.

JSViewer Parameters Pane

The Parameters pane appears when you click the Parameters button in the sidebar. In the Parameters pane, enter a value
to filter the data to be displayed and click Preview.

If a report does not have parameters, the Parameters pane is disabled.

JSViewer Table of Contents Pane

ActiveReports 14 150

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Table of Contents pane appears when you click the Table of Contents button in the sidebar. Click any TOC item to
navigate to the corresponding section of the report in the Viewer.

Note that the Table of Contents is only available for reports with Bookmarks. The Table of Contents displays each value for
the text box, group, or subreport that you bookmark, and you can click them to navigate to the corresponding section of
the report in the Viewer.

JSViewer API

Initialization Options
The following options can be set during initialization or at run time while working with the JSViewer.

action

Description: The callback that is invoked before the JSViewer opens the hyperlink, bookmark link, drill down report or
toggles the report control visibility.

Type: function(actionType, actionParams)

Example:

action: (actionType, actionParams) => console.log('Action type: ' + actionType + ';
Action parameters: ' + actionParams)

availableExports

Description: The array of export types available via Export functionality of JSViewer. By default, PDF, Excel, Word, JSON,
XML, CSV, and Image exports are available.

Type: Array

Example:

availableExports: ['Xml', 'Pdf']

displayMode

Description: Set up single page or continuous page.

ActiveReports 14 151

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Type: String

Accepted Value: 'single', 'continuous'

Example:

displayMode: 'Continuous'

documentLoaded

Description: The callback that is invoked when a document is loaded entirely on the server.

Type: function()

Example:

documentLoaded: () => console.log('The document is loaded entirely on the server')

Returns: Void

element

Description: JQuery selector that specifies the element that hosts the JSViewer control.

Type: String

Example:

element: '#viewerContainer'

error

Description: The callback that is invoked when an error occurs in the process of displaying the report. The default error
panel does not appear if the callback returns true. The error parameter is an object that has a message property which
allows the users to customize the error message.

Type: function(error)

Example: To hide the default error panel:

error: (error) => {
 if(error.message) {
 // show error message.
 alert("Internal error! Please ask administrator.");
 // do not show default error message.
 }
}

locale

Description: Specifies predefined locale used for displaying the viewer. If locale is not specified explicitly here, the locale
corresponding to the browser preferences is used. Localization can be done in three languages:

Type: String

Accepted Values: 'en-US' (for English), 'ja-JP' (for Japanese), and 'zh-CN' (for Chinese)

Example:

locale: 'ja-JP'

ActiveReports 14 152

Copyright © 2020 GrapeCity, Inc. All rights reserved.

localeData

Description: The JSON containing the localization strings. All strings are not necessary - missing values are displayed
using EN localization data. It is like localeUri, but instead of the path to localization data, localization data itself via
JSON object is specified.

Type: JSON

Example:

localeData: JSON.parse(`{
 "export": {
 "boolTextFalse": "いいえ",
 "boolTextTrue": "はい"
 },
 "viewer": {
 "toolbar": {
 "refresh": "更新"
 }
 }
 }`
),

localeUri

Description: The url of the file containing the localization strings (custom-locale.json file). Not all strings are necessary -
missing values are displayed using EN localization data.

Type: String

Example:

localeUri: './custom-locale.json'

Content of custom-locale.json:

{
 "export": {
 "boolTextFalse": "いいえ",
 "boolTextTrue": "はい",
 ...
 },
 "exportcsv": {
 "friendlyName": "-CSV-",
 "settings": {
 "ColumnsDelimiter": {
 "label": "列の区切り",
 "category": "その他"
 },
 ...
 },
 ...
 },
 ...
}

ActiveReports 14 153

Copyright © 2020 GrapeCity, Inc. All rights reserved.

renderMode

Description: Set up initial render mode: 'Paginated' or 'Galley'. Default value is 'Paginated'.

Type: String

Accepted Values: 'Galley', 'Paginated'

Example:

renderMode: 'Galley'

reportID

Description: The id of the report to be shown by the JSViewer.

Type: String

Example:

reportID: 'AnnualReport.rdlx'

reportLoaded

Description: The callback that is invoked when the JSViewer obtains the information about the requested report. The
reportInfo object is passed in the callback including the TOC info, Parameters info and the link to the rendered report
result.

Type: function(reportInfo)

Example:

reportLoaded: (reportInfo) => console.log('The report ' + reportInfo.name + ' was
successfully loaded!')

reportParameters

Description: The array of the {name, value} pairs that describe the parameters values used to run the report.

Type: Array

Example:

reportParameters: [{ name: 'ReportParameter1', values: ['1']}]

reportService

Description: Set up the settings to connect the Web API.

Type: Object that has the following optional properties:

url: The url to connect the Web API.
Type: String
Example:

use prefix in url:
url: '/api/reporting' // default value
use full URL:
url: 'http:example.com/api/reporting'

securityToken: The security key required to access the Web API.

ActiveReports 14 154

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Type: String
Example:
securityToken: 'security_token'

onRequest: Callback before any request. Takes the init argument that allows you to add an option before fetch
request, for example, to change the security token.
Type: function
Example:
onRequest: (init) => init.headers.Authorization = 'security_token'

The init argument is an object that takes the following options:

credentials: Set request's credentials.
headers: Set request's headers.
signal: Set request's signal.

Please see https://fetch.spec.whatwg.org/#requestinit for more information.

Example:
reportService: {
 url: 'http://example.com/api/reporting', //web service url
 securityToken: 'security_token', //provide securityToken
 onRequest: (init) => {
 init.credentials = "include",
 init.headers = { "Cache-Control": "no-cache, no-store, must-revalidate",
"Expires": "0", "Pragma": "no-cache", "Accept": "application/json" },
 init.signal = new AbortController().signal
 }
 }

Public API Methods and Properties
Methods

backtoParent

Description: Makes the viewer to display the parent report of the drill-down report.

Syntax: backToParent()Void

Example:

viewer.backToParent()

Return Value: Void

create

Description: Creates a new instance of the Viewer and renders it in the specified DOM element.

Syntax: create()Void

Parameters:

params

ActiveReports 14 155

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://fetch.spec.whatwg.org/#requestinit

Example:

const viewer = GrapeCity.ActiveReports.JSViewer.create({
 element: '#root',
 reportID: 'AnnualReport.rdlx',
 availableExports: ['Xml', 'Pdf'],
 // other properties
});

Return Value: Void

destroy

Description: Removes the viewer content from the element.

Syntax: destroy()Void

Example:

viewer.destroy()

Return Value: Void

export

Description: Exports the currently displayed report.

Syntax: export(exportType,callback,saveAsDialog,settings)Void

Parameters:

exportType: Specifies export format.
settings: The export settings are available for RenderingExtensions.

Note: In section reports, the export settings are not enabled when exporting files using the rendering
extensions. In Page report and RDL report, the export settings are not enabled when exporting files to
PDF using the export filter.

Example:

viewer.export('Pdf', downloadReport, true, { Title: '1997 Annual Report' })

Return Value: Void

getTOC

Description: Obtains the report TOC.

Syntax: viewer.getToc()

Example:

console.log(viewer.getToc())

Return Value: any

goToPage

ActiveReports 14 156

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Description: Makes the viewer to display the specific page.

Syntax: goToPage(number, offset, callback)Void

Parameters:

number: The number of pages to go to.

Example:

viewer.goToPage(1)

Return Value: Void

openReport

Description: Opens a report.

Syntax: openReport(reportID: string, reportParameters?: Array<Parameter>): void

Parameters:

reportID: The id of the report.

Example:

viewer.openReport('Invoice.rdlx')

Return Value: Void

print

Description: Prints the currently displayed report if any.

Syntax: print()Void

Example:

viewer.print()

Return Value: Void

refresh

Description: Refreshes the report preview.

Syntax: option(name,[value])Object

Example:

viewer.refresh()

Return Value: Void

version

Description: A string that represents the current version of the JSViewer.

Syntax: GrapeCity.ActiveReports.JSViewer.version

Example:

ActiveReports 14 157

Copyright © 2020 GrapeCity, Inc. All rights reserved.

console.log(GrapeCity.ActiveReports.JSViewer.version)

Return Value: string

toolbar.addItem

Description: Adds a custom toolbar item (button) to the toolbar's end.

Type: item: ToolbarItem

Example:

ToolbarItem = {
 key: string;
 iconCssClass?: string;
 icon?: Icon;
 text?: string;
 title?: string;
 checked?: boolean;
 enabled?: boolean;
 action?: (toolbarItem) => function;
 onUpdate?: (args: ChangedEventArgs, toolbarItem) => function;
}

Icon = FontIcon | SVGIcon;

SVGIcon = {
 type: 'svg';
 content: any; //(string | JSX.element)
 size?: Size;
 rotate?: '90' | '180' | '270';
};

FontIcon = {
 type: 'font';
 iconCssClass: string;
 fontSize?: string;
}

var pdfExportButton = {
 key: '$pdfExportButtonKey',
 iconCssClass: 'mdi mdi-file-pdf',
 enabled: true,
 action: function(item) {
 console.log('Export to PDF function works here');
 },
 onUpdate: function(arg, item) {
 console.log('Something in viewer was updated, check/update button state here');
 }
};

//OR button with svg as icon
var icon = `

`;

ActiveReports 14 158

Copyright © 2020 GrapeCity, Inc. All rights reserved.

var svgPdfExportButton = {
 key: '$pdfExportButtonKey',
 icon: {type: 'svg', content: icon},
 enabled: true,
 action: function(item) {
 console.log('Export to PDF function works here');
 },
 onUpdate: function(arg, item) {
 console.log('Something in viewer was updated, check/update button state here');
 }
}

viewer.toolbar.addItem(pdfExportButton);
//or
viewer.toolbar.addItem(svgPdfExportButton);

toolbar.updateItem

Description: Updates the layout/function/state for a specified single item.

Type: String: key, ToolbarItem item

Example:

var xlsxExportButton = {
 key: '$xlsxExportButtonKey',
 iconCssClass: 'mdi mdi-file-pdf',
 enabled: true,
 action: function(item) { console.log('Export to XLSX function works here'); },
 onUpdate: function(arg, item) { console.log('Something in viewer was updated,
check/update button state here'); }
};
viewer.toolbar.updateItem('$pdfExportButtonKey', xlsxExportButton); //from now button
will behave as described in new properties

toolbar.removeItem

Description: Removes a custom toolbar item from the toolbar. To remove the default one, you should use
the updateLayout function.

Type: String: key

Example:

viewer.toolbar.removeItem('$pdfExportButtonKey');

toggleSidebar

Description: Toggles the sidebar panel (hides or shows it). If no parameter is passed, works as toggle.

Type: boolean

Example:

viewer.toggleSidebar();//hide sidebar
viewer.toggleSidebar(true);//show sidebar

Properties

ActiveReports 14 159

Copyright © 2020 GrapeCity, Inc. All rights reserved.

currentPage

Description: Gets the currently displayed page number.

Syntax: viewer.currentPage

Example:

console.log(viewer.currentPage())

Return Value: An integer representing currently displayed page number.

pageCount

Description: Gets the page count of the currently displayed report.

Syntax: viewer.pageCount

Example:

console.log(viewer.pageCount())

Return Value: An integer representing page count.

Configure JSViewer
The ActiveReports 14 provides JSViewer MVC and JSViewer MVC Core templates in Visual Studio. Use the template to obtain a
pre-configured application.

Note: JSViewer Core templates are available only in Visual Studio 2019. Visual Studio 2013, Visual Studio 2015, and Visual
Studio 2017 do not support the JSViewer Core templates.

Prerequisites

ActiveReports 14 must be installed.
Node.js must be installed.

The following steps describe how to use a JSViewer MVC template in Visual Studio 2019:

1. Open Microsoft Visual Studio 2019 and create a new ActiveReports 14 JSViewer MVC Application project.

ActiveReports 14 160

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. On 'Configure your new project' page, fill-in the details such as Project name - JSViewerMVCApplication, Framework -
.NET Framework 4.7.2, and select Create.

ActiveReports 14 161

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The ActiveReports 14 JSViewer template automatically does the following:
adds NuGet packages necessary for viewer
creates RDL report in Reports folder.
configures index.html
adds script and CSS files

You can also download and install the JSViewer-related files and folders from NPM using the following command in the
command line:

npm install @grapecity/ar-viewer

The viewer files/folders are downloaded in your current directory: .\node_modules\@grapecity\ar-viewer\dist

3. Copy the report you want to preview in the 'Reports' folder.
4. Open index.html and provide the name of the report in viewer.openReport() method as:

viewer.openReport("Reportname.rdlx");

5. Modify the Startup.cs file to include the path of the report folder.

Startup.cs

 public class Startup
 {
 public static string EmbeddedReportsPrefix = "JSViewerMVCApplication2.Reports";
 public void Configuration(IAppBuilder app)

ActiveReports 14 162

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.npmjs.com/package/@grapecity/ar-viewer

 {
 app.UseErrorPage();
 app.UseReporting(settings =>
 {
 settings.UseEmbeddedTemplates(EmbeddedReportsPrefix,
Assembly.GetAssembly(GetType()));
 settings.UseCompression = true;
 settings.UseFileStore(new System.IO.DirectoryInfo("path to the Reports
folder"));
 });
 RouteTable.Routes.RouteExistingFiles = true;
 }
 }

6. Build and run the application.

Previewing Reports in JSViewer
The JSViewer when used in MVC and MVC Core applications, allows you to preview all the following file formats:

.rdl

.rdlx

.rpx

ActiveReports 14 163

Copyright © 2020 GrapeCity, Inc. All rights reserved.

.rdlx-master

If you want to view Code-Based Section reports (.cs or .vb), or RDF files (.rdf) you need to follow a little different approach
as elaborated in following sections.

Note:

Previewing Section reports and RDF files is not supported in Core applications.
The WebViewer and JSViewer are supported only in the Integrated pipeline mode. You will get
PlatformNotSupportedException on using these Viewers in Classic pipeline mode.

To preview Code-Based Section reports in JSViewer

To view Code-Based Section reports (file format .cs or .vb), you need to do few modifications in your code provided in
Configure JSViewer topic as follows:

1. Modify the startup.cs file as:

Startup.cs

public class Startup
 {
 public static string EmbeddedReportsPrefix = "'JSViewerMVCApplication1.Reports";
 public void Configuration(IAppBuilder app)
 {
 app.UseErrorPage();
 app.UseReporting(settings =>
 {
 settings.UseEmbeddedTemplates(EmbeddedReportsPrefix,
Assembly.GetAssembly(GetType()));
 settings.UseCompression = true;
 settings.UseCustomStore(GetReport);
 });
 RouteTable.Routes.RouteExistingFiles = true;
 }
 public object GetReport(string reportName = "SectionReport")
 {
 SectionReport1 rpt = new SectionReport1();
 return rpt;
 }
 }

Startup.vb

Public Class Startup
 Public Sub Configuration(ByVal app As IAppBuilder)

 app.UseReporting(Function(settings)
 settings.UseCompression = True
 settings.UseCustomStore(AddressOf GetReport)
 Return settings

ActiveReports 14 164

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 End Function)

 End Sub

 Private Function GetReport() As Object
 Dim rpt As New SectionReport1()
 Return rpt
 End Function

 2. Update index.html:

index.html

<html lang="en">
<head>
 <meta charset="utf-8">
 <link rel='shortcut icon' type='image/x-icon' href='favicon.ico' />
 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <title>JSViewer</title>
 <link href="jsViewer.min.css" rel="stylesheet">
 <link href="index.css" rel="stylesheet">
</head>
<body onload="loadViewer()">
 <div style="width: 100%; overflow-x: hidden">
 <div style="float:right;width:100%" id="viewerContainer">
 </div>
 </div>
 <script type="text/javascript" src="jsViewer.min.js"></script>
 <script type="text/javascript">
 let viewer;
 function loadViewer() {
 viewer = GrapeCity.ActiveReports.JSViewer.create({
 element: '#viewerContainer',
 reportID: 'JSViewerMVCApplication1.Reports.SectionReport1'
 });
 }
 </script>
</body>
</html>

To preview RDF files in JSViewer

To view RDF files (file format .rdf), you need to do few modifications in your code provided in Configure JSViewer topic as
follows:

1. Update HomeController.cs to include 'rdf' as valid extension:

HomeController.cs

ActiveReports 14 165

Copyright © 2020 GrapeCity, Inc. All rights reserved.

string[] validExtensions = { ".rdl", ".rdlx", ".rdlx-master", ".rpx", ".rdf" };

HomeController.vb

Dim validExtensions = {".rdl", ".rdlx", ".rdlx-master", ".rpx", ".rdf"}

 2. Update index.html to include report name in viewer.openReport() method:

index.html

<html lang="en">
<head>
 <meta charset="utf-8">
 <link rel='shortcut icon' type='image/x-icon' href='favicon.ico' />
 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <title>JSViewer</title>
 <link href="jsViewer.min.css" rel="stylesheet">
 <link href="index.css" rel="stylesheet">
</head>
<body onload="loadViewer()">
 <div style="width: 100%; overflow-x: hidden">
 <div style="float:right;width:100%" id="viewerContainer">
 </div>
 </div>
 <script type="text/javascript" src="jsViewer.min.js"></script>
 <script type="text/javascript">
 let viewer;
 function loadViewer() {
 viewer = GrapeCity.ActiveReports.JSViewer.create({
 element: '#viewerContainer'
 });
 viewer.openReport("RdfReport.rdf");
 }
 </script>
</body>
</html>

WPF Viewer
ActiveReports provides the WPF Viewer that you can use to load and view your reports. This viewer contains a toolbar and
a sidebar with Thumbnails, Search results, Document map and Parameters panes.

The WPF Viewer has a limitation in the continuous mode. In this mode, a report is always rendered on top of the WPF
Viewer because the WinForms content always appears on top of the WPF content.

Warning: The TargetInvocationException occurs on running a WPF browser application in Partial Trust. Refer to
Running WPF Viewer in Partial Trust section given below to run your WPF Browser Application in Partial Trust. To

ActiveReports 14 166

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ensure that you are using Full Trust:

1. From the Visual Studio Project menu, select YourProject Properties.
2. On the Security tab, under Enable ClickOnce security settings, select the This is a full trust application

option.

WPF Viewer Toolbar

The following table lists the actions you can perform through the WPF Viewer toolbar.

Toolbar Element Name Description

Toggle Sidebar Displays the sidebar that includes the Thumbnails,
Parameters, Document map and Search results
panes.

Print Displays the Print dialog where you can specify the
printing options.

Galley mode Provides a viewer mode which removes automatic
page breaks from an RDL report and displays the
data in a single scrollable page. This mode
maintains page breaks you create in the report.1

Find Displays the Find dialog to find any text in the
report.

Zoom out Decreases the magnification of your report.

Zoom in Increases the magnification of your report.

Current zoom Displays the current zoom percentage which can
also be edited.

Fit page width Fits the width of the page according to viewer
dimensions.

Fit whole page Fits the whole page within the current viewer
dimensions.

First page Takes you to the first page of the report. This
button is enabled when a page other than the first
page is open.

Previous page Takes you to the page prior to the current page.
This button is enabled when a page other than the
first page is open.

Current page Opens a specific page in the report. To view a
specific page, type the page number and press the
Enter key.

Next page Takes you to the page following the current page.
This button is disabled on reaching the last page of

ActiveReports 14 167

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the report.

Last page Takes you to the last page of the report. This
button is disabled on reaching the last page of the
report.

Backward Takes you to the last viewed page. This button is
enabled when you move to any page from the
initial report page. Clicking this button for the first
time also enables the Forward button.

Forward Takes you to last viewed page before you clicked
the Backward button. This button is enabled once
you click the Backward button.

Back to parent
report

Returns you to the parent report in a drillthrough
report.

Refresh Refreshes the report.

Cancel Cancels rendering of the report.

1To view drillthrough reports in WPF Viewer, you need to turn off the Galley mode.

WPF Viewer Sidebar

The WPF Viewer sidebar appears on the left of the Viewer control when you click the Toggle sidebar button in the
toolbar. By default, this sidebar shows the Thumbnails and Search Results panes. The additional Document map and
Parameters also appear in this sidebar. You can toggle between any of the viewer panes by clicking the buttons for each
pane at the bottom of the sidebar.

Thumbnails pane

The Thumbnails pane appears by default in the sidebar when you click the Toggle sidebar button in the toolbar.

This pane is composed of a thumbnail view of all the pages in a report. Click any thumbnail to navigate directly to the
selected report page. You can also modify the size of the thumbnail when you click (+) or (-) button to zoom in and zoom
out.

Search results pane

The Search pane is the other default pane besides Thumbnails that appears in the sidebar when you click the Toggle

ActiveReports 14 168

Copyright © 2020 GrapeCity, Inc. All rights reserved.

sidebar button. This pane lets you enter a word or phrase from which to search within the report.

To search in a report:

Enter the word or phrase in the search field.
Under Use these additional criteria, you may optionally choose to search for the whole word or match the case of
the search string while searching in the report.
Click the Search button to see the results appear in the Find results list.
Click an item in the list to jump to that item in the report and highlight it.

To start a new search or clear the current search results, click the Clear button under the Find results list.

Document map pane

The Documents map pane sis enabled for reports where the Label property or the Document map label is set. This pane
displays each value for the text box, group, or sub report that you label, and you can click them to navigate to the
corresponding area of the report in the Viewer.

If a report does not have the Label property or Document map label set, the Documents map panes does not appear in
the sidebar.

Parameters pane

The WPF Viewer allows you to view reports with parameters. In the toolbar, click the Toggle sidebar button to open the
WPF Viewer sidebar and if your report contains parameters, the Parameters pane shows up automatically.

ActiveReports 14 169

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the Parameters pane, you are prompted to enter a value by which to filter the data to display.
2. Enter a value or set of values and click View report, to filter the report data and display the report.

If a report does not have parameters, the Parameters pane does not appear in the sidebar.

Additional Features
Following is an introduction to the additional capabilities of the Viewer to guide you on using it effectively.

Keyboard Shortcuts

The following shortcuts are available on the WPF Viewer.

Keyboard Shortcut Action

Ctrl + F Shows the search pane.

Ctrl + P Shows the print dialog.

Esc Closes the print dialog.

Page Down Moves to the next page.

Page Up Moves to the previous page.

Ctrl + T Shows or hides the table of contents.

Ctrl + Home Moves to the first page.

Ctrl + End Moves to the last page.

Ctrl + Right Navigates forward.

Ctrl + Left Navigates backward.

Ctrl + - Zooms out.

Ctrl + + Zooms in.

Left, Right, Up, Down Moves the visible area of the page in the corresponding
direction.

Ctrl + 0 (zero) Sets the zoom level to 100%.

Ctrl + rotate mouse wheel Changes the zoom level up or down.

ActiveReports 14 170

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Ctrl + G Moves the focus to current page toolbar option.

F5 Refreshes the report.

Advance Printing Options

You can set the PrintingSettings ('PrintingSettings Property' in the on-line documentation) property of the Viewer to
directly print without displaying a dialog or to switch from a ActiveReports print dialog to a .NET Framework standard
print dialog (System.Windows.Forms.PrintDialog) on clicking the Print button on the Viewer toolbar. You can set the
PrintingSettings property of the Viewer control from the Properties window.

PrintingSettings property provides the following options:

PrintingSettings Options Description

ShowPrintDialog Displays a dialog in which the user can set the printer options before printing.

ShowPrintProgressDialog Displays a print progress dialog, in which the user can cancel the printing job.

UsePrintingThread Specifies whether printing should be performed for individual threads or not.

UseStandardDialog Specifies whether to use the .NET Framework standard print dialog
(System.Windows.Forms.PrintDialog) while printing the document (section or page).

Running WPF Viewer in Partial Trust
You can run a WPF Viewer Browser Application in Partial Trust by customizing the permission set in the app.mainfest file.
While customizing the permission set, some of the permissions are to be set explicitly like MediaPermission, UIPermission,
etc. Follow these steps to learn how to run a WPF Viewer application in partial trust.

Note: These steps assume that you have already created a WPF Browser Application that contains the WPF Viewer
control.

1. In the Solution Explorer, right-click your WPF Browser Application and select Properties.
2. On the properties page that opens, go to the Security tab.
3. On the Security tab, set Zone your application will be installed from to Custom and click the Edit Permissions

XML button. This opens the app.mainfest file.
4. In the app.manifest file, replace the existing xml code inside the <applicationRequestMinimum>

</applicationRequestMinimum> tags with the following code.

Code

XML

<defaultAssemblyRequest permissionSetReference="Custom" />
<PermissionSet class="System.Security.PermissionSet" version="1" ID="Custom"
SameSite="site">
 <IPermission class="System.Data.SqlClient.SqlClientPermission, System.Data,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />

ActiveReports 14 171

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 <IPermission class="System.Data.OleDb.OleDbPermission, System.Data,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />
 <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />
 <IPermission class="System.Security.Permissions.MediaPermission, WindowsBase,
Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" version="1"
Audio="SafeAudio" Video="SafeVideo" Image="SafeImage" />
 <IPermission class="System.Security.Permissions.UIPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />
 <IPermission class="System.Security.Permissions.EnvironmentPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />
 <IPermission class="System.Security.Permissions.FileIOPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />
 <IPermission class="System.Security.Permissions.ReflectionPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />>
 <IPermission class="System.Security.Permissions.StrongNameIdentityPermission, ,
mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
version="1" Unrestricted="true" />
</PermissionSet>

5. Press F5 to run your WPF Browser Application.

Note: The Partial Trust Limitations are applicable to the WPF viewer running in Partial Trust. For more information,
see Medium Trust Support.

View Reports in WPF Viewer
The ActiveReports WPF Viewer is a custom control that allows to easily view section, RDL and page report layouts.

This walkthrough is split up into the following activities.

Creating a WPF Application project in Visual Studio
Adding the ActiveReports WPF Viewer control to the xaml page
Loading a report to the ActiveReports WPF Viewer
Previewing a report
Customizing the ActiveReports WPF Viewer

When you have completed these steps, you will have the ActiveReports WPF Viewer displaying a report that looks similar to the
following.

ActiveReports 14 172

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To create a WPF application in Visual Studio

1. On the Visual Studio File menu, click New > Project.
2. In the New Project dialog that appears, select WPF Application in the list of templates.
3. Specify the name and location of the project and then сlick the OK button.
4. In the Visual Studio Solution Explorer, right-click YourProject and select Add, then New Item.
5. In the Add New Item dialog that appears, select the ActiveReports 14 Page Report and create the rptSingleLayout report

as described in the Single Layout Reports walkthrough.

To add the WPF Viewer control

1. In Solution Explorer, open MainWindow.xaml.
2. From the Toolbox ActiveReports 14 tab, drag the Viewer control and drop it on the design view of MainWindow.xaml.

Note: Dragging the Viewer control to the design view of MainWindow.xaml automatically adds the corresponding
reference to the licenses.licx file.

3. In the Properties window, set the properties of the Viewer control as follows.

Property Name Property Value

HorizontalAlignment Stretch

VerticalAlignment Stretch

Margin 0

4. In the Properties window, rename the Viewer control to viewer1.

To load a report to the WPF Viewer

1. In the Solution Explorer, select the rptSingleLayout report you have created.

ActiveReports 14 173

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the Properties window, set Copy to Output Directory to Copy Always.

Note: If Page/RDL report is selected from dropdown of Source property (containing relative path), 'Copy to Output
Directory' for selected report should be set as 'Copy always/Copy if newer' otherwise error "Could not find file ... "
appears on loading WPF Viewer.

Caution: In WPF Viewer control, previewing code-based Section reports using Source ('Source Property' in the on-
line documentation) and SourceFormat ('SourceFormat Property' in the on-line documentation) properties is not
supported.

3. On MainWindow.xaml, with the viewer selected, go to the Properties window and double click the Loaded event.
4. In the MainWindow code view that appears, add code like the following to the viewer1_loaded event to bind the report to

the viewer. This code shows an .rdlx report being loaded, but you can use an .rpx report as well.

Visual Basic.NET code. Paste INSIDE the viewer1_Loaded event in MainWindow.xaml.vb.

Viewer1.LoadDocument("rptSingleLayout.rdlx")

C# code. Paste INSIDE the viewer1_Loaded event in MainWindow.xaml.cs.

viewer1.LoadDocument("rptSingleLayout.rdlx");

Note:

Refer to the LoadDocument ('LoadDocument Method' in the on-line documentation) method to see other ways to
load a report in WPF Viewer.
We can set report for WPFViewer directly on XAML file and load the report in WPF Viewer using Source ('Source
Property' in the on-line documentation) and SourceFormat ('SourceFormat Property' in the on-line
documentation) properties.
To avoid evaluation banners appearing at run time, license your ActiveReports WPF Application project. You can find
information on licensing in License Your ActiveReports.

To view the report

Press F5 to run the project. The WPF Viewer displaying a report appears.

To customize the WPF Viewer

The ActiveReports WPF Viewer is a customizable control. You can easily change the look of the WPF Viewer and its elements, such
as the error panel, search panel, sidebar and toolbar by modifying properties in the default WPF Viewer template
(DefaultWPFiewerTemplates.xaml).

To add the customization template to the WPF project

1. Open your WPF project.

ActiveReports 14 174

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In Solution Explorer, select the YourProjectName node.
3. On the Visual Studio Project menu, click Add Existing Item.
4. In the dialog that appears, locate and select DefaultWPFViewerTemplates.xaml and click OK. You can find

DefaultWPFViewerTemplates.xaml at [systemdrive]\Program Files\GrapeCity\ActiveReports 14\Deployment\WPF\Templates
folder (on a 64-bit Windows operating system, this file is located in [systemdrive]\Program Files
(x86)\GrapeCity\ActiveReports 14\Deployment\WPF\Templates).

5. On MainWindow.xaml before the opening <Grid> tag, add the following code.

Paste to the XAML view of MainWindow.xaml before the opening <Grid> tag

<Window.Resources>
<ResourceDictionary Source="DefaultWPFViewerTemplates.xaml" />
</Window.Resources>

To customize the WPF Viewer sidebar

1. In Solution Explorer, double-click DefaultWPFViewerTemplates.xaml.
2. In the file that opens, search for "thumbnails tab".
3. In the GroupBox Header property of <!-- thumbnails tab -->, remove "{Binding Source.ThumbnailsPane.Text}" and type

"THUMBNAILS".
4. Search for "TabControl x:Name="Sidebar".
5. Add Background="Yellow" after TabControl x:Name="Sidebar".
6. Press F5 to see the customized viewer sidebar.

To add a customized button to the WPF Viewer toolbar

1. In Solution Explorer, select the YourProjectName node.
2. On the Visual Studio Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select Class, rename it to MyCommand and click Add.
4. In the MyCommand.cs/vb that opens, add the following code to implement a command.

To write the code in Visual Basic.NET

Visual Basic.NET code. Add to MyCommand.vb

Implements ICommand
Public Function CanExecute(ByVal parameter As Object) As Boolean Implements
System.Windows.Input.ICommand.CanExecute
 Return True
End Function

Public Event CanExecuteChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Implements System.Windows.Input.ICommand.CanExecuteChanged

Public Sub Execute(ByVal parameter As Object) Implements
System.Windows.Input.ICommand.Execute
 MessageBox.Show("GrapeCity is the world's largest component vendor.", "About Us",
MessageBoxButton.OK)
End Sub

To write the code in C#

C# code. Add after the statement using System.Text;

using System.Windows.Input;

ActiveReports 14 175

Copyright © 2020 GrapeCity, Inc. All rights reserved.

using System.Windows;

C# code. Add to MyCommand.cs

public class MyCommand : ICommand
 {
 public bool CanExecute(object parameter)
 {
 return true;
 }

 public void Execute(object parameter)
 {
 MessageBox.Show("GrapeCity is the world's largest component vendor.", "About
Us", MessageBoxButton.OK);
 }

 public event EventHandler CanExecuteChanged;
 }

5. In Solution Explorer, double-click DefaultWpfViewerTemplates.xaml.
6. In the file that opens, add the following code.

XML code. Add to DefaultWpfViewerTemplates.xaml

<ResourceDictionary>
 ...
xmlns:YourProjectName="clr-namespace:YourProjectName">
<YourProjectName:MyCommand x:Key="MyCommand" />
...
</ResourceDictionary>

7. In the same file, add the following code to add a button.

XML code. Add to DefaultWpfViewerTemplates.xaml before the closing Toolbar tag

<Button Command="{StaticResource MyCommand}" Content="About Us" />

ActiveReports 14 176

Copyright © 2020 GrapeCity, Inc. All rights reserved.

8. Press F5 to see the new customized button About Us in the Viewer toolbar.

To remove the Refresh button from the WPF Viewer toolbar

1. In Solution Explorer, double-click DefaultWpfViewerTemplates.xaml.
2. In the file that opens, search for "<!--Refresh btn-->".
3. Replace the existing content in Visiblity="..." with the following.

XML code. Add to DefaultWpfViewerTemplates.xaml

<Button Command=... Visibility="Collapsed">

Medium Trust Support
All features of ActiveReports are available without restrictions in a Full trust environment. You can also use
ActiveReports under Medium trust, but with limitations on some of the features.

Caution: Medium trust does not adequately protect your application and should not be used. For more information
see MSDN link.

Note:

Assemblies placed in the Global Assembly Cache, or GAC (C:\WINDOWS\ASSEMBLY), have Full trust
permissions, so the results on your deployment machine may differ from those on your development machine.
For information on licensing a class library project, see the article on Licensing a Project.

Feature Limitations
1. Exporting

RTF, Text, TIFF and Excel filters are not supported in Medium trust.
Digital signatures cannot be used in case of PDF rendering extension and PDF export.
Chart and Tablix control of Page Reports and RDL Reports are not displayed properly in case of PDF
rendering extension and PDF export.

2. The End User Designer and Windows Form Viewer controls require Full trust.
3. The Picture control does not support metafiles, which require Full trust.
4. The ImageType property of the Chart control must be set to PNG.
5. OleObject, Formatted Text and Custom controls require Full trust.
6. Scripting requires Full trust, so if you need to use code in reports under Medium trust, use code-based reports

rather than RPX format.
7. WebViewer

Bullet and Sparkline controls of PageReports and RDLReports are not displayed in all the Viewer types.

ActiveReports 14 177

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/aspnet/aspnet/overview/web-development-best-practices/what-not-to-do-in-aspnet-and-what-to-do-instead#medium

Report containing the Image control of PageReports and RDLReports is not displayed properly in case of
HTML type.

Recommended Development Environment for Medium Trust Tests
To set up a Medium trust environment

Open the Web.config file and paste the following code between the <system.web> and </system.web> tags.

XML code. Paste BETWEEN the system.web tags.

<trust level="Medium"></trust>

To set up the PrintingPermission level

Most hosting providers disable the printing permissions in a partially trusted environment.

1. Open the web_mediumtrust. config file (located in the \Windows\Microsoft.NET\Framework\v4.0.30319\Config
folder).

2. Set the PrintingPermission level to NoPrinting.

XML code. Paste BETWEEN the system.web tags.

<IPermission class="PrintingPermission"version="1"Level="NoPrinting"/>

Note: The default set of medium trust permissions is available in the web_mediumtrust.config.default file.

Viewing Reports from Different Domains using CORS
Cross-Origin Resource Sharing is a technology for the web that provides async web operations to directly access reports
from different domains. CORS works by adding a special header to responses from a server to the client. If a response
contains the Access-Control-Allow-Origin header, then you can directly access the reports from another domain.

ActiveReports 14 178

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The following viewers require CORS:

1. JSViewer
2. HTMLViewer (WebViewer control)
3. RawHTML (WebViewer control)

The following steps describe how to access reports from different domain using CORS.

1. Add Global Application Class file (Global.asax) in your application on the service side.
2. Open the Global.asax.cs file, and add the following code to access reports using cross websites.

Paste inside the Global.asax.cs

 protected void Application_BeginRequest(object sender, EventArgs e)
 {
 HttpContext.Current.Response.AddHeader("Access-Control-Allow-Origin", "*");
 if (HttpContext.Current.Request.HttpMethod == "OPTIONS")
 {
 HttpContext.Current.Response.AddHeader("Access-Control-Allow-Methods",
 "GET, POST, OPTIONS");
 HttpContext.Current.Response.AddHeader("Access-Control-Allow-Headers",
 "Content-Type, Accept");
 HttpContext.Current.Response.End();
 }
 }

Paste inside the Global.asax.vb

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 HttpContext.Current.Response.AddHeader("Access-Control-Allow-Origin", "*")
 If HttpContext.Current.Request.HttpMethod = "OPTIONS" Then

ActiveReports 14 179

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 HttpContext.Current.Response.AddHeader("Access-Control-Allow-Methods",
 "GET, POST, OPTIONS")
 HttpContext.Current.Response.AddHeader("Access-Control-Allow-Headers",
 "Content-Type, Accept")
 HttpContext.Current.Response.End()
 End If
End Sub

Note:

If you get error 404 or 500 on the report preview, please make sure that your browser supports CORS.

Print Reports
Learn to perform common tasks with ActiveReports with quick how-to topics.

Topic Content

Advanced Print
Options

Learn how to access and set up the advanced printing options provided with the ActiveReports
Viewer.

Print Methods Learn about various Print methods in ActiveReports.

PDF Print Presets Learn how to preset basic print options for PDF printing.

Print in JSViewer Learn various methods of printing in JSViewer.

Advanced Print Options
The advanced printing options in the ActiveReports Viewer, allow you to change page scaling, set page margins and add a
watermark when printing a report.

To access the advanced printing options
1. In the Viewer toolbar, click the Print button. See Windows Forms Viewer for information on the Viewer toolbar.
2. In the Print dialog that appears, click Advanced.
3. In the Page Setup dialog that appears, go to the Layout and Watermark tabs to set page scaling, page margins

and watermark options.

ActiveReports 14 180

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To modify page scaling
1. In the Page Setup dialog, on the Layout tab under the Page Handling group, select a value from the Page Scaling

drop-down list.
2. In case you select Multiple pages per sheet under Page Scaling, you can specify the Pages per sheet and Page

Order options.
3. Click OK to close the dialog.

Note: You may also check the Print page border or Auto-Rotate Pages check box for further customization of your
print setup.

To change page margins
1. In the Page Setup dialog, on the Layout tab under the Margins group, enter values for the Left, Top, Right and

Bottom margins.
2. Click OK to close the dialog.

To add a watermark to the report
1. In the Page Setup dialog, on the Watermark tab, under the textbox named Text, enter the text you want to display

in your watermark.
2. Select the Font, Size, and Color for the text.
3. In the Angle field, enter a numeric value between 0 and 360 (A value of 0 renders straight left-to-right text. A value

of 180 renders inverted text).
4. Click OK to close the dialog.

Print Methods
ActiveReports provides access to Print methods to enable printing of page and section reports. You can access Print
methods in any of the following ways:

Viewer.Print method (using the Viewer control)
Print methods in SectionDocument or PageDocument
Print methods in the PrintExtension class

Viewer.Print method

The code sample illustrates how to access the print method using the Viewer control.

You can use the Print ('Print Method' in the on-line documentation) method of the Viewer class to print a report
loaded in the Viewer control. Make sure that the report is loaded completely before Print is executed.

Visual Basic.NET code. Add this code INSIDE the LoadCompleted event of the Viewer

Viewer1.Print(True, True, True)

C# code. Add this code INSIDE the LoadCompleted event of the Viewer

viewer1.Print(true, true, true);

ActiveReports 14 181

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Print methods in SectionDocument or PageDocument

SectionDocument and PageDocument types have Print methods that can be used directly on the document object. The
following code samples illustrate how to access the print methods that can be used directly on the document object.

Note: The Print ('Print Method' in the on-line documentation) method is implemented as an extension method of
the PrintExtension.Print ('Print Method' in the on-line documentation) method, which is present in
the GrapeCity.ActiveReports namespace of GrapeCity.ActiveReports.Viewer.Win assembly.

In order to access Print ('Print Method' in the on-line documentation) method through SectionDocument or
PageDocument class, you need to add GrapeCity.ActiveReports.Viewer.Win reference to the project. Also, as
mentioned in the code, make sure that you add a reference for the GrapeCity.ActiveReports namespace in your
project using Imports (Visual Basic.NET) or using (C#) statement.

Section Report

Visual Basic.NET code. Paste at the top of the code view.

Imports GrapeCity.ActiveReports

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Dim rpt = New SectionReport1()
rpt.Run(False)
Dim sectionDocument = rpt.Document
sectionDocument.Print(True, True, False)

C# code. Paste at the top of the code view.

using GrapeCity.ActiveReports;

C# code. Paste INSIDE the Form_Load event.

var rpt = new SectionReport1();
rpt.Run(false);
var sectionDocument = rpt.Document;
sectionDocument.Print(true, true, false);

Page Report

Visual Basic.NET code. Paste at the top of the code view.

Imports GrapeCity.ActiveReports

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Dim file_name As String = "..\..\PageReport1.rdlx"
Dim pageReport As New GrapeCity.ActiveReports.PageReport(New
System.IO.FileInfo(file_name))
Dim pageDocument As New GrapeCity.ActiveReports.Document.PageDocument(pageReport)
pageDocument.Print(True, True, False)

ActiveReports 14 182

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C# code. Paste at the top of the code view.

using GrapeCity.ActiveReports;

C# code. Paste INSIDE the Form_Load event.

string file_name = @"..\..\PageReport1.rdlx";
GrapeCity.ActiveReports.PageReport pageReport = new
GrapeCity.ActiveReports.PageReport(new System.IO.FileInfo(file_name));
GrapeCity.ActiveReports.Document.PageDocument pageDocument = new
GrapeCity.ActiveReports.Document.PageDocument(pageReport);
pageDocument.Print(true, true, false);

Print methods in the PrintExtension class

You can use the Print ('Print Method' in the on-line documentation) method of the PrintExtension class to print a
report loaded in the Viewer control. Make sure that the report is loaded completely before Print is executed. The following
code samples illustrate how to access the print method of the PrintExtension class.

Note: The Print ('Print Method' in the on-line documentation) method is implemented as an extension method of
the PrintExtension.Print ('Print Method' in the on-line documentation) method, which is present in the
GrapeCity.ActiveReports namespace of GrapeCity.ActiveReports.Viewer.Win assembly.

In order to access Print ('Print Method' in the on-line documentation) method through SectionDocument or
PageDocument class, you need to add GrapeCity.ActiveReports.Viewer.Win reference to the project. Also, as
mentioned in the code, make sure that you add a reference for the GrapeCity.ActiveReports namespace in your
project using Imports (Visual Basic.NET) or using (C#) statement.

Section Report

Visual Basic.NET code. Paste INSIDE an event like Button_Click.

GrapeCity.ActiveReports.PrintExtension.Print(sectionDocument, True, True)

C# code. Paste INSIDE an event like Button_Click.

GrapeCity.ActiveReports.PrintExtension.Print(sectionDocument, true, true);

Page Report

Visual Basic.NET code. Paste INSIDE an event like Button_Click.

GrapeCity.ActiveReports.PrintExtension.Print(pageDocument, True, True)

C# code. Paste INSIDE an event like Button_Click.

GrapeCity.ActiveReports.PrintExtension.Print(pageDocument, true, true);

ActiveReports 14 183

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Print in JSViewer
JSViewer provides several options for printing a report. This topic describes several ways in which a report can be printed
in JSViewer.

Print with Preview

Print report when the report is completely loaded in the viewer, using print() method.

index.html

var viewer;
function loadViewer() {
 viewer = GrapeCity.ActiveReports.JSViewer.create({
 element: '#viewerContainer',
 reportID: 'RdlReport1.rdlx',
 documentLoaded: () => viewer.print()
 });
}

Print without Preview

Print report without previewing using 'global' print() method. This is same as the default button in JSViewer, but without
showing report preview.

index.html

GrapeCity.ActiveReports.JSViewer.print({ reportID:'RdlReport1.rdlx'});

Preview Report and Print to PDF

Open the report and export it to PDF with PrintOnOpen parameter set to 'true'. In this case, the exported PDF opens in
new window of the browser, and the print dialog is displayed.

index.html

var viewer;
function loadViewer() {
 viewer = GrapeCity.ActiveReports.JSViewer.create({
 element: '#viewerContainer',
 reportID: 'RdlReport1.rdlx',
 documentLoaded: () => viewer.export('Pdf', null, true, { PrintOnOpen: 'true' })
 });
}

ActiveReports 14 184

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Print to PDF

Export the report to PDF using 'global' export() method and enable the PrintOnOpen option. In this case, the report is
not opened.

index.html

GrapeCity.ActiveReports.JSViewer.export({
 reportID: 'RdlReport1.rdlx', exportType: 'Pdf', settings: { PrintOnOpen: 'true' },
 callback: (args) => { window.open(args) }
})

Note:

For Section Reports, use OnlyForPrint instead of PrintOnOpen (for backward compatibility). For Page and
RDL reports (.rdlx), anyone of PrintOnOpen or OnlyForPrint can be used.
Use latest versions of Chrome, Firefox, and Chrome-based Edge for the described print features to work
correctly.

PDF Print Presets
To economize your efforts each time a PDF document is printed, you can preset basic print options when exporting a
report to a PDF format.

Note: The print preset properties are only available with the Professional Edition license. An evaluation message is
displayed when used with the Standard Edition license.

In both Page/RDL and Section reports, you can set the PDF Print Preset properties using the Export dialog or through the
code. The PDF print preset properties are available in the Export dialog of the following viewers.

Standalone Designer
End-User Designer
WebViewer
WPF Viewer

To set PDF print presets using the Export dialog
1. Open the Export dialog.
2. In the Export Format field of the Export dialog, select Portable Document Format (PDF).

3. Expand PrintPresets options and set the required properties for print presets.

Note: These properties are available in PDF version 1.7 or higher. The PageScaling property is supported in
PDF version 1.6.

ActiveReports 14 185

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Click OK to close the dialog.

To set PDF print presets through code
1. From the Visual Studio File menu, select New, then Project.
2. In the New Project dialog that appears, under language VB.NET or C#, click the Reporting node.
3. Select the type of report application that you want to add:

ActiveReports 14 Page Report Application
ActiveReports 14 RDL Report Application
ActiveReports 14 Section Report Application (xml-based)

4. In the Name field, enter a name for the report application, and click OK. The selected report type is added to your
project.

5. In the Design view, double-click the Form title bar to create the Form_Load event.
6. Add the following code to invoke the Export methods and set print presets in the Form_Load event.

Section Report

Visual Basic.NET code. Paste INSIDE the Form_Load event

Dim sectionReport As New GrapeCity.ActiveReports.SectionReport()
Dim xtr As New System.Xml.XmlTextReader(Application.StartupPath +
"\..\..\SectionReport1.rpx")
sectionReport.LoadLayout(xtr)
sectionReport.Run()

'Define settings for PDF
Dim p As New GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport()
p.Version = GrapeCity.ActiveReports.Export.Pdf.Section.PdfVersion.Pdf17

'Set default print settings using PrintPresets class
p.PrintPresets.PageScaling =
GrapeCity.ActiveReports.Export.Pdf.Enums.PageScaling.None
p.PrintPresets.DuplexMode =
GrapeCity.ActiveReports.Export.Pdf.Enums.DuplexMode.DuplexFlipLongEdge
p.PrintPresets.NumberOfCopies =
GrapeCity.ActiveReports.Export.Pdf.Enums.NumberOfCopies.Two
p.PrintPresets.PaperSourceByPageSize = True
p.PrintPresets.PrintPageRange = "1-3"
p.Export(sectionReport.Document, Application.StartupPath + "\PrintPresets.pdf")

C# code. Paste INSIDE the Form_Load event

GrapeCity.ActiveReports.SectionReport sectionReport = new
GrapeCity.ActiveReports.SectionReport();
System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Application.StartupPath
+ @"\..\..\SectionReport1.rpx");
sectionReport.LoadLayout(xtr);

ActiveReports 14 186

Copyright © 2020 GrapeCity, Inc. All rights reserved.

sectionReport.Run();

//Define settings for PDF
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport p = new
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport();
p.Version = GrapeCity.ActiveReports.Export.Pdf.Section.PdfVersion.Pdf17;

//Set default print settings using PrintPresets class
p.PrintPresets.PageScaling =
GrapeCity.ActiveReports.Export.Pdf.Enums.PageScaling.None;
p.PrintPresets.DuplexMode =
GrapeCity.ActiveReports.Export.Pdf.Enums.DuplexMode.DuplexFlipLongEdge;
p.PrintPresets.NumberOfCopies =
GrapeCity.ActiveReports.Export.Pdf.Enums.NumberOfCopies.Two;
p.PrintPresets.PaperSourceByPageSize = true;
p.PrintPresets.PrintPageRange = "1-3";
p.Export(sectionReport.Document, Application.StartupPath + "\\PrintPresets.pdf");

Page/RDL Report

Visual Basic.NET code. Paste INSIDE the Form_Load event

'Set the rendering extension and render the report.
Dim pdfExport = New GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension()

'Define settings for PDF
Dim pdfSettings As New GrapeCity.ActiveReports.Export.Pdf.Page.Settings()
pdfSettings.Version = GrapeCity.ActiveReports.Export.Pdf.Page.PdfVersion.Pdf17
pdfSettings.PrintOnOpen = True

'Set default print settings using PrintPresets class
Dim pdfPresetsSetting As New GrapeCity.ActiveReports.Export.Pdf.PrintPresets()
pdfPresetsSetting.PageScaling =
GrapeCity.ActiveReports.Export.Pdf.Enums.PageScaling.None
pdfPresetsSetting.DuplexMode =
GrapeCity.ActiveReports.Export.Pdf.Enums.DuplexMode.DuplexFlipLongEdge
pdfPresetsSetting.NumberOfCopies =
GrapeCity.ActiveReports.Export.Pdf.Enums.NumberOfCopies.Two
pdfPresetsSetting.PaperSourceByPageSize = True
pdfPresetsSetting.PrintPageRange = "1-3"

pdfSettings.PrintPresets = pdfPresetsSetting

Dim outputFile = New IO.FileInfo("..\..\PrintPresets.pdf")
Dim reportFile = New IO.FileInfo("..\..\PageReport1.rdlx")

Dim fileStreamProvider = New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputFile.Directory,

ActiveReports 14 187

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Path.GetFileNameWithoutExtension(outputFile.FullName))

Using pageDocument = New GrapeCity.ActiveReports.PageReport(reportFile).Document
 pageDocument.Render(pdfExport, fileStreamProvider, pdfSettings)
End Using

C# code. Paste INSIDE the Form_Load event

//Set the rendering extension and render the report.
var pdfExport = new
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension();

//Define settings for PDF
GrapeCity.ActiveReports.Export.Pdf.Page.Settings pdfSettings = new
GrapeCity.ActiveReports.Export.Pdf.Page.Settings();
pdfSettings.Version = GrapeCity.ActiveReports.Export.Pdf.Page.PdfVersion.Pdf17;
pdfSettings.PrintOnOpen = true;

//Set default print settings using PrintPresets class
GrapeCity.ActiveReports.Export.Pdf.PrintPresets pdfPresetsSetting = new
GrapeCity.ActiveReports.Export.Pdf.PrintPresets();
pdfPresetsSetting.PageScaling =
GrapeCity.ActiveReports.Export.Pdf.Enums.PageScaling.None;
pdfPresetsSetting.DuplexMode =
GrapeCity.ActiveReports.Export.Pdf.Enums.DuplexMode.DuplexFlipLongEdge;
pdfPresetsSetting.NumberOfCopies =
GrapeCity.ActiveReports.Export.Pdf.Enums.NumberOfCopies.Two;
pdfPresetsSetting.PaperSourceByPageSize = true;
pdfPresetsSetting.PrintPageRange = "1-3";

pdfSettings.PrintPresets = pdfPresetsSetting;

var outputFile = new System.IO.FileInfo(@"..\..\PrintPresets.pdf");
var reportFile = new System.IO.FileInfo(@"..\..\PageReport1.rdlx");

var fileStreamProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputFile.Directory,
System.IO.Path.GetFileNameWithoutExtension(outputFile.FullName));

using (var pageDocument = new
GrapeCity.ActiveReports.PageReport(reportFile).Document)
{
 pageDocument.Render(pdfExport, fileStreamProvider, pdfSettings);
}

Export Reports
In this section, learn about the independent ways to export a report to different formats, and some export

ActiveReports 14 188

Copyright © 2020 GrapeCity, Inc. All rights reserved.

implementations.

Topic Content

Rendering
Extensions

Use the Render method in Rendering Extensions of the PageDocument class to render a page report and
RDL Report to Image, Html, Pdf, Xml, Word and Excel formats.

Export
Filters

Use the Export method of the corresponding ExportFilter class to export a section report, page report
and RDL Reports. Exporting in Section Report is only possible through Export Filters

The following table illustrates the supported export formats for section, page and an RDL report.

Click the ✓✓ mark to see the implementation of the corresponding Export format.

Export formats Section
report

Page
report

RDL
report

HTML: Export reports to HTML or MHT
formats, all of which open in a Web browser.

Rendering Extension ✘ ✓ ✓

Export Filter ✓ ✓ ✓

Pdf: Export reports to PDF, a portable
document format that opens in the Adobe
Reader.

Rendering Extension ✘ ✓ ✓

Export Filter ✓ ✓ ✓

Rtf: Export reports to RTF, RichText Format that opens in Microsoft Word, and is native to
WordPad.

✓ ✓ ✓

Word: Export reports to DOC, a format that
opens in Microsoft Word.

Word HTML (.doc) ✘ ✓ ✓

LibreOffice (.docx) ✘ ✓ ✓

Text: Export reports to TXT, plain text format that opens in Notepad or any text editor. Export
reports to CSV, comma separated values, a format that you can open in Microsoft Excel.

✓ ✓ ✓

Image: Export reports to BMP, GIF, JPEG, TIFF, and PNG image formats ✘ ✓ ✓

Tiff: Export reports to TIFF image format for optical archiving and faxing. ✓ ✓ ✓

Excel Export Filter(XLS, XLSX) ✓ ✓ ✓

Rendering Extension - Microsoft Excel
Worksheet - Layout(XLS, XLSX)

✘ ✓ ✓

Xml: Export reports to XML, a format that opens in a Web browser or delivers data to other
applications.

✘ ✓ ✓

CSV: Export reports to a CSV file, a form of structured data in plain text. The text in a CSV file is
saved as series of values separated by comma.

✘ ✓ ✓

JSON: Export reports to a JSON file, a text-based data format in which the data is stored in the
hierarchical form.

✘ ✓ ✓

Note: In ASP.NET Core applications, supported export formats are - Excel (.xlsx), Word (.docx), PDF, CSV, JSON,
and TIFF.

ActiveReports 14 189

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Rendering Extensions
In ActiveReports, you can use the Render method in Rendering Extensions of the PageDocument class to render in any
one of the following formats. Each exporting format provides it's own set of properties to control how the report is
rendered.

Rendering to HTML
Rendering to PDF
Rendering to Image
Rendering to XML
Rendering to Excel
Rendering to Word
Rendering to CSV
Rendering to JSON
Editable PDFs

Rendering to HTML
HTML, or hypertext markup language, is a format that opens in a Web browser. You can export your reports to HTML or
MHT formats. It is a good format for delivering content because virtually all users have an HTML
browser. The HTMLRenderingExtension ('HtmlRenderingExtension Class' in the on-line documentation) renders
your report in this format with improved table border rendering and high quality SVG output for charts. If you do not
want to use SVG in charts, set the RenderingEngine property to Html.

The following steps provide an example of rendering a report in the HTML format.

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Html package in the project.
5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event.

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport()
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyHTML")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim htmlSetting As New GrapeCity.ActiveReports.Export.Html.Page.Settings()
Dim setting As GrapeCity.ActiveReports.Extensibility.Rendering.ISettings =
htmlSetting

ActiveReports 14 190

Copyright © 2020 GrapeCity, Inc. All rights reserved.

' Set the rendering extension and render the report.
Dim htmlRenderingExtension As New
GrapeCity.ActiveReports.Export.Html.Page.HtmlRenderingExtension()
Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = True

reportDocument.Render(htmlRenderingExtension, outputProvider, htmlSetting)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new
GrapeCity.ActiveReports.PageReport();
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new
GrapeCity.ActiveReports.Document.PageDocument(report);

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new
System.IO.DirectoryInfo(@"C:\MyHTML");
outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Html.Page.Settings htmlSetting = new
GrapeCity.ActiveReports.Export.Html.Page.Settings();
GrapeCity.ActiveReports.Extensibility.Rendering.ISettings setting = htmlSetting;

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Html.Page.HtmlRenderingExtension
htmlRenderingExtension = new
GrapeCity.ActiveReports.Export.Html.Page.HtmlRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = true;

reportDocument.Render(htmlRenderingExtension, outputProvider, htmlSetting);

HTML Rendering Properties

ActiveReports offers several options to control how reports render to HTML.

Property Description

ActiveReports 14 191

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Fragment ('Fragment
Property' in the on-
line documentation)

Determine whether or not the full html text will be returned or just the contents contained
inside the body tag will be returned. True indicates only the content inside the body tag will be
return; otherwise false. The default is false.

MhtOutput
('MhtOutput
Property' in the on-
line documentation)

Gets or sets whether or not the output should be in Mht format. True indicates the output
should be in Mht format; otherwise false. The default is false.

RenderingEngine
('RenderingEngine
Property' in the on-
line documentation)

The RenderingEngine property is set to Mixed by default for improved quality output. The
choices are Html or Mixed, where Mixed uses SVG to render charts.

StyleStream
('StyleStream
Property' in the on-
line documentation)

Set the StyleStream to True to create an external .css file containing style information from
your report controls' style properties. If you prefer to have style information embedded in the
HTML file, set the StyleStream property to False.

LinkTarget
('LinkTarget Property'
in the on-line
documentation)

Specify a link target to control whether drill down reports and other links open in a new
window or reuse the current window. By default, no value is set and links open in the same
window. A value of _blank opens the link in a new window, or you can specify a window using
window_name. By default this value is not set.

Mode ('Mode
Property' in the on-
line documentation)

Galley mode renders the report in one HTML stream. Select Paginated mode to render each
page as a section inside the HTML document.

OutputTOC
('OutputTOC
Property' in the on-
line documentation)

Indicates whether the report's existing TOC should be added in the output.

Limitations

HTML is not the best format for printing. Use the PDF rendering extension instead.
Diagonal lines, Page margins, Border/Line Style (like DashedDotDot, DashDot, WindowInset) are not supported.
Checkbox color does not affect the color of the square.
TextIndent property and FillCharacter property of the TableOfContents control's Level setting are not supported.

Interactivity

Reports rendered in HTML support a number of interactive features. Hyperlinks, Bookmarks and Drill through links can be
rendered to HTML. However, Document Maps are not available in this format. For a drill down report, make sure that the
data you want to display is expanded before rendering, otherwise it renders in the hidden state.

Rendering to PDF
Portable Document Format (PDF), is a format recommended for printing and for preserving formatting. You can use the

ActiveReports 14 192

Copyright © 2020 GrapeCity, Inc. All rights reserved.

PDFRenderingExtension ('PdfRenderingExtension Class' in the on-line documentation) to render your report in this
format. With the PDF rendering extension, you can use features such as font linking, digital signatures and end-user
defined characters (EUDC). These features are only available in the Professional Edition of ActiveReports.

The following steps provide an example of rendering a report in PDF format.

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Pdf package in the project.
5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event.

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim rptPath As New IO.FileInfo("..\..\PageReport1.rdlx")
Dim pageReport As New GrapeCity.ActiveReports.PageReport(rptPath)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyPDF")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim pdfSetting As New GrapeCity.ActiveReports.Export.Pdf.Page.Settings()

' Set the rendering extension and render the report.
Dim pdfRenderingExtension As New
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension()
Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists
outputProvider.OverwriteOutputFile = True

pageReport.Document.Render(pdfRenderingExtension, outputProvider, pdfSetting)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
System.IO.FileInfo rptPath = new System.IO.FileInfo(@"..\..\PageReport1.rdlx");
GrapeCity.ActiveReports.PageReport pageReport = new
GrapeCity.ActiveReports.PageReport(rptPath);

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyPDF");

ActiveReports 14 193

Copyright © 2020 GrapeCity, Inc. All rights reserved.

outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Pdf.Page.Settings pdfSetting = new
GrapeCity.ActiveReports.Export.Pdf.Page.Settings();

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension pdfRenderingExtension =
new GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists
outputProvider.OverwriteOutputFile = true;

pageReport.Document.Render(pdfRenderingExtension, outputProvider, pdfSetting);

PDF Rendering Properties

ActiveReports offers a number of options to control how reports render to PDF.

Property Description

Application
('Application
Property' in the on-
line documentation)

Set the value that appears for application in the Document Properties dialog of the PDF viewer
application.

Author ('Author
Property' in the on-
line documentation)

Enter the name of the author to appear in the Document Properties dialog of the PDF viewer
application.

CenterWindow
('CenterWindow
Property' in the on-
line documentation)

Set to True to position the document's window in the center of the screen.

DisplayMode
('DisplayMode
Property' in the on-
line documentation)

Specifies how the document is displayed when opened. FullScreen mode displays the document
with no menu bar, window controls, or any other window visible.

DisplayTitle
('DisplayTitle
Property' in the on-
line documentation)

Set to True to display text you enter in the Title property. When set to False it displays the name
of the PDF file.

DpiX ('DpiX
Property' in the on-

Set the horizontal resolution of the rendered PDF file.

ActiveReports 14 194

Copyright © 2020 GrapeCity, Inc. All rights reserved.

line documentation)

DpiY ('DpiY
Property' in the on-
line documentation)

Set the vertical resolution of the rendered PDF file.

EmbedFonts
('EmbedFonts
Property' in the on-
line documentation)

Select how the fonts used in the report should be embedded in the PDF document.

Note: By default, all fonts get embedded in the exported PDF document.

Encrypt ('Encrypt
Property' in the on-
line documentation)

Determines whether the document is encrypted or not.
Note: If Encrypt is set to False, permissions and passwords have no effect.

EndPage ('EndPage
Property' in the on-
line documentation)

The last page of the report to render. The default value is the value for StartPage, that is, 0.

FallbackFonts
('FallbackFonts
Property' in the on-
line documentation)

Gets or sets a comma-delimited string of font families to locate missing glyphs from the original
font.

FitWindow
('FitWindow
Property' in the on-
line documentation)

True to resize the document’s window to fit the size of the first displayed page. Default value:
false.

HideMenubar
('HideMenubar
Property' in the on-
line documentation)

True to hide the viewer application’s menu bar when the document is active. Default value:
false.

HideToolbar
('HideToolbar
Property' in the on-
line documentation)

True to hide the viewer application’s toolbars when the document is active. Default value: false.

HideWindowUI
('HideWindowUI
Property' in the on-
line documentation)

True to hide user interface elements in the document’s window (such as scroll bars and
navigation controls), leaving only the document’s contents displayed. Default value: false.

ImageInterpolation
('ImageInterpolation
Property' in the on-
line documentation)

Interpolation value of images. Allows to enable/disable image interpolation, when exporting the
file to PDF.

Keywords
('Keywords
Property' in the on-
line documentation)

Keywords associated with the document.

ActiveReports 14 195

Copyright © 2020 GrapeCity, Inc. All rights reserved.

MarginBottom
('MarginBottom
Property' in the on-
line documentation)

The bottom margin value, in inches, to set for the report. You must include an integer or decimal
value followed by "in" (for example, 1in). This value overrides the report's original settings.

MarginLeft
('MarginLeft
Property' in the on-
line documentation)

The left margin value, in inches, to set for the report. You must include an integer or decimal
value followed by "in" (for example, 1in). This value overrides the report's original settings.

MarginRight
('MarginRight
Property' in the on-
line documentation)

The right margin value, in inches, to set for the report. You must include an integer or decimal
value followed by "in" (for example, 1in). This value overrides the report's original settings.

MarginTop
('MarginTop
Property' in the on-
line documentation)

The top margin value, in inches, to set for the report. You must include an integer or decimal
value followed by "in" (for example, 1in). This value overrides the report's original settings.

OwnerPassword
('OwnerPassword
Property' in the on-
line documentation)

The owner password that can be entered in the reader that permits full access to the document
regardless of the specified user permissions.

PageHeight
('PageHeight
Property' in the on-
line documentation)

The page height value, in inches, to set for the report. You must include an integer or decimal
value followed by "in" (for example, 1in). This value overrides the report's original settings.

PageWidth
('PageWidth
Property' in the on-
line documentation)

The page width value, in inches, to set for the report. You must include an integer or decimal
value followed by "in" (for example, 1in). This value overrides the report's original settings.

Permissions
('Permissions
Property' in the on-
line documentation)

Specifies the user permissions for the document. Permissions can be combined using a comma
between values. In order to use AllowFillin, AllowAccessibleReaders, and AllowAssembly
permissions, you must set the Use128Bit property to True.

PrintLayoutMode
('PrintLayoutMode
Property' in the on-
line documentation)

Specifies layout mode to be used for PDF document.

PrintOnOpen
('PrintOnOpen
Property' in the on-
line documentation)

Gets or sets the value indicating whether the document should be printed after open.

PrintPresets
('PrintPresets
Property' in the on-

Gets or sets the PDF print preset dialog.

ActiveReports 14 196

Copyright © 2020 GrapeCity, Inc. All rights reserved.

line documentation)

SizeToFit ('SizeToFit
Property' in the on-
line documentation)

Determines whether PDF pages are fit to the selected paper size or not.

StartPage
('StartPage
Property' in the on-
line documentation)

The first page of the report to render. A value of 0 indicates that all pages are rendered.

Subject ('Subject
Property' in the on-
line documentation)

The subject of the document.

Title ('Title Property'
in the on-line
documentation)

The title of the document.

Use128Bit
('Use128Bit
Property' in the on-
line documentation)

True to use 128 bit encryption with full permissions capability. False to use 40 bit encryption
with limited permissions

UserPassword
('UserPassword
Property' in the on-
line documentation)

The user password that can be entered in the reader. If this value is left empty, the user will not
be prompted for a password, however the user will be restricted by the specified permissions.

WatermarkAngle
('WatermarkAngle
Property' in the on-
line documentation)

Specify the degree of angle for the watermark text on the PDF document. Valid values range
from 0 to 359, where 0 is horizontal, left to right.

WatermarkColor
('WatermarkColor
Property' in the on-
line documentation)

Select a color for the watermark text on the PDF document. The default value for the watermark
color is gray, but you can select any Web, System, or Custom color.

WatermarkFont
('WatermarkFont
Property' in the on-
line documentation)

Set the font to use for the watermark to any valid System.Drawing.Font.

WatermarkTitle
('WatermarkTitle
Property' in the on-
line documentation)

Enter text (i.e. CONFIDENTIAL) to use as the watermark on the PDF document.

PDF Print Presets Properties

ActiveReports 14 197

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveReports allows you to preset the printing properties for PDF report exports using the PrintPresets ('PrintPresets
Class' in the on-line documentation) class. This prepopulates the print settings in the Print dialog box. Please see Use
PDF Printing Presets for more information.

Note: The print preset properties are only available with the Professional Edition license. An evaluation message is
displayed when used with the Standard Edition license.

Property Description

PageScaling
('PageScaling Property'
in the on-line
documentation)

Specify scaling for the printable area.You can select Default to shrink to the printable area,
or you can select None for the actual size.

DuplexMode
('DuplexMode Property'
in the on-line
documentation)

Specify the duplex mode of the printer. For the best results with the duplex option, the
selected printer should support duplex printing. You can choose from the following values,

Simplex: Prints on one side of the paper. This is the default value.
Duplex (Flip on long edge): Prints on both sides of the paper with paper flip on the
long edge.
Duplex (Flip on short edge): Prints on both sides of the paper with paper flip on the
short edge.

PaperSourceByPageSize
('PaperSourceByPageSize
Property' in the on-line
documentation)

Determines the output tray based on PDF page size, rather than page setting options. This
option is useful when printing PDFs with multiple page sizes, where different sized output
trays are available. By default, this option is set to False.

PrintPageRange
('PrintPageRange
Property' in the on-line
documentation)

Specify the range of page numbers as 1-3 or 1, 2, 3.

NumberOfCopies
('NumberOfCopies
Property' in the on-line
documentation)

Specify the number of copies to print. You can select any number of copies from 2 to 5, or
select Default to specify a single copy.

Note: These properties are available in PDF version 1.7 or higher. The PageScaling property is supported in PDF
version 1.6.

Interactivity

PDF is considered as the best format for printing and it also supports interactive features like Document Map, Bookmarks
and Hyperlinks. However, in case you have any data hidden (like in a drill-down report) at the time of rendering, it does
not show up in the output. Therefore, it is recommended to expand all toggle items prior to rendering.

ActiveReports 14 198

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Editable PDF: InputField Control

In Page and RDL reports, you can use the InputField report control. This control provides support for editable fields in an
exported PDF report file where the InputField’s value can be modified.

There are two (2) types of InputField - Text and Checkbox, which you can set in the InputType property. Each type has its
own set of properties: the Text type of the InputField control gets the set of properties of the TextBox control. If the
Checkbox type is selected, then the new control inherits the set of properties of the CheckBox control.

Note: The InputField control is part of the Professional Edition. With the Standard license, the InputField control is
not displayed in an exported file.

Metadata in PDFs

Adding Metadata

Metadata such as keywords, descriptions are used by the search engines to narrow down the searches. You can add a
number of predefined accessors, such as title, contributors, creators, copyright, description, etc
using AdditionalMetadata ('AdditionalMetadata Property' in the on-line documentation) property. The allowed

ActiveReports 14 199

Copyright © 2020 GrapeCity, Inc. All rights reserved.

namespaces are:

Dublin Core Properties
XMP Core Properties
PDF Properties

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
System.IO.FileInfo rptPath = new System.IO.FileInfo(@"..\..\PageReport1.rdlx");
GrapeCity.ActiveReports.PageReport pageReport = new
GrapeCity.ActiveReports.PageReport(rptPath);
// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyPDF");
outputDirectory.Create();
// Add meta data.
var pdfSetting = new GrapeCity.ActiveReports.Export.Pdf.Page.Settings();
// using GrapeCity.ActiveReports.Export.Pdf;
pdfSetting.AdditionalMetadata.Add(new AdditionalMetadataInfo
{
 Namespace = AdditionalMetadataNamespace.PurlOrg, // Dublin Core Properties
 Key = "title",
 Value = "Invoice"
});
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension pdfRenderingExtension =
new GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));
outputProvider.OverwriteOutputFile = true;
pageReport.Document.Render(pdfRenderingExtension, outputProvider, pdfSetting);

Adding Attachment

ActiveReports 14 200

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://helpx.adobe.com/audition/user-guide.html/audition/using/viewing-editing-xmp-metadata.ug.html
https://helpx.adobe.com/acrobat/using/pdf-properties-metadata.html

You can include an attachment as metadata (such as invoices) to exported PDFs using Attachments ('Attachments
Property' in the on-line documentation) property. This property allows to attach files such as a .xml or a .txt file in PDF.
Below is the code example to export RDL and Page reports to PDF and attach a file to the exported PDF.

VB code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim rptPath As System.IO.FileInfo = New System.IO.FileInfo("..\..\PageReport1.rdlx")
Dim pageReport As GrapeCity.ActiveReports.PageReport = New
GrapeCity.ActiveReports.PageReport(rptPath)
' Create an output directory.
Dim outputDirectory As System.IO.DirectoryInfo = New System.IO.DirectoryInfo("C:\MyPDF")
outputDirectory.Create()
' Add attachment.
Dim pdfSetting = New GrapeCity.ActiveReports.Export.Pdf.Page.Settings()
pdfSetting.Attachments.Add(New AttachmentInfo With {
 .Name = "file.txt",
 .Content = System.IO.File.ReadAllBytes("D:\Reports\file.txt"),
 .Description = "attachment description" ' optional
})
Dim pdfRenderingExtension As
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension = New
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension()
Dim outputProvider As GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider = New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))
outputProvider.OverwriteOutputFile = True
pageReport.Document.Render(pdfRenderingExtension, outputProvider, pdfSetting)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
System.IO.FileInfo rptPath = new System.IO.FileInfo(@"..\..\PageReport1.rdlx");

ActiveReports 14 201

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.PageReport pageReport = new
GrapeCity.ActiveReports.PageReport(rptPath);
// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyPDF");
outputDirectory.Create();
// Add attachment.
var pdfSetting = new GrapeCity.ActiveReports.Export.Pdf.Page.Settings();
// using GrapeCity.ActiveReports.Export.Pdf;
pdfSetting.Attachments.Add(new AttachmentInfo
{
 Name = "file.txt",
 Content = System.IO.File.ReadAllBytes(@"D:\Reports\file.txt"),
 Description = "attachment description" // optional
});
// or
//{
// Name = "file.xml",
// Content = File.ReadAllBytes(Application.StartupPath + "\\file.xml")
//};
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension pdfRenderingExtension =
new GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));
outputProvider.OverwriteOutputFile = true;
pageReport.Document.Render(pdfRenderingExtension, outputProvider, pdfSetting);

Open the exported PDF and you should see the attachment. Check the left sidebar in Adobe Acrobat Reader DC.

Note: Metadata in PDFs is part of the Professional Edition. It is supported with the PDF version PDF/A-3b (or higher).

PDF/A Support Limitations

The NeverEmbedFonts property is ignored, so all fonts of a report are embedded into the PDF document.
The Security.Encrypt property is ignored and the PDF export behaves as if this property is always set to False.
The OnlyForPrint property is ignored and the PDF export behaves as if this property is always set to False.
The DocumentToAddBeforeReport and DocumentToAddAfterReport properties of the PDF Rendering
Extension settings are ignored.
Transparent images lose their transparency when exported to PDF/A-1.
External hyperlinks are exported as plain text.

Rendering to Images
Image is the format that converts your report to an image file. You can use the ImageRenderingExtension
('ImageRenderingExtension Class' in the on-line documentation) to your render you report in this format. Make sure
that you select an ImageType ('ImageType Property' in the on-line documentation) to any of the six different image
formats available: BMP, GIF, JPEG, TIFF, and PNG.

ActiveReports 14 202

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: By default, the image rendering extension creates a separate file for each page in a report and adds an index
to each corresponding file name (for example, image001.PNG, image002.PNG, etc).

To render the entire report as a single image, set the Pagination ('Pagination Property' in the on-line
documentation) setting to False.

The following steps provide an example of rendering a report in Image format.

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Image package in the project.
5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event.

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport()
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyImage")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim imageSetting As New GrapeCity.ActiveReports.Export.Image.Page.Settings()
Dim setting As GrapeCity.ActiveReports.Extensibility.Rendering.ISettings = imageSetting

' Set the rendering extension and render the report.
Dim imageRenderingExtension As New
GrapeCity.ActiveReports.Export.Image.Page.ImageRenderingExtension()
Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = True

reportDocument.Render(imageRenderingExtension, outputProvider, imageSetting)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport();
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new
GrapeCity.ActiveReports.Document.PageDocument(report);

ActiveReports 14 203

Copyright © 2020 GrapeCity, Inc. All rights reserved.

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyImage");
outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Image.Page.Settings imageSetting = new
GrapeCity.ActiveReports.Export.Image.Page.Settings();
GrapeCity.ActiveReports.Extensibility.Rendering.ISettings setting = imageSetting;

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Image.Page.ImageRenderingExtension
imageRenderingExtension = new
GrapeCity.ActiveReports.Export.Image.Page.ImageRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = true;

reportDocument.Render(imageRenderingExtension, outputProvider, imageSetting);

Image Rendering Properties

ActiveReports offers several options to control how reports render to Image.

Property Description

Compression
('Compression
Property' in the on-
line documentation)

Sets or returns a value which specifies the compression to be used when exporting.

Dither ('Dither
Property' in the on-
line documentation)

Specifies whether the image should be dithered when saving to a black and white output
format, like CCITT3 or Rle. This property has no effect if the CompressionScheme property is set
to Lzw or None(represents color output).

DpiX ('DpiX
Property' in the on-
line documentation)

Adjust the horizontal resolution of rendered images. The default value is 96.

DpiY ('DpiY Property'
in the on-line
documentation)

Adjust the vertical resolution of rendered images.

EndPage ('EndPage
Property' in the on-
line documentation)

The default value of 0 in this property renders all of the report pages. Otherwise, set this value
to the number of the last page to render. Please note that if the StartPage property is set to 0,
all of the pages of the report render. In order to use the EndPage property, you must set the
StartPage property to a valid non-zero number.

ActiveReports 14 204

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ImageType
('ImageType
Property' in the on-
line documentation)

Select the type of image to which you want to render the report. Supported types are BMP, GIF,
JPEG, TIFF, and PNG.

MarginBottom
('MarginBottom
Property' in the on-
line documentation)

Set the value in inches to use for the bottom margin of the image. The format is an integer or
decimal with "in" as the suffix, for example "1in" for 1 inch. By default, no margins are used. The
value set in this property overrides the report's settings.

MarginLeft
('MarginLeft
Property' in the on-
line documentation)

Set the value in inches to use for the left margin of the image. The format is an integer or
decimal with "in" as the suffix, for example "1in" for 1 inch. By default, no margins are used. The
value set in this property overrides the report's settings.

MarginRight
('MarginRight
Property' in the on-
line documentation)

Set the value in inches to use for the right margin of the image. The format is an integer or
decimal with "in" as the suffix, for example "1in" for 1 inch. By default, no margins are used. The
value set in this property overrides the report's settings.

MarginTop
('MarginTop
Property' in the on-
line documentation)

Set the value in inches to use for the top margin of the image. The format is an integer or
decimal with "in" as the suffix, for example "1in" for 1 inch. By default, no margins are used. The
value set in this property overrides the report's settings.

PageHeight
('PageHeight
Property' in the on-
line documentation)

Set the value in inches to use for the height of the image. The format is an integer or decimal
with "in" as the suffix, for example "11in" for 11 inches. The value set in this property overrides
the report's settings.

PageWidth
('PageWidth
Property' in the on-
line documentation)

Set the value in inches to use for the height of the image. The format is an integer or decimal
with "in" as the suffix, for example "11in" for 11 inches. The value set in this property overrides
the report's settings.

Pagination
('Pagination
Property' in the on-
line documentation)

By default, each page of a report is rendered as a separate image. Set this value to False to
render the entire report as a single image.

PrintLayoutMode
('PrintLayoutMode
Property' in the on-
line documentation)

Select how to lay out the pages of the report in the image.

OneLogicalPageOnSinglePhysicalPage
TwoLogicalPagesOnSinglePhysicalPage
FourLogicalPagesOnSinglePhysicalPage
EightLogicalPagesOnSinglePhysicalPage
BookletMode (lays the pages out for booklet printing)

Quality ('Quality
Property' in the on-
line documentation)

Gets or sets the quality of the report to be rendered as an image.

ActiveReports 14 205

Copyright © 2020 GrapeCity, Inc. All rights reserved.

SizeToFit ('SizeToFit
Property' in the on-
line documentation)

By default, rendered report pages are not resized to fit within the selected image size. Set this
value to True to resize the report pages.

Start Page
('StartPage Property'
in the on-line
documentation)

The default value of zero in this and the EndPage properties render all of the report pages to
images. Otherwise, set this value to the number of the first page to render.

WatermarkAngle
('WatermarkAngle
Property' in the on-
line documentation)

Specify the degree of angle for the watermark text on the image. Valid values range from 0 to
359, where 0 is horizontal, left to right.

WatermarkColor
('WatermarkColor
Property' in the on-
line documentation)

Select a color for the watermark text on the image. The default value for the watermark color is
gray, but you can select any Web, System, or Custom color.

WatermarkFont
('WatermarkFont
Property' in the on-
line documentation)

Set the font to use for the watermark to any valid System.Drawing.Font.

WatermarkTitle
('WatermarkTitle
Property' in the on-
line documentation)

Sets text (i.e. CONFIDENTIAL) to use as the watermark on the image.

Interactivity

Reports rendered as images do not support any of the interactive features of Data Dynamics Reports. Any data hidden at
the time of export is hidden in the image. To display all data in a drill-down report, expand all toggle items prior to
exporting.

Rendering to XML
XML is a useful format for delivering data to other applications as the resulting XML file opens in an internet browser. You
can use the XmlRenderingExtension ('XmlRenderingExtension Class' in the on-line documentation) to render your
report in this format. XML is a good format for delivering data to other applications. The resulting XML file opens in an
internet browser

The following steps provide an example of rendering a report in the Xml format.

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Xml package in the project.

ActiveReports 14 206

Copyright © 2020 GrapeCity, Inc. All rights reserved.

5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event.

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport()Dim reportDocument As New
GrapeCity.ActiveReports.Document.PageDocument(report)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyXml")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim xmlSetting As New GrapeCity.ActiveReports.Export.Xml.Page.Settings()
Dim setting As GrapeCity.ActiveReports.Extensibility.Rendering.ISettings = xmlSetting

' Set the rendering extension and render the report.
Dim xmlRenderingExtension As New
GrapeCity.ActiveReports.Export.Xml.Page.XmlRenderingExtension()Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = True

reportDocument.Render(xmlRenderingExtension, outputProvider, xmlSetting)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new
GrapeCity.ActiveReports.PageReport();GrapeCity.ActiveReports.Document.PageDocument
reportDocument = new GrapeCity.ActiveReports.Document.PageDocument(report);

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyXml");
outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Xml.Page.Settings xmlSetting = new
GrapeCity.ActiveReports.Export.Xml.Page.Settings();
GrapeCity.ActiveReports.Extensibility.Rendering.ISettings setting = xmlSetting;

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Xml.Page.XmlRenderingExtension xmlRenderingExtension =
new GrapeCity.ActiveReports.Export.Xml.Page.XmlRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,

ActiveReports 14 207

Copyright © 2020 GrapeCity, Inc. All rights reserved.

System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = true;

reportDocument.Render(xmlRenderingExtension, outputProvider, xmlSetting);

Xml Rendering Properties

ActiveReports offers several options to control how reports render to Xml.

Property Description

Encoding
('Encoding
Property' in the
on-line
documentation)

Select the encoding schema to use in the XML transformation.

XslStylesheet
('XslStylesheet
Property' in the
on-line
documentation)

Select the existing XSL Stylesheet file to use to transform the resulting XML file. Note: When using
the XslStylesheet option, be sure to save the file in the correct file format, such as HTML.

Controlling XML Output

You can also control XML output through properties on the individual report controls. These properties are:

DataElementName Indicates the name to use for the data element or attribute.
DataElementOutput Indicates whether the report controls renders in the XML output.
DataElementStyle Indicates whether a text box renders as an element or an attribute.
DetailDataCollectionName Indicates the name to use for the collection of all instances of the detail group in the
XML output.
DetailDataElementName Indicates the name to use for instances of the detail group in the XML output.
DetailDataElementOutput Indicates whether the details appear in the XML output.
DataInstanceElementOutput Indicates whether a list appears in the XML output. (This property is ignored if there
is a grouping in the list.)
DataInstanceName Indicates the name to use for instances of the list in the XML output.

Interactivity

XML format does not support interactive features except that when rendering a report to XML, complete drill-down data
is shown regardless of whether the data is rendered in expanded state or not.

ActiveReports 14 208

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Rendering to Excel
Microsoft Excel is one of the formats to which you can render your report using ExcelRenderingExtension
('ExcelRenderingExtension Class' in the on-line documentation). You can export excel files in two formats, i.e. Xls and
Xlsx.

The following steps provide an example of rendering a report in the Microsoft Excel format.

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Excel package in the project.
5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event.

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport()
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyExcel")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim excelSetting As New
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtensionSettings()
excelSetting.FileFormat = GrapeCity.ActiveReports.Export.Excel.Page.FileFormat.Xls
Dim setting As GrapeCity.ActiveReports.Extensibility.Rendering.ISettings =
excelSetting

' Set the rendering extension and render the report.
Dim excelRenderingExtension As New
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtension()
Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = True

reportDocument.Render(excelRenderingExtension, outputProvider,
setting.GetSettings())

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new

ActiveReports 14 209

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.PageReport();
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new
GrapeCity.ActiveReports.Document.PageDocument(report);

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new
System.IO.DirectoryInfo(@"C:\MyExcel");
outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtensionSettings
excelSetting = new
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtensionSettings();
excelSetting.FileFormat = GrapeCity.ActiveReports.Export.Excel.Page.FileFormat.Xls;
GrapeCity.ActiveReports.Extensibility.Rendering.ISettings setting = excelSetting;

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtension
excelRenderingExtension = new
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = true;

reportDocument.Render(excelRenderingExtension, outputProvider,
setting.GetSettings());

Excel Rendering Properties

ActiveReports offers several options to control how reports render to Microsoft Excel.

Property Description

PageSettings
('PageSettings
Property' in the on-
line
documentation)

Returns an ExcelRenderingExtensionPageSettings ('ExcelRenderingExtensionPageSettings
Class' in the on-line documentation) object for initializing Excel file print setting.

Pagination
('Pagination
Property' in the on-
line
documentation)

Forces pagination or galley report layout mode.

RightToLeft Shows direction of sheets from right to left.

ActiveReports 14 210

Copyright © 2020 GrapeCity, Inc. All rights reserved.

('RightToLeft
Property' in the on-
line
documentation)

Security ('Security
Property' in the on-
line
documentation)

Returns an ExcelRenderingExtensionSecurity ('ExcelRenderingExtensionSecurity Class' in the
on-line documentation) object for initializing document security.

UseDefaultPalette
('UseDefaultPalette
Property' in the on-
line
documentation)

Indicates whether to export the document with the default Excel palette.

FileFormat
('FileFormat
Property' in the on-
line
documentation)

Specifies the output format of the Excel document, i.e. Xls or Xlsx.

OpenXmlStandard
('OpenXmlStandard
Property' in the on-
line
documentation)

Specifies the level of Open XML document conformance on exporting in Xlsx file format. You can
choose from the following values:

Strict

The default value.

Transitional

The Excel file generated by scheduled task execution using Strict (the default value of
OpenXMLStandard) cannot be viewed on IOS devices. To change the default value of
OpenXMLStandard, add following configuration settings in GrapeCity.ActiveReports.config file:
<ReportingConfiguration>
 <Extensions>
 <Render>
 <Extension Name="Excel"
Type="GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtension,
GrapeCity.ActiveReports.Export.Excel, Culture=neutral, PublicKeyToken=cc4967777c49a3ff" >
 <Settings>
 <Property Name="OpenXmlStandard" Value="Transitional"
Type="GrapeCity.ActiveReports.Export.Excel.Page.OpenXmlStandard,
GrapeCity.ActiveReports.Export.Excel, Culture=neutral, PublicKeyToken=cc4967777c49a3ff"/>
 </Settings>
 </Extension>
 </Render>
 </Extensions>
</ReportingConfiguration>

MultiSheet Indicates whether to generate a single-sheet or multi-sheet Excel document.

ActiveReports 14 211

Copyright © 2020 GrapeCity, Inc. All rights reserved.

('MultiSheet
Property' in the on-
line
documentation)

EnableToggles
('EnableToggles
Property' in the on-
line
documentation)

Allows to export collapsible rows in the detail and row groups of the Table control of an RDL
report. This property gets displayed in the Export menu when the Pagination property is set to
False.

Interactivity

Reports rendered in Excel support a number of interactive features like Bookmarks and Hyperlinks. However, in case you
have any data hidden at the time of rendering (like in a drill-down report), it does not show up in the output. It is
recommended that you expand all toggle items prior to rendering.

Limitations

BackgroundImage and rounded corners (for Shape and Container) are not exported.
Overlapping controls are not supported and an incorrect result will be obtained in the case of export.
LineSpacing is not retained after export.
Exported FormattedText control does not preserve styles and formatting. It exports FormattedText as TextBox with
plain text without any tags.
Barcodes are exported as an image object so scanning of barcode image may fail in some cases. It depends on
printer settings and the scanner quality. Barcodes may be blurred on export and the caption may get truncated in
case of physical printing.
Exported Boolean values are displayed in uppercase in both Xls and Xlsx files.
TextIndent property and FillCharacter property of the TableOfContents control's Level setting are not supported.
Text decoration (Underline and LineThrough) gets applied to the indented area, when left padding is applied to the
TableOfControl's levels.
When a report is exported to Excel, CharWrap mode is ignored.
Following properties of ActiveReports are not exported to Excel, since Excel does not have such settings:

CharacterSpacing
BorderWidth
MinCondenseRate

Rendering to Word
The WordRenderingExtension ('WordRenderingExtension Class' in the on-line documentation) class renders your
reports to the native Microsoft Word file formats. You can export Page reports and RDL reports to Microsoft Office Open
XML (OOXML) format (.Docx) or Word HTML format (.Doc) using the FileFormat ('FileFormat Property' in the on-line
documentation) property.

The Word HTML format (.Doc) provides greater layout accuracy for Page and RDL Reports in Microsoft Word, on the other
hand, OOXML format (.Docx) provides excellent editing experience for the exported reports.

The OOXML format (.Docx) is recommended in the following scenarios:

ActiveReports 14 212

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Open exported reports in a wide range of applications: Users can open and modify the exported Word
document in any of the following applications.

Microsoft Office 2007 - 2013
Microsoft Office for Mac 2008 - 2011
iWord and Pages v4 or higher for OS X
LibreOffice
Google Quickoffice for Android
Documents Free (Mobile Office Suite) by SavySoda for iOS

Note: Besides the applications listed above, .Docx files exported through ActiveReports
WordRenderingExtension class might work in other applications that support the .Docx format.

Customize reports after exporting: Positioning and arrangement of report elements in the exported document is
implemented using the OOXML format (.Docx) which provides a natural document flow for editing the exported
documents.
Use Word automation features: With support for automation features in the OOXML format (.Docx), tasks that
previously required manual adjustments in the exported Word document are now handled automatically. Report
elements such as page header and footer, expressions, heading levels, and table of contents are automatically
transformed to the OOXML format (.Docx).
Set compatibility mode: You can render a report as a Word document that is compatible with Microsoft Word
2007-2010 as well as Microsoft Word 2013 using the DocumentCompatibleVersion property.

The following steps provide an example of rendering a report in the Word format (.doc or .docx).

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Word package in the project.
5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event to render your report in .OOXML or .HTML file format.

Note: To export your report in Word HTML format (.Doc), change the FileFormat property option from OOXML
to HTML format as depicted below.
wordSetting.FileFormat = GrapeCity.ActiveReports.Export.Word.Page.FileFormat.HTML

To export a report in .Docx file format

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport()
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyWord")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim wordSetting As New GrapeCity.ActiveReports.Export.Word.Page.Settings()

ActiveReports 14 213

Copyright © 2020 GrapeCity, Inc. All rights reserved.

' Set the FileFormat property to .OOXML.
wordSetting.FileFormat = GrapeCity.ActiveReports.Export.Word.Page.FileFormat.OOXML

' Set the rendering extension and render the report.
Dim wordRenderingExtension As New
GrapeCity.ActiveReports.Export.Word.Page.WordRenderingExtension()
Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = True

reportDocument.Render(wordRenderingExtension, outputProvider, wordSetting)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport();
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new
GrapeCity.ActiveReports.Document.PageDocument(report);

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyWord");
outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Word.Page.Settings wordSetting = new
GrapeCity.ActiveReports.Export.Word.Page.Settings();

// Set the FileFormat property to .OOXML.
wordSetting.FileFormat = GrapeCity.ActiveReports.Export.Word.Page.FileFormat.OOXML;

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Word.Page.WordRenderingExtension wordRenderingExtension =
new GrapeCity.ActiveReports.Export.Word.Page.WordRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = true;

reportDocument.Render(wordRenderingExtension, outputProvider, wordSetting);

Word Rendering Extension Properties

ActiveReports 14 214

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveReports offers several options to control how reports render to Microsoft Word.

Common properties (HTML and OOXML)

Property Description

Author ('Author
Property' in the
on-line
documentation)

Sets the name of the author that appears in the Author field of the Properties dialog in the rendered
Word document.

FileFormat
('FileFormat
Property' in the
on-line
documentation)

Sets the output file format to HTML (.Doc) or OOXML (.Docx). By default the file format is set to HTML
format.

Title ('Title
Property' in the
on-line
documentation)

Sets the title for a document that appears in the Title field of properties dialog in the rendered Word
document.

HTML format

Property Description

BaseUrl
('BaseUrl
Property' in the
on-line
documentation)

Sets the base URL for any relative hyperlinks that appear in the Hyperlink base field of the Properties
dialog in the rendered Word document.

Generator
('Generator
Property' in the
on-line
documentation)

Sets the identity of the document generator in the rendered Word document.

PageHeight
('PageHeight
Property' in the
on-line
documentation)

Sets the height of the report pages in inches for the rendered Word document. The value in this
property overrides the original settings in the report.

PageWidth
('PageWidth
Property' in the
on-line
documentation)

Sets the width of the report pages in inches for the rendered Word document. The value in this
property overrides the original settings in the report.

UseMhtOutput Indicates whether Mht output is to be used for the resultant Word document or not.

ActiveReports 14 215

Copyright © 2020 GrapeCity, Inc. All rights reserved.

('UseMhtOutput
Property' in the
on-line
documentation)

OOXML format

Property Description

CompanyName ('CompanyName
Property' in the on-line
documentation)

Sets the name of the organization or company that appears in the Company field of
Properties dialog in the rendered Word document.

DocumentCompatibilityVersion
('DocumentCompatibilityVersion
Property' in the on-line
documentation)

Sets the compatibility mode of the document to the latest version (Microsoft Word
2013) or to previous versions (Microsoft Word 2007 - 2010) of Word. By default
the compatibility version is set to Word2007.

DpiX ('DpiX Property' in the on-
line documentation)

Sets the horizontal resolution of the images in the rendered Word document. By
default DpiX is set to 96.

DpiY ('DpiY Property' in the on-
line documentation)

Sets the vertical resolution of the images in the rendered Word document. By
default DpiY is set to 96.

PageOrientation ('PageSettings
Property' in the on-line
documentation)

Sets a value that specifies whether the document pages should be printed in
portrait or landscape in the rendered Word document.

PaperSize ('PageSettings
Property' in the on-line
documentation)

Sets the paper size for the page.

Password ('SecuritySettings
Property' in the on-line
documentation)

Sets a password that must be provided to open the rendered Word document.

ReadOnlyRecommended
('SecuritySettings Property' in
the on-line documentation)

Sets a value that indicates whether Microsoft Office Word displays a message
whenever a user opens the document, suggesting that the document is read-only.

WritePassword
('SecuritySettings Property' in
the on-line documentation)

Sets the write password that is required for saving changes in the rendered Word
document.

TOCAutoUpdate
('TOCAutoUpdate Property' in
the on-line documentation)

Automatically updates the TableOfContents control while opening the Word
document. By default TOCAutoUpdate is set to False.

Limitations

HTML format

ActiveReports 14 216

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Although background colors for controls export to Word documents, background colors for sections such as Body
and Page Header or Footer do not.
The BackgroundImage is not supported when used in TextBox and CheckBox controls embedded in data regions
such as Table and Tablix.
The BackgroundImage is not supported for reports, and for List, Container, Shape, FormattedText, Table, and
Tablix report controls.
KeepTogether property of Table/Tablix is not supported.
Some FormattedText tags, for example bi and <s>es</s>, are not exported to Word.
Image alignments other than the defaults (HorizontalAlignment: Left and VerticalAlignment: Top) are not
supported.
Checkbox color does not affect the color of the square.

OOXML format

Report properties

The LineSpacing property of a report's style sheet, StartPageNumber property of the report, PrintOnLastPage
property of the PageHeader and PageFooter are not supported.
For Page reports, some of the NumberingStyle property (DocumentMap settings) options are not supported.
The supported NumberingStyle options are Decimal, DecimalZero, LowerLetter, UpperLetter, LowerRoman,
UpperRoman.
Background image is not supported for report item except Shape.
The BackgroundRepeat property of the BackgroundImage is not supported in Page (Page reports) and Body (RDL
reports).
For RDL reports, Background and Border properties of Page Header or Page Footer are not supported.
Microsoft Word calculates the columns width by the document width. A RDL report calculates the columns width
based on the body width, therefore the width of columns in an exported RDL report may differ from an
original RDL report.
In Microsoft Word, the maximum supported page size is 22 inches (55.87 cm) wide and 22 inches (55.87 cm) high.
If an exported report exceeds the maximum size, some data may be lost during export.
In Microsoft Word, a table can have a maximum of 63 columns. If an exported report table has more than 63
columns, then the table is split and therefore an exported document may differ from an original report.
A repeated Table Footer (the RepeatOnNewPage property of Table Footer) or multiple repeated headers on a
single page are not supported.
The OverflowPlaceHolder control is not supported.
If the PrintOnFirstPage property of PageHeader or PageFooter is set to False, then both PageHeader and
PageFooter will not be available on the first page of the exported document.
The report data gets rendered only in first theme if a Page report containing multiple themes is exported to Docx
format.

Report controls

The Inset, Outset, and Windowsinset border styles (in BorderStyle property) are not supported.
The Map, Chart, Image, Barcode, SparkLine, Bullet, and CustomControl report controls are exported as
an image. If a report control uses the BorderColor, BorderStyle or BorderWidth properties, a report is exported as a
table.
The BorderWidth property of report controls is not exported as is and may differ from the original BorderWidth
value.
PageBreaks are not fully supported. The report contents exported to the Word's table or cell items do not support
the page breaks.

ActiveReports 14 217

Copyright © 2020 GrapeCity, Inc. All rights reserved.

For Shape report control, if the BorderStyle property is set to Double, it is exported as Solid.
For Line control, if LineStyle property is set to Double/Transparent, it is exported as Solid.
For BandedList data region, only the BandedList Header is repeated on each page. The BandedList Footer,
GroupHeaders and GroupFooters are not supported.
Tablix data region is exported as a single table without horizontal split.
For Image control, Border properties and Padding properties are not supported if the Sizing property is set to
Clip.
For Container report control, rounding corners (the RoundingRadius property) are not supported.
RepeatToFill property for Table and Tablix is not supported.
Images embedded in a Table data region are not properly supported.
Pagination is not supported due to difference in the layouts of ActiveReports and Word.
Page Number in Section (Page N of M(Section)) is not supported.
KeepTogether property of Table/Tablix is not supported.
Horizontal aligned images may overlap in iWord.
The properties set to the 'Body' region of a Subreport are not exported.
If a report contains overlapped report controls, these controls appear side by side in an exported Word document
and not overlapped as in the Designer’s preview.

FormattedText

FormattedText is exported as it is. It does not support all HTML and CSS features.
The <a> tag without a href attribute, <abbr> and <q> tags are exported as simple text.
For Border Styles - Inset and Outset, the tags are not exported.
The BackgroundColor, BackgroundImage, BorderColor, BorderStyle and BorderWidth properties are
not supported.
Anchors with an href attribute are exported as hyperlinks.
Headers like h1, h2, etc. are exported as corresponding Microsoft Word built-in header styles.

TableOfContents

The TextAlign, DisplayPageNumber, TextIndent, and Overline TextDecoration properties are
not supported.
The Source property of the Document Map settings is not fully supported. Only the Headings Only option
of the Source property is supported.
If a report uses more than one TableOfContents controls, the properties of the first TableOfContents
are applied to the other TableOfContents controls in the exported document.
The FillCharacter property is exported as dots.
The background of TOC control appears black on opening exported file in LibreOffice.

TextBox/CheckBox

If the Format property is set to Numeric or Date, the exported TextBox has a right alignment. Other Format
values are exported with the left alignment.
The Transparent color for text is exported as white.
The Underline for numbered lists, Right-To-Left (RTL) option of the Direction, Angle, ShrinkToFit and
Overline TextDecoration properties are not supported.
The action Jump to report is not supported.
The tb-rl (vertical text) option of the WritingMode property is not supported. TextBoxes with the
WritingMode property set to tb-rl are exported as lr-tb.
The NoWrap option of the WrapMode property is exported as WordWrap.
The LineSpacing property of an exported document will differ from the original report. This is because in
Microsoft Word, the line spacing is calculated by the font size value of a report control plus the line spacing

ActiveReports 14 218

Copyright © 2020 GrapeCity, Inc. All rights reserved.

value of a report control.
For CheckBox control, the CheckAlignment property is exported as MiddleRight for TopRight,
MiddleRight, and BottomRight options. Other CheckAlignment options are exported as MiddleLeft.
Paddings exceeding 31 inches is exported as border spaces.
Right-To-Left text direction does not work in the LibreOffice.
On exporting to Word 2013, when the background (shading) and padding are applied on a paragraph, the
padding is also applied to the background, so a gap between the border and the background appears on
the left side of the paragraph.
CharWrap property is not supported.
The fields in a TextBox control are evaluated as follows:

PageNumber and TotalPages expressions are exported as special fields, evaluated by a text editor
(Word or other).
The fields placed in Header or Footer are automatically evaluated.
The fields placed in the Body should be re-evaluated manually by clicking 'Update field' from context
menu.

Interactivity

HTML format

Reports rendered in a Word format supports both Bookmarks and Hyperlinks. However, if visibility toggling (like in a drill-
down report) is essential to your report, it is recommended to use the HTML rendering extension. If a Document map is
essential to your report, it is recommended to use the PDF rendering extension.

OOXML format

Hyperlinks - Hyperlinks on TextBox and Image controls are rendered as hyperlinks in the Microsoft Word.
Bookmarks - Bookmarks in the report are rendered as Microsoft Word bookmarks. Bookmark links are rendered as
hyperlinks that link to the bookmark labels within the document.
TOC AutoUpdate - TableofContents control in the report is rendered as Microsoft Word table of contents.

Rendering to CSV
Comma-Separated Values (CSV) is a form of structured data in plain text. The text in a CSV file is saved as series of values
separated by comma. You can use the CsvRenderingExtension ('CsvRenderingExtension Class' in the on-line
documentation) to render your report in this format.

The following steps provide an example of rendering a report in the Csv format.

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Xml package in the project.
5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event.

Visual Basic.NET code. Paste INSIDE the Form Load event.

ActiveReports 14 219

Copyright © 2020 GrapeCity, Inc. All rights reserved.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport()
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyCSV")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim csvSettings As New
GrapeCity.ActiveReports.Export.Text.Page.CsvRenderingExtension.Settings()
csvSettings.ColumnsDelimiter = ","
csvSettings.Encoding = System.Text.Encoding.UTF8
csvSettings.NoHeader = "True"
csvSettings.QuotationSymbol = """"c
csvSettings.RowsDelimiter = vbCr & vbLf

' Set the rendering extension and render the report.
Dim csvRenderingExtension As New
GrapeCity.ActiveReports.Export.Text.Page.CsvRenderingExtension()
Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = True

reportDocument.Render(csvRenderingExtension, outputProvider, csvSettings)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport();
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new
GrapeCity.ActiveReports.Document.PageDocument(report);

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyCSV");
outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Text.Page.CsvRenderingExtension.Settings csvSettings =
new GrapeCity.ActiveReports.Export.Text.Page.CsvRenderingExtension.Settings();
csvSettings.ColumnsDelimiter = ",";
csvSettings.Encoding = Encoding.UTF8;
csvSettings.NoHeader = "True";
csvSettings.QuotationSymbol = '"';
csvSettings.RowsDelimiter = "\r\n";

ActiveReports 14 220

Copyright © 2020 GrapeCity, Inc. All rights reserved.

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Text.Page.CsvRenderingExtension csvRenderingExtension =
new GrapeCity.ActiveReports.Export.Text.Page.CsvRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = true;

reportDocument.Render(csvRenderingExtension, outputProvider, csvSettings);

Rendering to JSON
JavaScript Object Notation (JSON) is a text-based data format in which the data is stored in the hierarchical form. You can
use the JsonRenderingExtension ('JsonRenderingExtension Class' in the on-line documentation) to render your
report in this format.

The following steps provide an example of rendering a report in the Json format.

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and specify a name for

the project in the Name field.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Add reference to GrapeCity.ActiveReports.Export.Xml package in the project.
5. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
6. Add the following code inside the Form_Load event.

Visual Basic.NET code. Paste INSIDE the Form Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport()
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Create an output directory.
Dim outputDirectory As New System.IO.DirectoryInfo("C:\MyJSON")
outputDirectory.Create()

' Provide settings for your rendering output.
Dim jsonSettings As New
GrapeCity.ActiveReports.Export.Text.Page.JsonRenderingExtension.Settings()
jsonSettings.Formatted = True

' Set the rendering extension and render the report.
Dim jsonRenderingExtension As New
GrapeCity.ActiveReports.Export.Text.Page.JsonRenderingExtension()

ActiveReports 14 221

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Dim outputProvider As New
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name))

' Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = True

reportDocument.Render(jsonRenderingExtension, outputProvider, jsonSettings)

C# code. Paste INSIDE the Form Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport();
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new
GrapeCity.ActiveReports.Document.PageDocument(report);

// Create an output directory.
System.IO.DirectoryInfo outputDirectory = new System.IO.DirectoryInfo(@"C:\MyJSON");
outputDirectory.Create();

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Text.Page.JsonRenderingExtension.Settings jsonSettings =
new GrapeCity.ActiveReports.Export.Text.Page.JsonRenderingExtension.Settings();
jsonSettings.Formatted = true;

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Text.Page.JsonRenderingExtension jsonRenderingExtension =
new GrapeCity.ActiveReports.Export.Text.Page.JsonRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(outputDirectory,
System.IO.Path.GetFileNameWithoutExtension(outputDirectory.Name));

// Overwrite output file if it already exists.
outputProvider.OverwriteOutputFile = true;

reportDocument.Render(jsonRenderingExtension, outputProvider, jsonSettings);

Editable PDFs
The InputField report control provides support for editable fields in an exported PDF report. You can edit text entered
into the Value property of InputField once a Page or RDL report is exported to PDF.

ActiveReports 14 222

Copyright © 2020 GrapeCity, Inc. All rights reserved.

InputField supports two types – Text and Checkbox, which you can choose in the InputType property. Each selected type
has its own set of properties.

In case of the Text type, the InputField control gets the set of properties of the TextBox control. If the Checkbox type is
selected, then the control inherits the set of properties of the CheckBox control.

Being part of the Professional Edition, the InputField control is not displayed in an exported file with the Standard license.

Export Filters
ActiveReports provides custom components for exporting reports into six formats. Each export format has special
features, however, not all formats support all of the features that you can use in your reports. Here are the unique usage
possibilities of each format, along with any limitations inherent in each.

HTML Export: For displaying on Web browsers or e-mail. You can access the HTML Export filter by adding the
reference to GrapeCity.ActiveReports.Export.Html.dll in your project.
PDF Export: For preserving formatting on different computers. You can access the PDF Export filter by adding the
reference to GrapeCity.ActiveReports.Export.Pdf.dll in your project.
Text Export : For transmitting raw data, with little or no formatting. You can access the Text Export filter by adding
the reference to GrapeCity.ActiveReports.Export.Xml.dll in your project.
RTF Export: For preserving some formatting, but allowing reports to be opened with Word or WordPad. You can
access the RTF Export filter by adding the reference to GrapeCity.ActiveReports.Export.Word.dll in your project.
Excel Export: For displaying as spreadsheets. You can access the Excel Export filter by adding the reference to
GrapeCity.ActiveReports.Export.Excel.dll in your project.
TIFF Export: For transmitting fax. You can access the Image Export filter by adding the reference to
GrapeCity.ActiveReports.Export.Image.dll in your project.

Some export implementations are also discussed as under:

Exporting Reports using Export Filters: Elaborates exporting Page Report, RDL Report, or Section Report using the
export filters.
Basic Spreadsheet with SpreadBuilder: Discusses creating Excel spreadsheets cell by cell for maximum control.
Custom Font Factory (Pro Edition): Explains adding custom fonts in PDFs when using export filters in a Medium
trust level environment.
Font Linking: Explains how to get correct export output when fonts on a deployment machine do not have the
glyphs that are used in a development environment.

ActiveReports 14 223

Copyright © 2020 GrapeCity, Inc. All rights reserved.

HTML Export
HTML, or hypertext markup language, is a format that opens in a Web browser. The HTML export filter has a number of
useful properties that allow you to control your output. You can set the properties either in code using the HTMLExport
('HtmlExport Class' in the on-line documentation) object after adding reference to the following package in your
project:

GrapeCity.ActiveReports.Export.Html

HTML Export Properties

Property Valid Values Description

BookmarkStyle
('BookmarkStyle
Property' in the on-
line documentation)

Html (default) or None Set to Html to generate a page of bookmarks from
the bookmarks in the report. If the report has no
bookmarks, this setting is ignored.

CharacterSet
('CharacterSet
Property' in the on-
line documentation)

Big5, EucJp, HzGb2312, Ibm850,
Iso2022Jp, Iso2022Kr, Iso8859_1,
Iso8859_2, Iso8859_5, Iso8859_6,
Koi8r, Ksc5601, ShiftJis, UnicodeUtf16,
UnicodeUtf8 (default)

Select the IANA character set that you want to use in
the meta tag in the header section of the HTML
output. This property only takes effect if the
IncludeHtmlHeader property is set to True.

CreateFramesetPage
('CreateFramesetPage
Property' in the on-
line documentation)

True or False (default) Set to True to generate a set of frames that display a
page of bookmarks (if available) in the left frame and
the report document in the right frame. The HTML
output uses the specified filename with the extension
.frame.html.

IncludeHtmlHeader
('IncludeHtmlHeader
Property' in the on-
line documentation)

True (default) or False Set to False if you want to embed the HTML output in
another HTML document. Otherwise, the HTML output
includes the usual HTML, HEAD, and BODY elements.

IncludePageMargins
('IncludePageMargins
Property' in the on-
line documentation)

True or False (default) Set to True to include the report's margins in the
HTML output.

MultiPage ('MultiPage
Property' in the on-
line documentation)

True or False (default) Set to True to create a separate HTML page for each
page of the report. Otherwise, the HTML output is a
single page.

OutputType
('OutputType
Property' in the on-
line documentation)

DynamicHtml (default) or LegacyHtml Set to LegacyHtml to use tables for positioning and
avoid the use of cascading style sheets (CSS).
Otherwise, positioning of controls is handled in the
CSS.

RemoveVerticalSpace
('RemoveVerticalSpace
Property' in the on-
line documentation)

True or False (default) Set to True if the OutputType property is set to
LegacyHtml and you plan to print the output from a
browser. This removes white space from the report to
help improve pagination. Otherwise, vertical white

ActiveReports 14 224

Copyright © 2020 GrapeCity, Inc. All rights reserved.

space is kept intact.

Title ('Title Property'
in the on-line
documentation)

Any String Enter the text to use in the header section's title. This
is displayed in the title bar of the browser.

More information on output types
By default, the report is exported as DynamicHtml (DHTML), with cascading style sheets (CSS). Using the OutputType
('OutputType Property' in the on-line documentation) property, you can change the output to LegacyHtml (HTML).
Neither of the output types creates a report that looks exactly like the one you display in the viewer because of
differences in formats. Following is the usage of each output type and controls to avoid in each.

DynamicHtml (DHTML)

Usage:

Create Web reports with Cascading Style Sheets (CSS)
Open in Web browsers

Does not support:

Diagonal line control
Control borders

LegacyHtml (HTML)

Usage:

Create archival reports
Open in Web browsers

Does not support:

Line control
Control borders
CrossSectionLine controls
Overlapping controls
MinCondenseRate property

Limitations of HTML Export Filter

Line spacing in exported HTML can be different from the line spacing in Viewer.
There may be space between the borders of each control in exported file.
Text in RichTextBox may appear overlapped.
Vertical Text and Bookmarks are not supported.

PDF Export
PDF, or portable document format, opens in the Adobe Reader. The PDF export filter has a number of useful properties
that allow you to control your output. You can set the properties either in code using the PDFExport ('PdfExport Class'

ActiveReports 14 225

Copyright © 2020 GrapeCity, Inc. All rights reserved.

in the on-line documentation) object after adding reference to the following package in your project:

GrapeCity.ActiveReports.Export.Pdf

With the PDF export filter, you can use the feature Font Linking.

Note: PDF export and font linking features are only available in the Professional Edition of ActiveReports.

PDF Export Properties

Property Valid Values Description

ConvertMetaToPng
('ConvertMetaToPng
Property' in the on-
line documentation)

True or False
(default)

Set to True to change any Windows metafile images to PNG format to keep
the file size down. If the report has no metafiles, this setting is ignored.

ExportBookmarks
('ExportBookmarks
Property' in the on-
line documentation)

True (default) or
False

Set to True to generate bookmarks from the bookmarks in the report. If the
report has no bookmarks, this setting is ignored. To control how the
exported bookmarks are displayed, use Options.DisplayMode detailed
below.

FontFallback
('FontFallback
Property' in the on-
line documentation)

String of font
families

Set a comma-delimited string of font families to be used to lookup glyphs
missing in the original font.

ImageQuality
('ImageQuality
Property' in the on-
line documentation)

Lowest, Medium
(default), or
Highest

Set to Highest in combination with a high value in the ImageResolution
property to yield the best printing results when converting Windows
metafiles (.wmf). Set to Lowest to keep the file size down. If the report has
no metafiles, this setting is ignored.

ImageResolution
('ImageResolution
Property' in the on-
line documentation)

75 - 2400 dpi Set to 75 dpi to save space, 150 dpi for normal screen viewing, and 300 dpi
or higher for print quality. Use this property in combination with
ImageQuality (highest) to yield the best results when the report contains
metafiles or the Page.DrawPicture API is used. Neither property has any
effect on other image types.

NeverEmbedFonts
('NeverEmbedFonts
Property' in the on-
line documentation)

A semicolon-
delimited string of
font names

List all of the fonts that you do not want to embed in the PDF file to keep
the file size down. This can make a big difference if you use a lot of fonts in
your reports.

Options ('Options
Property' in the on-
line documentation)

See below Expand this property to see a group of sub properties. These settings
control how the Adobe Reader displays the output PDF file when it is first
opened. See the table below for details.

Security ('Security
Property' in the on-
line documentation)

See below Expand this property to see a group of sub properties. These settings
control encryption and permissions on the output PDF file. See the table
below for details.

Signature
('Signature
Property' in the on-

A valid
PdfSignature
object

This must be set up in code. For more information, see Digital Signature
Pro .

ActiveReports 14 226

Copyright © 2020 GrapeCity, Inc. All rights reserved.

line documentation)

Version ('Version
Property' in the on-
line documentation)

Pdf12, Pdf13,
Pdf14, Pdf15,
Pdf16, Pdf17,
PdfA1a, PdfA1b,
PdfA2a, PdfA2b,
or PdfA2u

Sets the version of the PDF format the exported document is saved in.

PDF (Portable Document Format)

Usage:

Create printable reports whose formats do not change from machine to machine.
Open in Adobe Reader.

Does not support:

Dash and dot border patterns appear to look longer in the PDF output than in the ActiveReports Window Forms
Viewer.
Multiple lines of vertical text is not supported in Page and RDL reports.
Transparent background-color in charts are not supported.
The InputField control is not displayed in an exported file with the Standard license.

Options and Security

When you expand the Options or Security properties in the Properties window, the following sub properties are revealed.

PDF Options Properties

Property Valid Values Description

Application
('Application
Property' in the
on-line
documentation)

String Set to the string value that you want to display in the Adobe Document
Properties dialog, Description tab, Application field.

Author ('Author
Property' in the
on-line
documentation)

String Set to the string value that you want to display in the Adobe Document
Properties dialog, Description tab, Author field.

CenterWindow
('CenterWindow
Property' in the
on-line
documentation)

True or False (default) Set to True to position the Adobe Reader window in the center of the
screen when the document is first opened.

DisplayMode None (default), Select how to display bookmarks when the document is first opened.

ActiveReports 14 227

Copyright © 2020 GrapeCity, Inc. All rights reserved.

('DisplayMode
Property' in the
on-line
documentation)

Outlines, Thumbs, or
FullScreen None (default) bookmarks are not displayed until opened by the

user.
Outlines shows bookmarks in outline format.
Thumbs shows bookmarks as thumbnails.
FullScreen shows the document in full screen, and bookmarks are
not displayed.

DisplayTitle
('DisplayTitle
Property' in the
on-line
documentation)

True or False (default) Set to True to use the Title string entered in the Title property below.
Otherwise, the file name is used.

FitWindow
('FitWindow
Property' in the
on-line
documentation)

True or False (default) Set to True to expand the window to fit the size of the first displayed page.

HideMenubar
('HideMenubar
Property' in the
on-line
documentation)

True or False (default) Set to True to hide the menu in the Adobe Reader when the document is
first opened.

HideToolbar
('HideToolbar
Property' in the
on-line
documentation)

True or False (default) Set to True to hide the toolbars in the Adobe Reader when the document is
first opened.

HideWindowUi True or False (default) Set to True to hide the scrollbars and navigation controls in the Adobe
Reader when the document is first opened, displaying only the document.

Keywords
('Keywords
Property' in the
on-line
documentation)

String Enter keywords to display in the Adobe Document Properties dialog,
Description tab, Keywords field.

OnlyForPrint
('OnlyForPrint
Property' in the
on-line
documentation)

True or False (default) Set to indicate whether the PDF is only for print.

Subject
('Subject
Property' in the
on-line

String Enter a subject to display in the Adobe Document Properties dialog,
Description tab, Subject field.

ActiveReports 14 228

Copyright © 2020 GrapeCity, Inc. All rights reserved.

documentation)

Title ('Title
Property' in the
on-line
documentation)

String Enter a title to display in the Adobe Document Properties dialog,
Description tab, Title field.

Set DisplayTitle to True to display this text in the title bar of the Adobe
Reader when the document is opened.

PDF Security Properties

Property Valid Values Description

Encrypt ('Encrypt
Property' in the on-
line documentation)

True or False (default) Sets or returns a value indicating whether the document
is encrypted.

OwnerPassword
('OwnerPassword
Property' in the on-
line documentation)

String Enter the string to use as a password that unlocks the
document regardless of specified permissions.

Permissions
('Permissions
Property' in the on-
line documentation)

None, AllowPrint,
AllowModifyContents, AllowCopy,
AllowModifyAnnotations, AllowFillIn,
AllowAccessibleReaders, or
AllowAssembly

Combine multiple values by dropping down the
selector and selecting the check boxes of any
permissions you want to grant. By default, all of the
permissions are granted.

Use128Bit
('Use128Bit
Property' in the on-
line documentation)

True (default) or False Set to False to use 40 bit encryption with limited
permissions. (Disables AllowFillIn,
AllowAccessibleReaders, and AllowAssembly
permissions.)

UserPassword
('UserPassword
Property' in the on-
line documentation)

String Enter the string to use as a password that unlocks the
document using the specified permissions. Leave this
value blank to allow anyone to open the document
using the specified permissions.

PDF Print Presets Properties

ActiveReports allows you to preset the printing properties for PDF report exports using the PrintPresets ('PrintPresets
Class' in the on-line documentation) class. This prepopulates the print settings in the Print dialog box. Please see Use
PDF Printing Presets for more information.

Note: The print preset properties are only available with the Professional Edition license. An evaluation message is
displayed when used with the Standard Edition license.

Property Description

PageScaling
('PageScaling Property'

Specify scaling for the printable area.You can select Default to shrink to the printable area,
or you can select None for the actual size.

ActiveReports 14 229

Copyright © 2020 GrapeCity, Inc. All rights reserved.

in the on-line
documentation)

DuplexMode
('DuplexMode Property'
in the on-line
documentation)

Specify the duplex mode of the printer. For the best results with the duplex option, the
selected printer should support duplex printing. You can choose from the following values,

Simplex: Prints on one side of the paper. This is the default value.
Duplex (Flip on long edge): Prints on both sides of the paper with paper flip on the
long edge.
Duplex (Flip on short edge): Prints on both sides of the paper with paper flip on
the short edge.

PaperSourceByPageSize
('PaperSourceByPageSize
Property' in the on-line
documentation)

Determines the output tray based on PDF page size, rather than page setting options. This
option is useful when printing PDFs with multiple page sizes, where different sized output
trays are available. By default, this option is set to False.

PrintPageRange
('PrintPageRange
Property' in the on-line
documentation)

Specify the range of page numbers as 1-3 or 1, 2, 3.

NumberOfCopies
('NumberOfCopies
Property' in the on-line
documentation)

Specify the number of copies to print. You can select any number of copies from 2 to 5, or
select Default to specify a single copy.

Note: These properties are available in PDF version 1.7 or higher. The PageScaling property is supported in PDF
version 1.6.

Metadata in PDFs

Adding Metadata

ActiveReports 14 230

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Metadata such as keywords, descriptions are used by the search engines to narrow down the searches. You can add a
number of predefined accessors, such as title, contributors, creators, copyright, description, etc.
using AdditionalMetadata ('AdditionalMetadata Property' in the on-line documentation) property. The allowed
namespaces are:

Dublin Core Properties
XMP Core Properties
PDF Properties

VB code. Paste INSIDE the Form Load event.

Dim sectionReport As GrapeCity.ActiveReports.SectionReport = New
GrapeCity.ActiveReports.SectionReport()
Dim xtr As XmlReader = XmlReader.Create(Application.StartupPath & "\SectionReport1.rpx")
sectionReport.LoadLayout(xtr)
sectionReport.Run()
Dim pdfExport As GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport = New
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport()
Dim metadata1 = New AdditionalMetadataInfo With {
 .[Namespace] = AdditionalMetadataNamespace.PurlOrg, ' Dublin Core Properties
 .Key = "title",
 .Value = "Invoice"
}
pdfExport.Options.AdditionalMetadata.Add(metadata1)
pdfExport.Export(sectionReport.Document, Application.StartupPath & "\MyPDF.pdf")

C# code. Paste INSIDE the Form Load event.

GrapeCity.ActiveReports.SectionReport sectionReport = new
GrapeCity.ActiveReports.SectionReport();
XmlReader xtr = XmlReader.Create(Application.StartupPath + "\\SectionReport1.rpx");
sectionReport.LoadLayout(xtr);
sectionReport.Run();
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport pdfExport = new

ActiveReports 14 231

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://helpx.adobe.com/audition/user-guide.html/audition/using/viewing-editing-xmp-metadata.ug.html
https://helpx.adobe.com/acrobat/using/pdf-properties-metadata.html

GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport();
// Add meta data
var metadata1 = new AdditionalMetadataInfo
{
 Namespace = AdditionalMetadataNamespace.PurlOrg, //Dublin Core Properties
 Key = "title",
 Value = "Invoice"
 };

pdfExport.Options.AdditionalMetadata.Add(metadata1);
pdfExport.Export(sectionReport.Document, Application.StartupPath + "\\MyPDF.pdf");

Adding Attachment

You can include an attachment as metadata (such as invoices) to exported PDFs using Attachments ('Attachments
Property' in the on-line documentation) property. This property allows to attach files such as a .xml or a .txt file in PDF.
Below is example to export Section reports to PDF and attach a file to the exported PDF.

VB code. Paste INSIDE the Form Load event.

Dim sectionReport As GrapeCity.ActiveReports.SectionReport = New
GrapeCity.ActiveReports.SectionReport()
Dim xtr As XmlReader = XmlReader.Create(Application.StartupPath + _, SectionReport1.rpx)
sectionReport.LoadLayout(xtr)
sectionReport.Run()
Dim pdfExport As GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport = New
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport()
Dim attachment = New GrapeCity.ActiveReports.Export.Pdf.AttachmentInfo With {
 .Name = "file.txt",
 .Content = System.IO.File.ReadAllBytes("D:\Reports\file.txt"),

ActiveReports 14 232

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 .Description = "attachment description"
}
pdfExport.Options.Attachments.Add(attachment)
pdfExport.Export(sectionReport.Document, Application.StartupPath & "\MyPDF.pdf")

C# code. Paste INSIDE the Form Load event.

GrapeCity.ActiveReports.SectionReport sectionReport = new
GrapeCity.ActiveReports.SectionReport();
XmlReader xtr = XmlReader.Create(Application.StartupPath + \\SectionReport1.rpx);
sectionReport.LoadLayout(xtr);
sectionReport.Run();
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport pdfExport = new
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport();
// Add attachment
var attachment = new GrapeCity.ActiveReports.Export.Pdf.AttachmentInfo
 {
 Name = "file.txt",
 Content = System.IO.File.ReadAllBytes(@"D:\Reports\file.txt"),
 Description = "attachment description" //optional
 };
pdfExport.Options.Attachments.Add(attachment);
pdfExport.Export(sectionReport.Document, Application.StartupPath + "\\MyPDF.pdf");

Open the exported PDF and you should see the attachment. Check the left sidebar in Adobe Acrobat Reader DC.

Note: Metadata in PDFs is part of the Professional Edition. It is supported with the PDF version PDF/A-3b (or higher).

PDF/A Support Limitations

The NeverEmbedFonts property is ignored, so all fonts of a report are embedded into the PDF document.
The Security.Encrypt property is ignored and the PDF export behaves as if this property is always set to False.
The OnlyForPrint property is ignored and the PDF export behaves as if this property is always set to False.
Transparent images lose their transparency when exported to PDF/A-1.
External hyperlinks are exported as plain text.

Text Export
Plain Text is a format that opens in Notepad or Microsoft Excel depending on the file extension you use in the filePath
parameter of the Export ('Export Method' in the on-line documentation) method. Use the extension .txt to open files
in Notepad, or use .csv to open comma separated value files in Excel. The Text export filter has a number of useful
properties that allow you to control your output. You can set the properties either in code using the TextExport
('TextExport Class' in the on-line documentation) object after adding reference to the following package in your
project:

GrapeCity.ActiveReports.Export.Xml

Text Export Properties

ActiveReports 14 233

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Valid Values Description

Encoding ('Encoding
Property' in the on-line
documentation)

System.Text.ASCIIEncoding (default),
System.Text.UnicodeEncoding,
System.Text.UTF7Encoding,
or System.Text.UTF8Encoding

This property can only be set in code. Enter
an enumerated system encoding value to
use for character encoding.

PageDelimiter
('PageDelimiter Property'
in the on-line
documentation)

String Enter a character or sequence of characters
to mark the end of each page.

QuotationSymbol
('QuotationSymbol
Property' in the on-line
documentation)

Char Enter a character to use as quotation mark in
the exported text file. Only fields with
delimiter characters are quoted.

SuppressEmptyLines
('SuppressEmptyLines
Property' in the on-line
documentation)

True (default) or False Set to False if you want to keep empty lines
in the exported text file. Otherwise, white
space is removed.

TextDelimiter
('TextDelimiter Property'
in the on-line
documentation)

String Enter a character or sequence of characters
to mark the end of each text field. This is
mainly for use with CSV files that you open
in Excel.

Text
Usage:

Create plain text files
Create comma (or other character) delimited text files
Feed raw data to spreadsheets or databases
Open in Notepad or Excel (comma delimited)

Does not support anything but plain fields and labels:

Supports plain text only with no formatting other than simple delimiters
Supports encoding for foreign language support

RTF Export
RTF, or RichText format, opens in Microsoft Word, and is native to WordPad. This export does not render reports exactly
as they appear in the Viewer due to inherent differences in the formats.

 You can set the property either in code using the RTFExport ('RtfExport Class' in the on-line documentation) object
after adding reference to the following package in your project:

GrapeCity.ActiveReports.Export.Word

ActiveReports 14 234

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Usage:

Create word-processing files
Open in Word or WordPad

Does not support:

Section or Page back colors
Angled text

Excel Export
XLSX is a format that opens in Microsoft Excel as a spreadsheet. This export does not render reports exactly as they
appear in the Viewer due to inherent differences in the formats. The XLSX export filter has a number of useful properties
that allow you to control your output. You can set the properties either in code using the XLSExport ('XlsExport Class' in
the on-line documentation) object after adding reference to the following package in your project:

GrapeCity.ActiveReports.Export.Excel

Excel Export Properties

Property Valid
Values

Description

AutoRowHeight
('AutoRowHeight
Property' in the on-
line documentation)

True or
False
(default)

Set to True to have Excel set the height of rows based on the contents. Otherwise
XlsExport calculates the height of rows. In some cases this may make the output
look better inside Excel. However, a value of True may adversely affect pagination
when printing, as it may stretch the height of the page.

DisplayGridLines
('DisplayGridLines
Property' in the on-
line documentation)

True
(default)
or False

Set to False to hide grid lines in Excel.

FileFormat
('FileFormat Property'
in the on-line
documentation)

Xls97Plus
(default)
or Xls95
or Xlsx

Set to Xls95 to use Microsoft Excel 95, Xls95Plus to use Microsoft Excel 97and Xlsx
to use Microsoft Excel 2007 or newer.

MinColumnWidth
('MinColumnWidth
Property' in the on-
line documentation)

Single
(VB) or
float (C#)

Set the number of inches that is the smallest width for a column in the exported
spreadsheet.

Tip: Larger values reduce the number of empty columns in a sheet. Set this value
to 1 inch or more to get rid of small empty columns.

MinRowHeight
('MinRowHeight
Property' in the on-
line documentation)

Single
(VB) or
float (C#)

Set the number of inches that is the smallest height for a row in the exported
spreadsheet.

Tip: Larger values force the export to place more controls on a single line by
reducing the number of rows added to match blank space. Set this value to .25
inches or more to get rid of small empty rows.

MultiSheet True or Set to True to export each page of your report to a separate sheet within the Excel

ActiveReports 14 235

Copyright © 2020 GrapeCity, Inc. All rights reserved.

('MultiSheet Property'
in the on-line
documentation)

False
(default)

file. This can increase performance and output quality at the cost of memory
consumption for reports with complex pages and a lot of deviation between page
layouts.

In general, use False for reports with more than 30 pages.

PageSettings
('PageSettings
Property' in the on-
line documentation)

Set a print orientation and paper size of Excel sheet.

RemoveVerticalSpace
('RemoveVerticalSpace
Property' in the on-
line documentation)

True or
False
(default)

Set to True to remove vertical empty spaces from the spreadsheet. This may
improve pagination for printing.

Security ('Security
Property' in the on-
line documentation)

Set a password and username to protect the excel spreadsheet.

UseCellMerging
('UseCellMerging
Property' in the on-
line documentation)

True or
False
(default)

Set to True to merge cells where applicable.

UseDefaultPalette
('UseDefaultPalette
Property' in the on-
line documentation)

True or
False
(default)

Set to True to export document with Excel default palette.

Usage:

Create spreadsheets
Open in Microsoft Excel

Does not support:

Line control
Shapes (other than filled rectangles)
CrossSectionBox and CrossSectionLine controls
Overlapping controls
Borders on controls with angled text
Angled text
CheckBox control (only its text element is exported)

TIFF Export
TIFF, or tagged image file format, opens in the Windows Picture and Fax Viewer or any TIFF viewer. This export looks very
much like the report as it displays in the viewer, but it is a multi-page image, so the text cannot be edited. The TIFF export
filter has a couple of useful properties that allow you to control your output. You can set the properties either in code
using the TIFFExport ('TiffExport Class' in the on-line documentation) object after adding reference to the following
package in your project:

ActiveReports 14 236

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.Export.Image

TIFF Export Properties

Property Valid Values Description

CompressionScheme
('CompressionScheme
Property' in the on-
line documentation)

None, Rle, Ccitt3 (default), Ccitt4 or Lzw Select an enumerated value to use for color
output control:

None delivers color output with no
compression.
Rle (run-length encoding) is for 1, 4, and 8
bit color depths.
Ccitt3 and Ccitt4 are for 1 color depth,
and are used in old standard faxes.
Lzw (based on Unisys patent) is for 1, 4,
and 8 bit color depths with lossless
compression.

Dither ('Dither
Property' in the on-
line documentation)

True or False (default) Set to True to dither the image when you save it
to a black and white format (Ccitt3, Ccitt4 or Rle).
This property has no effect if the
CompressionScheme is set to Lzw or None.

DpiX ('DpiX Property'
in the on-line
documentation)

Integer (VB) or int (C#) greater than 0 Set the horizontal resolution of a report when
exporting to TIFF format. The default value is
200.

Setting the DpiX or DpiY property to large values
can cause the rendered image to be too large
and not enough memory in system can be
allocated to the bitmap.

DpiY ('DpiY Property'
in the on-line
documentation)

Integer (VB) or int (C#) greater than 0 Set the vertical resolution of a report when
exporting to TIFF format. The default value is
196.

Setting the DpiX or DpiY property to large values
can cause the rendered image to be too large
and not enough memory in system can be
allocated to the bitmap.

Usage:

Create optical archive reports
Send reports via fax machines
Open in image viewers
Generates an image of each page. 100% WYSIWYG.

Exporting Reports using Export Filters

ActiveReports 14 237

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveReports provides various export filters that can be used to export Page, Section and Rdl Reports to the supported file formats.

Note: In ActiveReports, by default, the NuGet packages are located in the ...\GrapeCity\ActiveReports 14\NuGet folder.

Use the following steps to export reports through export filters. These steps assume that you have already created a Windows Application and added the export
controls to your Visual Studio toolbox. For more information, see Adding ActiveReports Controls.

To export a report
1. Create a new project or open an existing Windows Forms Application in Visual Studio.
2. If you are creating a new project, select any of the ActiveReports 14 Page Report, ActiveReports 14 RDL Report, or ActiveReports 14 Section Report (xml-

based), in the New Project dialog and click OK.

If you are using an existing project, in the Solution Explorer, right-click the project and select Add > New Item.
3. Select any of the report items from ActiveReports 14 Page Report, ActiveReports 14 RDL Report, or ActiveReports 14 Section Report (xml-based), and click

Add.
4. Install Export packages from nuget as follows:

i) Go to Tools > Nuget Package Manager > Manage Nuget Packages for Solution...
ii) Browse the following packages one by one and click Install.
 GrapeCity.ActiveReports.Export.Excel
 GrapeCity.ActiveReports.Export.Html
 GrapeCity.ActiveReports.Export.Image
 GrapeCity.ActiveReports.Export.Pdf
 GrapeCity.ActiveReports.Export.Word
 GrapeCity.ActiveReports.Export.Xml

5. In your project's Bin>Debug folder, place the report.rpx (Section Report) or report.rdlx (Page/Rdl Report).
6. On the Form.cs or Form.vb, double-click the title bar to create the Form_Load event.
7. In Form_Load event, add the following code to add a report to your project.

To add Page/Rdl report to your project

Visual Basic.NET code. Paste INSIDE the Form_Load event.

' Create a page/Rdl report.
Dim rpt As New GrapeCity.ActiveReports.PageReport()
' Load the report you want to export.
' For the code to work, this report must be stored in the bin\debug folder of your project.
rpt.Load(New System.IO.FileInfo ("report.rdlx"))
Dim MyDocument As New GrapeCity.ActiveReports.Document.PageDocument (rpt)

C# code. Paste INSIDE the Form_Load event.

// Create a page/Rdl report.
GrapeCity.ActiveReports.PageReport rpt = new GrapeCity.ActiveReports.PageReport();
// Load the report you want to export.
// For the code to work, this report must be stored in the bin\debug folder of your project.
rpt.Load(new System.IO.FileInfo ("report.rdlx"));
GrapeCity.ActiveReports.Document.PageDocument MyDocument = new GrapeCity.ActiveReports.Document.PageDocument
(rpt);

To add Section report to your project

Visual Basic.NETcode. Paste INSIDE the Form_Load event.

' Create a Section report.
Dim rpt As New GrapeCity.ActiveReports.SectionReport()
' For the code to work, report.rpx must be placed in the bin\debug folder of your project.
Dim xtr As New System.Xml.XmlTextReader(Application.StartupPath + "\report.rpx")
rpt.LoadLayout(xtr)
rpt.Run()
Dim MyDocument As New GrapeCity.ActiveReports.Document.SectionDocument ("rpt")

C# code. Paste INSIDE the Form_Load event.

// Create a Section report.
GrapeCity.ActiveReports.SectionReport rpt = new GrapeCity.ActiveReports.SectionReport();
// For the code to work, report.rpx must be placed in the bin\debug folder of your project.
System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Application.StartupPath + "\\report.rpx");

ActiveReports 14 238

Copyright © 2020 GrapeCity, Inc. All rights reserved.

rpt.LoadLayout(xtr);
rpt.Run();
GrapeCity.ActiveReports.Document.SectionDocument MyDocument = new
GrapeCity.ActiveReports.Document.SectionDocument("rpt");

8. Add the following code to export Page, Rdl and Section Reports to multiple format.
This code is common for all the report types (.rpx and .rdlx).

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

' Export the report in HTML format.
Dim HtmlExport1 As New GrapeCity.ActiveReports.Export.Html.Section.HtmlExport()
HtmlExport1.Export(MyDocument, Application.StartupPath + "\HTMLExpt.html")

' Export the report in PDF format.
Dim PdfExport1 As New GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport()
PdfExport1.Export(MyDocument, Application.StartupPath + "\PDFExpt.pdf")

' Export the report in RTF format.
Dim RtfExport1 As New GrapeCity.ActiveReports.Export.Word.Section.RtfExport()
RtfExport1.Export(MyDocument, Application.StartupPath + "\RTFExpt.rtf")

' Export the report in text format.
Dim TextExport1 As New GrapeCity.ActiveReports.Export.Xml.Section.TextExport()
TextExport1.Export(MyDocument, Application.StartupPath + "\TextExpt.txt")

' Export the report in TIFF format.
Dim TiffExport1 As New GrapeCity.ActiveReports.Export.Image.Tiff.Section.TiffExport()
TiffExport1.Export(MyDocument, Application.StartupPath + "\TIFFExpt.tiff")

' Export the report in Excel format.
Dim XlsExport1 As New GrapeCity.ActiveReports.Export.Excel.Section.XlsExport()
' Set a file format of the exported excel file to Xlsx to support Microsoft Excel 2007 and newer versions.
XlsExport1.FileFormat = GrapeCity.ActiveReports.Export.Excel.Section.FileFormat.Xlsx
XlsExport1.Export(MyDocument, Application.StartupPath + "\XLSExpt.xlsx")

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

// Export the report in HTML format.
GrapeCity.ActiveReports.Export.Html.Section.HtmlExport HtmlExport1 = new
GrapeCity.ActiveReports.Export.Html.Section.HtmlExport();
HtmlExport1.Export(MyDocument, Application.StartupPath + "\\HTMLExpt.html");

// Export the report in PDF format.
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport PdfExport1 = new
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport();
PdfExport1.Export(MyDocument, Application.StartupPath + "\\PDFExpt.pdf");

// Export the report in RTF format.
GrapeCity.ActiveReports.Export.Word.Section.RtfExport RtfExport1 = new
GrapeCity.ActiveReports.Export.Word.Section.RtfExport();
RtfExport1.Export(MyDocument, Application.StartupPath + "\\RTFExpt.rtf");

// Export the report in text format.
GrapeCity.ActiveReports.Export.Xml.Section.TextExport TextExport1 = new
GrapeCity.ActiveReports.Export.Xml.Section.TextExport();
TextExport1.Export(MyDocument, Application.StartupPath + "\\TextExpt.txt");

// Export the report in TIFF format.
GrapeCity.ActiveReports.Export.Image.Tiff.Section.TiffExport TiffExport1 = new
GrapeCity.ActiveReports.Export.Image.Tiff.Section.TiffExport();
TiffExport1.Export(MyDocument, Application.StartupPath + "\\TIFFExpt.tiff");

ActiveReports 14 239

Copyright © 2020 GrapeCity, Inc. All rights reserved.

// Export the report in XLSX format.
GrapeCity.ActiveReports.Export.Excel.Section.XlsExport XlsExport1 = new
GrapeCity.ActiveReports.Export.Excel.Section.XlsExport();
// Set a file format of the exported excel file to Xlsx to support Microsoft Excel 2007 and newer versions.
XlsExport1.FileFormat = GrapeCity.ActiveReports.Export.Excel.Section.FileFormat.Xlsx;
XlsExport1.Export(MyDocument, Application.StartupPath + "\\XLSExpt.xlsx");

Note: When exporting a report to .MHT file by Export filters use htmlExport.Export(Document doc, Stream outputStream);
For more information, see HTML Export Method ('Export Method' in the on-line documentation).

9. Press F5 to run the application. The exported files are saved in the bin\debug folder.

Basic Spreadsheet with SpreadBuilder
Included with the ActiveReports Excel export filter is the SpreadBuilder API. With this utility, you can create Excel
spreadsheets cell by cell for maximum control. This walkthrough illustrates how to create a simple custom spreadsheet
and save it to an Excel file.

This walkthrough is split into the following activities:

Adding an ActiveReport to your project
Adding an GrapeCity.ActiveReports.Export.Excel assembly reference
Creating a Workbook using code
Viewing the Excel File

When you have completed this walkthrough, a custom Excel file like the following is created in the Bin/Debug subfolder
of your project's folder.

To add an GrapeCity.ActiveReports.Export.Excel assembly reference to your project

1. Create a new Visual Studio project.
2. From the Visual Studio Project menu, select Add Reference.
3. In the Add Reference window that appears, select GrapeCity.ActiveReports.Export.Excel assembly reference and

click OK.

Note: In ActiveReports, by default, the assemblies are located in NuGet packages are located in the
...\GrapeCity\ActiveReports 14\NuGet folder.

To add code to create a workbook

Double-click the title bar of the Windows Form to create an event-handling method for the Form_Load event. Add code to
the handler to:

Create a Workbook, and add a sheet to the Workbook's Sheets collection
Set properties on columns and rows in the sheet
Set values of cells in the sheet

ActiveReports 14 240

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Use the Save method to create an Excel file

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste inside the form Load event.

'Create a Workbook and add a sheet to its Sheets collection
Dim sb As New GrapeCity.SpreadBuilder.Workbook()
sb.Sheets.AddNew()

'Set up properties and values for columns, rows, and cells as desired
With sb.Sheets(0)
 .Name = "Customer Call List" 'sets the name of the sheet
 .Columns(0).Width = 2 * 1440 'sets the width of the 1st column
 .Columns(1).Width = 1440
 .Columns(2).Width = 1440
 .Rows(0).Height = 1440 / 4

'Header row
 .Cell(0, 0).SetValue("Company Name")
 .Cell(0, 0).FontBold = True
 .Cell(0, 1).SetValue("Contact Name")
 .Cell(0, 1).FontBold = True
 .Cell(0, 2).SetValue("Phone")
 .Cell(0, 2).FontBold = True

'First row of data
 .Cell(1, 0).SetValue("GrapeCity")
 .Cell(1, 1).SetValue("Mortimer")
 .Cell(1, 2).SetValue("(425) 880-2601")
End With

'Save the Workbook to an Excel file
sb.Save(Application.StartupPath & "\x.xls")
MessageBox.Show("Your Spreadsheet has been saved to " & Application.StartupPath &
"\x.xls")

To write the code in C#

C# code. Paste inside the form Load event.

//Create a Workbook and add a sheet to its Sheets collection
GrapeCity.SpreadBuilder.Workbook sb = new GrapeCity.SpreadBuilder.Workbook();
sb.Sheets.AddNew();

//Set up properties and values for columns, rows and cells as desired
sb.Sheets[0].Name = "Customer Call List";
sb.Sheets[0].Columns(0).Width = 2 * 1440;

ActiveReports 14 241

Copyright © 2020 GrapeCity, Inc. All rights reserved.

sb.Sheets[0].Columns(1).Width = 1440;
sb.Sheets[0].Columns(2).Width = 1440;
sb.Sheets[0].Rows(0).Height = 1440/4;

//Header row
sb.Sheets[0].Cell(0,0).SetValue("Company Name");
sb.Sheets[0].Cell(0,0).FontBold = true;
sb.Sheets[0].Cell(0,1).SetValue("Contact Name");
sb.Sheets[0].Cell(0,1).FontBold = true;
sb.Sheets[0].Cell(0,2).SetValue("Phone");
sb.Sheets[0].Cell(0,2).FontBold = true;

//First row of data
sb.Sheets[0].Cell(1,0).SetValue("GrapeCity");
sb.Sheets[0].Cell(1,1).SetValue("Mortimer");
sb.Sheets[0].Cell(1,2).SetValue("(425) 880-2601");

//Save the Workbook to an Excel file
sb.Save (Application.StartupPath + @"\x.xls");
MessageBox.Show("Your Spreadsheet has been saved to " + Application.StartupPath +
@"\x.xls");

To view the Excel File

1. Press F5 to run the project. A message box informs you of the exact location of the exported x.xls file.
2. Navigate to the Bin/Debug subfolder of your project's folder and open the XLS file.

Custom Font Factory (Pro Edition)
Typically, when using PDF export filters and drawing extensions in a Medium trust level environment or Azure web
application, ActiveReports does not have access to the System Fonts folder due to security restrictions. Therefore, if your
reports use special glyphs or non-ASCII characters that are only found in certain fonts, the PDF output may be incorrect
on some machines.

The ActiveReports custom font factory allows you to embed any fonts you need in PDF in the Medium trust environment.
To deploy the necessary fonts with your Medium trust solution, you must add the used font files in the specific folder and
set up your web.config file.

ActiveReports looks for the custom fonts in the order as follows:

1. A font specified in the control.
2. A mapped specified font in the Substitute setting.
3. A font specified in the the AddFontLink setting (Pro Edition only).
4. A font specified in the SetFallbackFont setting (Pro Edition only).

Notice that you need to copy the required font files (.ttc, .ttf) manually into the font folder you are accessing.

Custom Font Factory in Windows Azure

ActiveReports 14 242

Copyright © 2020 GrapeCity, Inc. All rights reserved.

For your Azure project, you need to set the properties for all fonts in the project Fonts folder as follows:

1. Set Copy to Output Directory to Copy always.
2. Set BuildAction to Content.

To add a font factory section group

XML code. Paste INSIDE the configSections tags of the web.config file.

<sectionGroup name="ActiveReports.PdfExport">
<section name="FontFactory"
 type="GrapeCity.ActiveReports.Web.FontFactorySectionHandler,
 GrapeCity.ActiveReports.Web,
 Version=14.0.xxxxx.0, Culture=neutral, PublicKeyToken=cc4967777c49a3ff"
 requirePermission="false" />
</sectionGroup>

To create a font factory

Required fonts or the folder containing the required fonts are set in the font factory. Paste code like the following after
the configSections tag, but before the appSettings tag.

Note: Please make the required changes for the font that you wish to use. In case of the following sample code,
create a Font folder and copy the required font files (arial.ttf, tahoma.ttf, msgothic.ttc, simsun.ttc, gulim.ttc,
mingliu.ttc, micross.ttf).

XML code. Paste between configSections and appSettings tags of the web.config file.

<ActiveReports.PdfExport>
 <FontFactory Mode="File">
 <AddFolder VirtualPath="~/Fonts" Recurse="true"/>
 <Substitute Font="Helv" To="Helvetica"/>
 <SetFallbackFont Font="Arial"/>

 <!-- font link nodes -->
 <AddFontLink Font="Arial" List="SimSun,gulim,PMingLiU"/>
 <AddFontLink Font="Tahoma" List="MS UI Gothic,SimSun,gulim,PMingLiU"/>
 <AddFontLink Font="MS UI Gothic" List="SimSun,gulim,PMingLiU,Microsoft Sans
Serif" IsDefault="true"/>

 <!-- EUDC link nodes -->
 <DefaultEudcFont File="EUDC.tte"/>
 <AddEudcFont Font="MS UI Gothic" File="myEUDC1.tte"/>
 <AddEudcFont Font="Meiryo" File="myEUDC2.tte"/>
 </FontFactory>
</ActiveReports.PdfExport>

Note: For the Azure worker role project, use an absolute path instead of a virtual path in the code
above: <AddFolder Path="~/Fonts" Recurse="true"/>.

ActiveReports 14 243

Copyright © 2020 GrapeCity, Inc. All rights reserved.

As shown in the previous code, you can embed end-user defined characters (EUDCs) in the PDF output by modifying the
web.config file settings by deploying an EUDC file (.tte) to any location.

Configuration settings

EUDC configuration settings

Element Description

DefaultEUDCFont This is the node, like the SystemDefaultEudcFont entry in the registry file, that contains the
default EUDC font settings.

DefaultEUDCFont File Specifies the file name of the default EUDC file.

AddEudcFont This is the node that associates the EUDC file and the fontname. This node can be added
more than once.

AddEudcFont Font Specifies the font name.

AddEudcFont File Specifies the file name of the EUDC file to associate the above font.

FontFactory

Description: This is the main font factory node to which you can add fonts.

Attributes

Element Description

Mode Setting the Mode attribute to File allows to use a file based factory, or remove the attribute for
a Windows GDI factory.

Child Elements

None.

Parent Elements

Element Description

ActiveReports.PdfExport The assembly that contains the PdfExport namespace (PDF export, document options, and
security classes).

Example
<FontFactory Mode="File">

AddFolder

ActiveReports 14 244

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Description: Adds all TrueType fonts (.ttc, .ttf) from the specified folder.

Attributes

Element Description

Path Specifies the absolute path to the folder.

VirtualPath Specifies the relative path to the folder.

Recurse When set to True, it can read the subfolder. When set to False, it cannot read the subfolder.

Child Elements

None.

Parent Elements

Element Description

FontFactory This is the main font factory node to which you can add fonts.

Example
<AddFolder VirtualPath="~/Fonts" Recurse="true"/>

Substitute

Description: Maps an alternate name of fonts to their official names.

Attributes

Element Description

Font Specifies the abbreviated font name (e.g. "Helv").

To Specifies the official font name (e.g. "Helvetica").

Child Elements

None.

Parent Elements

Element Description

FontFactory This is the main font factory node to which you can add fonts.

ActiveReports 14 245

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Example
 <Substitute Font="Helv" To="Helvetica"/>

SetFallbackFont (Professional Edition only)

Description: In the Professional Edition, sets the font to use if a) the specified font is not installed, b) the Substitute font is
not specified or not installed, or c) the font links are not set or the needed glyphs are not found in the AddFontLink
setting.

Attributes

Element Description

Font Specifies the font name.

Child Elements

None.

Parent Elements

Element Description

FontFactory This is the main font factory node to which you can add fonts.

Example
 <SetFallbackFont Font="Arial"/>

AddFontLink (Professional Edition only)

Description: In the Professional Edition, there is the extra support for CJK glyphs. You can add font links that allow the
PdfExport to look up any glyphs missing from the specified font in the list of other fonts to check.

Attributes

Element Description

Font Specifies the font used in the reports.

List Specifies the comma-separated list of fonts to be used in case the glyph is not found.

Caution: The character style of the link won't be outputted in case the alternate font file
does not exist in the specified folder of the AddFolder setting.

IsDefault When set to True, indicates to use the specified list for any fonts that do not have their own

ActiveReports 14 246

Copyright © 2020 GrapeCity, Inc. All rights reserved.

font links.

Child Elements

None.

Parent Elements

Element Description

FontFactory This is the main font factory node to which you can add fonts.

Example
 <AddFontLink Font="Tahoma" List="MS UI Gothic,SimSun,gulim,PMingLiU"/>

Font Linking
Font linking helps resolve the situation when fonts on a deployment machine do not have the glyphs that are used in a
development environment. When you find such a glyph mismatch, there is a possibility that the PDF output on
development and deployment machines may be different.

In order to resolve this issue, the PDF export filter or the PDF rendering extension looks for the missing glyphs in the
installed fonts as follows:

Checks the system font link settings for each font that is used in the report.
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontLink\SystemLink registry key
stores the information on font links.
If font links are not set or the needed glyphs are not found, searches for the glyphs in the fonts declared in the
FontFallback Property (on-line documentation).
Uses glyphs from the font links collection to replace fonts that do not have their own declared linked fonts.
If necessary glyphs are not found by font links or in the fonts declared in the FontFallback property, glyphs from
Microsoft Sans Serif font are taken as the predefined font.

Note: Font Linking is only possible in the Professional Edition of ActiveReports.

Concepts
Learn about concepts that help you to understand how best to use ActiveReports.

Topic Content

ActiveReports Designer Learn what each of the tools and UI items on the report designer can help you to
accomplish.

ActiveReports Web
Designer

Learn about Web Designer in ActiveReports.

ActiveReports 14 247

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Designer Control (Pro
Edition)

Learn about Web Designer in ActiveReports.

Standalone Viewers Learn about the stand-alone designer and Viewer applications that help you create, edit
and view a report quickly.

Standalone ActiveReports
Designer

Learn about the stand-alone designer and Viewer applications that help you create, edit
and view a report quickly.

Page Report/RDL Report
Concepts

Learn basic concepts that apply to Page reports and RDL reports.

Section Report Concepts Learn basic concepts that apply to Section reports.

Visual Query Designer Learn about Visual Query Designer features and it's SQL capabilities.

Interactive Features Learn about various interactive features that affect your report output.

Report Parts Learn about reports and how to use them in different reports.

Common Concepts Learn how to set different properties to manage appearance of text in different controls.

Localization Learn about the ActiveReports localization model.

Section 508 Compliance Learn about Section 508 compliance.

ActiveReports Designer
ActiveReports offers an integrated designer that lets you create report layouts in Visual Studio and edit them at design
time, visually, and through code, script, or regular expressions. Like any form in Visual Studio, it includes a Property
Window with extensive properties for each element of the report, and also adds its own Toolbox filled with report
controls, and a Report Explorer with a tree view of report controls.

The designer supports three types of report layouts: section layout, page layout, and rdl layout.

Section Report Layout

This layout presents reports in three banded sections by default: page header, detail and page footer. You can remove the
page header and footer, add a report header and footer, and add up to 32 group headers and footers. Drag controls onto
these sections to display your report data. Reports designed in this layout are saved in RPX format.

ActiveReports 14 248

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Page Report Layout

This layout defines reports in pages where the same page layout can be used throughout the report or separate layout
pages are designed for complex reports. Reports designed in this layout are saved in Rdlx format.

RDL Report Layout

This layout defines reports where controls grow vertically to accommodate data. Reports designed in this layout are saved
in Rdlx format.

Note that a theme you select for your Visual Studio, is automatically applied to the ActiveReports Designer. For example,
if you select the Dark theme for your Visual Studio, this theme is applied automatically to the Designer. The Visual Studio
theme is extended to such ActiveReports Designer elements as Reports Library, Layer List, Report Explorer, and Group
Editor.

The theme integration works for all reports (Page, RDL, and Section) opened in supported Visual Studio versions.

ActiveReports 14 249

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In this section

Design View
Explore the elements of the design tab that appear for each report type.

Report Menu
Learn about the options available in the Report menu in Visual Studio.

Designer Tabs
Find general information about the Designer, Script, and Preview tabs of the designer.

Designer Buttons
Learn to control grid settings, drag and drop settings, and mouse modes on the designer.

Page Tabs
Explore the ways that you can use different page layouts in the same report in Page Reports.

Toolbar
Learn about the commands available in the ActiveReports Toolbar.

Report Explorer
Learn how you can use the Report Explorer to manage the report controls, data regions, parameters, and other items
in your reports.

Toolbox
Find information on controls you can use to design report layouts.

Properties Window
See an overview of how to access properties for report controls, data regions, report sections, and the report itself.

Rulers
Learn how you can use rulers to align your controls on the report design surface.

Scroll Bars
See an explanation of scroll bars including the new auto scrolling feature.

Snap Lines
Find information about snap lines, and how they work.

Zoom Support
Get the ability to zoom in or zoom out of your report layout.

Design View
The report designer is fully integrated with the Microsoft Visual Studio IDE. In this topic, we introduce the main parts

ActiveReports 14 250

Copyright © 2020 GrapeCity, Inc. All rights reserved.

of the designer in Section report, Page report, and RDL report to help you select the one to best suit your specific needs.

Report designer in section reports

In a section report, the designer offers the following features that you can use to create, design and edit a report.

Design Surface

The design surface offers a default report structure that contains a page header, a detail section, and a page footer along
with some grey area below these sections. Drag report controls and fields onto these sections to display your data. Use
section grab handles to drag a section's height up or down. Right click the report and select Insert to add other types of
header and footer section pairs.

DataSource Icon

The DataSource icon is located in the band along the top of the detail section. Click this icon to open the Report Data
Source dialog, where you can bind your report to any OLE DB, SQL, or XML data source. See Report Data Source Dialog
for more information

Section Collapse Icon

A Section Collapse icon (-) appears on each band adjacent to the section header. When you click the collapse icon the
section collapses and an expand icon (+) appears. Please note that section collapse is only available in the Designer tab.
All sections of the report are visible in the Preview tab or when the report is rendered.

Tip: In order to make a section invisible, set the Height property of the section to 0 or the Visible property to False.

Rulers

Rulers are located at the top and left of the design view. They help a user visualize the placement of controls in the report
layout and how they appear in print. Please note that you have to add the right and left margin widths to determine
whether your report fits on the selected paper size. The left ruler includes a grab handle for each section to resize the
section height. See Rulers for more information.

Grab Handles

Grab handles on the vertical ruler indicate the height of individual sections. You can drag them up or down to change
section heights, or double-click to automatically resize the section to fit the controls in it.

Designer Tabs

The designer provides three tabs: Designer, Script and Preview. You can create your report layout visually in the
Designer tab, add script to report events in the Script tab to implement .NET functionality, and see the result in the
Preview tab. See Designer Tabs for more information.

Designer Buttons

ActiveReports 14 251

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Designer buttons are located below the design surface next to the designer tabs. Dimension Lines, Hide Grid, Dots,
Lines, Snap to Lines, and Snap to Grid buttons help you to align report controls and data regions. The Select Mode and
Pan Mode buttons determine whether you select controls on the design surface, or move the visible area of a zoomed-in
report. See Designer Buttons for more information.

Zoom Bar

The zoom bar provides a slider that you drag to zoom in and out of the design surface, or you can use the Zoom in and
Zoom out buttons at either end of the slider. See Zoom Support for more information.

Report designer in page reports/RDL reports

In a page report or a RDL report, the designer offers the following features that you can use to create, design and edit a
report.

Design Surface

The design surface of a report appears initially as a blank page and grid lines. You can create your own layout and drag
report controls and fields onto the design surface to display your data.

Rulers

Use the ruler to determine how your report will look on paper. Please note that you have to add the right and left margin
widths to determine whether your report will fit on the selected paper size. See Rulers for more information.

Designer Tabs

The designer provides three tabs: Designer, Script and Preview. You can create your report layout visually in the
Designer tab, add script to report events in the Script tab to implement .NET functionality, and see the result in the
Preview tab. See Designer Tabs for more information.

Page Tabs(Page Report)

By default, the designer provides two page tabs, Page 1 and New, below the design surface. Each page tab represents a
layout page of the report. Page 1 represents the first page of your report, and you can click New to add another page to
your report. See Page Tabs for more information.

Designer Buttons

Designer buttons are located below the design surface next to the designer tabs. Dimension Lines, Hide Grid, Dots,
Lines, Snap to Lines, and Snap to Grid buttons help you to align report controls and data regions. The Select Mode and
Pan Mode buttons determine whether you select controls on the design surface, or move the visible area of a zoomed-in
report. See Designer Buttons for more information.

Zoom Bar

ActiveReports 14 252

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Zoom Bar provides a slider that you drag to zoom in and out of the design surface, or you can use the Zoom in and
Zoom out buttons at either end of the slider. See Zoom Support for more information.

Tip: ActiveReports provides some useful keyboard shortcuts for the controls placed on the design surface.

Arrow Keys: To move control by one grid line.
[Ctrl] + Arrow Keys: To move control by 1/100 inch (around 0.025 cms)
[Shift] + Arrow Keys: To increase or decrease the size of the control by one grid line.

Report Menu
The Report menu provides access to common reporting operations. To show the Report Menu in the Visual Studio menu
bar, select the Design View of the report in the ActiveReports Designer. This menu does not appear in the menu bar when
the report is not selected.

The following drop-down sections describe the Report menu items. Menu items differ based on the type of report layout
in use.

Note: The Report menu in Visual Studio 2019 is available as submenu under Extensions.

Report Menu for Section Reports

Menu Item Description

Save Layout Opens the Save As dialog to save the newly created report in RPX file format.

Load Layout Opens the Open dialog where you can navigate to any RPX file and open it in the designer.
Note that any changes to the current report are lost, as the layout file replaces the current
report in the designer.

Data Source Opens the Report Data Source dialog to bind a data source to the report.

Settings Opens the Report Settings dialog. See Report Settings Dialog for more information.

View

Designer
Script
Preview

Opens the Designer, Script or Preview tab. See Designer Tabs for more details.

Report Menu for Page and RDL Reports

Menu Item Description

Save Layout Opens the Save As dialog to save the newly created report in RDLX file format.

Load Layout Opens the Open dialog where you can navigate to any RDL, RDLX, RDLX-master file and open it
in the designer. Note that any changes to the current report are lost, as the layout file replaces
the current report in the designer.

Convert to Master Converts a RDL report to a Master Report.

ActiveReports 14 253

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Report (RDL Reports
only)

It disappears from the Report menu when a master report is applied to the report through Set
Master Report. See Master Reports (RDL) for more details.

Report Parameters Opens the Report dialog to the Parameters page where you can manage, add and delete
parameters.

Embedded Images Opens the Report dialog to the Images page, where you can select images to embed in a
report. Once you add images to the collection, they appear in the Report Explorer under the
Embedded Images node.

Report Properties Opens the Report dialog to the General page where you can set report properties such as the
author, description, page header and footer properties, and grid spacing.

Stylesheet Editor Opens the Stylesheet Editor dialog, where you can create, edit or remove styles. You can also
embed these styles in a style sheet or save them externally in *.rdlx-styles format. Embedded
style sheets appear under the Embedded Stylesheets node in the Report Explorer.

Set Master Report
(RDL Reports
only)

Open Local
File

Select Open Local File option to open the Open dialog, and then select a master report.

View

Designer
Script
Preview

Opens the Designer, Script or Preview tab. See Designer Tabs for more details.

Page Header (RDL
Reports only)

Toggles the report Page Header on or off.

Page Footer (RDL
Reports only)

Toggles the report Page Footer on or off.

Designer Tabs
The Designer has three tabs located at the bottom of the report design surface. Create a report layout in the Designer tab,
write a script in the Script tab to implement .NET functionality and see the result in the Preview tab.

Designer Tab

The Designer tab appears by default on your designer. This tab is used to design your report layout visually. You can
implement most of the design-time features here, drag controls from the toolbox to create a layout, bind data regions to
data, and set properties for the report and controls through the context menu.

ActiveReports 14 254

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tip: Layout-related features like designer buttons and zoom slider can be used in this tab to help you manage your
report display efficiently.

Script Tab

The Script tab opens the script editor, where you can provide VB.NET or C# functionality to the reports without compiling
the .vb or .cs files. You may use either Visual Basic or C# script in this tab with section reports, or Visual Basic with page
reports and RDL reports.

The generated reports serve as stand-alone reports which you can load, run, and display in the viewer control without the
designer. This feature is useful when distributing reports without recompiling.

In page reports/RDL reports, you can embed code blocks that you can reference in the expressions you use on report
controls. See Using Script for more information about using script.

In section reports, you can add code to object events. The two drop-down boxes in the script editor allow you to select
any section of the ActiveReport and any events associated with that section, or the report itself and related events. When
you select an event, the script editor generates a method stub for the event. See Add Code to Layouts Using Script for
more information about scripting in section reports.

Preview Tab

The Preview tab allows you to view your report without the need to actually run your project. This makes it easy to
quickly see the run-time impact of changes you make in the designer or the code.

This tab does not display data in the following conditions:

Code or script in the report class is incorrect.
Report class constructor has been changed.
Report data source has not been set correctly.
Settings have been implemented outside the report class
.mdb file is being copied in the project

When the report is inherited from a class other than ActiveReports, preview is possible only when the base class is in the
same project. If the base class is not in the same project and is referencing an external class library, you will not get a
preview in the Preview tab.

When adding a report directly to ASP.NET Web site, the Preview tab is not visible and thus you cannot preview.

ActiveReports 14 255

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Designer Buttons
Designer buttons are located to the right of the designer tabs along the bottom of the designer, and are enabled when
you are on the Designer tab. They allow you to control settings for the design surface.

Grid Settings
Dimension Lines

Dimension lines appear during a drag operation, and run from the borders of the report control or data region being
moved or resized to the edges of the report designer surface. Dimension lines let you track the location of the control as
you move it by displaying the distance between the control and the edge of the writable area of the report.

Button Type Behavior

Note: With section reports, you can change the number of grid columns and rows in the Report Settings dialog on
the Global Settings tab. With page reports and RDL reports, you can change the grid spacing in the Report Properties
dialog on the General tab.

Hide Grid

By default, grid lines and dots appear on the report design surface. You can click this button to hide the grid and design
your report on a blank page. Lines or dots are also removed from the design surface when you hide the grid, but Snap to
Lines or Snap to Grid settings remain unaffected.

Button Type Behavior

ActiveReports 14 256

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Show Dots

You can click this button to have dots appear on the design surface in between the grid lines to guide you in the
placement of controls.

Button Type Behavior

Show Lines

You can click this button to have faint grey lines appear on the design surface in between the grid lines to guide you in
the placement of controls.

Button Type Behavior

ActiveReports 14 257

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: Only one option out of Hide Grid, Show Dots and Show Lines can be selected at one time.

Control Drag and Drop Settings
These settings allow you to specify how you want controls to behave when you drag and drop them on the design
surface.

Tip: If you plan to export a report to Excel format, use Snap Lines or Snap to Grid to ensure that your controls are
aligned in columns and rows as it prevents overlapping. This makes the export to excel closer to how a report looks
at run or design time.

Snap Lines

This setting aligns the control you are dragging with other controls on the report design surface. When you drag the
control around, snap lines appear when it is aligned with other controls or with the edges of the report, and when you
drop it, it snaps into place in perfect alignment. See Snap Lines for more information.

Button Type Behavior

Snap to Grid

This setting aligns the control you are dragging with grid lines on the report design surface. When you drop the control, it

ActiveReports 14 258

Copyright © 2020 GrapeCity, Inc. All rights reserved.

snaps into place in alignment with the nearest grid mark. To place your controls freely on the report design surface, turn
this setting off.

Button Type Behavior

Mouse Modes
These settings allow you to specify how you want the mouse to behave in the designer.

Select Mode

In Select mode, when you click items on the report designer surface, you select them. Use this mode for editing, data
binding and styling in the Designer tab. An arrow cursor appears in the Select mode.

Button Type Behavior

Pan Mode

Use the Pan mode to make navigation easier. A hand cursor appears in Pan mode and you can navigate through your
report by pressing the left mouse button and dragging the report to the desired position.

Tip: To enable Pan mode while you are in Select Mode, hold down the middle mouse button and move to the
desired location with the hand cursor.

ActiveReports 14 259

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Button Type Behavior

Page Tabs
Page tabs appear in an Excel-like bar below the report design surface. This feature is only available in page reports, where
report layouts are designed on separate pages and you can control the way each page appears. Using page tabs, you can
select which page to view or edit, add new pages, remove existing pages, reorder pages, and create duplicate pages.

By default, a new report has a Page 1 tab and a New tab.

Page 1: This is the layout for the first page of the report. If no other page layouts exist, the layout on this page is
applied to the entire report.
New: Click to add a new page where you can create a layout for pages displayed after the first page.

Right-click any page tab (except the New tab) to get a context menu that allows you to Insert a new page, Duplicate the
page, or Delete the page.

Adding a new page

To add a new page, click the New tab.

A new page tab with an incremented page number appears to the right of any existing page tabs. This page has the same
page size and margins as the previous page. The New tab moves to the right of the newly added page.

Inserting a page

ActiveReports 14 260

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To insert a page, right-click the page tab and select Insert. A page is inserted to the left of the selected page. It has the
same page size and margins as the selected page.

Deleting a page

To delete a page, right-click the page tab that you want to remove and select Delete. This option is disabled if there is
only one page in the report.

Creating a copy of a page

To create a copy of a page, right-click on the page tab that you want to copy and select Duplicate. A copy of the selected
page appears to the right of the selected page.

Note: When the duplicate page contains a data region, ActiveReports replaces the data region with an
OverflowPlaceHolder on the new page. Reset
the GrapeCity.ActiveReports.PageReportModel.DataRegion.OverflowName property for the duplicated page to
maintain the overflow data chain between page tabs.

Reordering pages

To change the order of page tabs, drag a tab and drop it at the desired location. The tab is inserted in the chosen
location and the page number is updated according to its position. The page numbers of other tabs also change
automatically.

You can cancel the move operation by pressing the [Esc] key while dragging the tab.

Toolbar
ActiveReports provides a toolbar integrated with the Visual Studio IDE for quick access to report designing commands.
This toolbar is composed of buttons and dropdown lists which offer functions for a number of commonly used
commands.

To Show or Hide the Toolbar in Visual Studio
1. Create a new project or open an existing project in Visual Studio.
2. Right click on the Visual Studio toolbar and from the context menu that appears, select ActiveReports.

The ActiveReports toolbar appears under the Visual Studio menu bar. The toolbar options may differ based on whether
you have a section report, page report or a RDL report open.

See the description of each toolbar option in the tables below.

Note: Toolbar descriptions are grouped in a logical order for understanding. The buttons and dropdowns may
appear in a different order in the ActiveReports toolbar.

Text Decoration

Command Description

Style Sets the style for the selected report control.

ActiveReports 14 261

Copyright © 2020 GrapeCity, Inc. All rights reserved.

For details on setting styles in Page and RDL reports, see Working with Styles.

For details on setting styles in Section report, see Use External Style Sheets.

Font Sets the typeface of all the text in a control.

In a section report, for the RichTextBox control, typeface of only the selected text changes.
In a page report or a RDL report, in a data region like Tablix or Table, you can change the
typeface of the entire data region or only the selected TextBox within the region.

Font Size Sets the font size of all the text in a control.

In a section report, for the RichTextBox control, font size of only the selected text changes.
In a page report or a RDL report, for a data region like Tablix or Table, you can change the
font size of the entire data region or only the selected TextBox within the region.

Fore Color Opens a Choose Color dialog to set the text color of controls.

Back Color Opens a Choose Color dialog to set the background color of controls.

Bold Sets or removes text emphasis from the entire text of the control.

In section report, for the RichTextBox control, bold applies to the selected text only. In a
page report or a RDL report, for a data region like Tablix or Table, you can change the
emphasis of the entire text or only the text of the selected TextBox within the region.

Italic Sets or removes text slant for the entire text of the control.

In a section report, for the RichTextBox control, italic applies to the selected text only. In a
page report or a RDL report, for a data region like Tablix or Table, you can italicize the entire
text or only the text of the selected TextBox within the region.

Underline Sets or removes the text underline for the entire text of the control.

In a section report, for the RichTextBox control, underline applies to the selected text only.
In a page report or a RDL report, for a data region like Tablix or Table, you can also

ActiveReports 14 262

Copyright © 2020 GrapeCity, Inc. All rights reserved.

underline the entire text or only the text of the selected TextBox within the region.

Text Alignment

Command Description

Align Left Aligns the text to the left in the control area.

Center Aligns the text to the center in the control area.

Align Right Aligns the text to the right in the control area.

Align Justify Justifies the text in the control area.

Layout Editing

Command Description

Zoom
Out

Reduces the magnification level of the design surface and any elements within it.

Zoom In Increases the magnification level of the design surface and any elements within it.

Zoom Opens a dropdown list to set the magnification level of the design surface between 50% and 400%. Zoom
percentage is set to 100% by default.

Control Alignment

Command Description

Align to Grid Snaps the top left of the selected control to the closest gridline.

ActiveReports 14 263

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Align Lefts Aligns the selected controls with their left border coinciding with the left border of the primary control.
The vertical space separating the controls remains the same.

Align Rights Aligns the selected controls with their right border coinciding with the right border of the primary
control. The vertical space separating the controls remains the same.

Align Tops Aligns the selected controls with their top border coinciding with the top border of the primary control.
The horizontal space separating the controls remains the same.

Align
Middles

Aligns the selected controls vertically to the middle with respect to the primary control. The horizontal
space separating the controls remains the same.

Align
Bottoms

Aligns the selected controls with their bottom border coinciding with bottom border of the primary
control. The horizontal space separating the controls remains the same.

Control Resizing

Command Description

Make Same Width Resizes the width of the selected controls to the width of the primary control.

Make Same Height Resizes the height of the selected controls to the height of the primary control.

Make Same Size Resizes the size (width and height) of the selected controls to the size of the primary control.

Size to Grid Snaps the selected control to the closest gridline by resizing the control on all four sides.

Control Spacing

Command Description

Make Horizontal
Spacing Equal

Creates equal space between the selected controls with respect to the primary control, using the
outermost edges of the controls as end points.

Increase Horizontal
Spacing

Increases the horizontal spacing by one grid unit with respect to the primary control.

Decrease Decreases the horizontal spacing by one grid unit with respect to the primary control.

ActiveReports 14 264

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Horizontal Spacing

Remove Horizontal
Spacing

Removes the horizontal space so that the selected controls move to the nearest edge of the top-
left control.

Make Vertical
Spacing Equal

Creates equal space between the selected controls with respect to the primary control, using the
top and bottom edges of the control as the end points.

Increase Vertical
Spacing

Increases the vertical spacing by one grid unit with respect to the primary control.

Decrease Vertical
Spacing

Decreases the vertical spacing by one grid unit with respect to the primary control.

Remove Vertical
Spacing

Removes the vertical spacing so that the selected controls move to the nearest edge of the top-
left control.

Z-order Alignment

Command Description

Bring to Front Moves the selected controls to the front of all other controls on the report.

Send to Back Moves the selected controls behind all other controls on the report.

RichTextBox commands

Command Description

Bullets Adds or removes bullets from the selected text inside a RichTextBox control in a section report.

Increase Indent Increases the indent of selected text in the RichTextBox control area in a section report.

Decrease Indent Decreases the indent of selected text in the RichTextBox control area in a section report.

ActiveReports 14 265

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Others

Command Description

View
ReportExplorer

Shows or hides the Report Explorer window. See Report Explorer for further details.

Reorder
Groups

Opens the Group Order dialog, where you can drag and drop groups to rearrange them. This button is
enabled when you have multiple groups in a section report.

Layer List Opens the Layer List window to displays a list of Layers in the report along with their visibility and lock
options. Layer List Explorer also allows you to add or remove Layers from your reports. See Working
with Layers for further details.

Note: Primary control is the control in a selected group of controls, to which you align all other controls. It is
generally the first control selected in the group and has sizing handles (white boxes) which are different from the rest
of the selected controls.

Report Explorer
The Report Explorer gives you a visual overview of the report elements in the form of a tree view where each node
represents a report element.

Using the Report Explorer with any type of report, you can remove controls, add, edit or remove parameters, add a data
source, and drag fields onto the report. You can also select the report or any element in the report to display in the
Properties Window, where you can modify its properties.

ActiveReports supports three types of reports:

Section reports (in your choice of XML-based RPX or code-based CS or VB files)
Page reports (in XML-based RDLX files)
RDL reports

Section reports, RDL reports and page reports are composed of different types of report elements, so the Report Explorer
shows different elements in the report tree depending on the type of report you have open. For more information on how
to use the Report Explorer with each, see Exploring Page and RDL Reports and Exploring Section Reports .

To show or hide the Report Explorer in Visual Studio

Once you add the Report Explorer in Visual Studio, it appears every time you create a new Windows application. Use the
steps below to hide it when you do not need it.

1. Right-click on the Visual Studio toolbar and select ActiveReports to display the report designer toolbar. See
Toolbar for further details.

2. On the Designer toolbar, click the View ReportExplorer button. The Report Explorer window appears.
3. To hide the Report Explorer, follow the steps above and toggle View ReportExplorer back off.

Tip: Another way to show the Report Explorer window in Visual Studio, is from the View menu, select Other
Windows, then Report Explorer 10.

ActiveReports 14 266

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To change a report using the Report Explorer
More actions specific to each report type can be found in Exploring Page and RDL Reports and Exploring Section Reports .

To change control properties

1. In the Report Explorer, select the control for which properties are to be changed. In the Properties Window, all of
the properties for the item appear.

2. Change property values by entering text or selecting values from drop-down lists. With some properties, for
example, OutputFormat or Filters, when you click the property, an ellipsis button appears to the right. Click the
ellipsis button to open a dialog where you can make changes.

To delete a control

1. In the Report Explorer, expand the node that contains the control that you want to remove.
2. Right-click the control and select Delete.
3. In the dialog that appears, click Yes to confirm the deletion.

Exploring Page and RDL Reports
When you have a Page or RDL report open in the ActiveReports Designer, you can see nodes like the following in the
Report Explorer.

Document Outline
Each report page (or the body for RDL reports)

Each control, for example:
BandedList
Tablix
Table

Data Sources
DataSource (right-click to add a data source; you can have more than one)

DataSet (right-click the DataSource to add a data set)
Fields (drag onto the report or onto a data region)

Another DataSet (you can have more than one)
Parameters (right-click to open a dialog and add a parameter)
Embedded Images (right-click to browse for an image to add)
Embedded StyleSheets (right-click to open and add a style sheet)
Common Values (drag onto the report to display the value in a textbox)

In the Report Explorer, you can

remove controls
add, edit or remove parameters
add a data source
drag fields onto the report
share a data source
add data sets
add, edit, or remove embedded images
drag common values like page numbers, current date, or report name onto the report as a textbox
select the report or any element in the report to display in the Properties window, where you can modify its

ActiveReports 14 267

Copyright © 2020 GrapeCity, Inc. All rights reserved.

properties.

To add a DataSource

1. In the Report Explorer, right-click the Data Sources node and select Add Data Source. The Report Data Source
dialog appears, open to the General page.

2. On the General page, drop down the Type list and select Microsoft OleDb Provider.
3. Under Connection, on the Connection Properties tab, drop down the OLE DB Provider list and select

Microsoft.Jet.OLEDB.4.0.
4. In the Server or file name box, enter the path and file name to your Access database, for example,

..\Samples14\Data\NWIND.mdb.
5. Click the Accept button. The new data source is added to the Data Sources node. To use fields from the data

source, add a data set.

To share a DataSource

1. In the Report Explorer, expand the DataSources node, right-click the node for the data source that you want to
share, and select Share Data Source. The Save Shared Data Source File dialog appears.

2. Navigate to the folder where you want to save the file, enter a name for the file, and click Save.
3. The type of data source as well as the connection string are saved to a file of type RDSX that you can use in other

reports.

To add a DataSet

1. In the Report Explorer, expand the DataSources node, right-click the node for the data source that you want to use,
and select Add DataSet. The DataSet dialog appears.

2. In the list to the left, select Query to show the Query page.
3. In the Query box to the right, enter a SQL query to pull the data you want for your report.

Example Query

SELECT * FROM Customers

4. Click the Accept button to create the data set. The data fields appear in the data set node.

To bind a DataSet field to a TextBox control

1. In the Report Explorer, expand the DataSources node, then the node for the data source, then the DataSet that you
want to use.

2. From the DataSet node, click the DataSet field that you want to bind to a TextBox control, drag it onto the report
surface or onto a data region and drop it.

3. A TextBox control is created and bound to the field with the proper expression in the Value property. For example,
if you drag the City field onto the report, the Value property of the TextBox contains the expression
=Fields!City.Value.

To add parameters

1. In the Report Explorer, right-click the Parameters node and select Add Parameter. The Report Parameters dialog
appears.

2. On the General tab of the dialog, enter text for prompting users for a value.
3. On the Available Values tab, you can select values from a DataSet to populate a list from which users can select a

value.
4. On the Default Values tab, you can provide default values to use if the user does not select a value.
5. Click Accept to save the parameter. The new parameter appears in the Report Explorer under the Parameters node.
6. From the Report Explorer, drag the parameter to report design area to create a TextBox that is bound to the

ActiveReports 14 268

Copyright © 2020 GrapeCity, Inc. All rights reserved.

parameter. When you run the report, the value that the user supplies in the prompt dialog displays in the bound
TextBox on the report.

Exploring Section Reports
By default, when you have a section report open in the ActiveReports Designer, you can see nodes like the following.

The Report
Each report section, for example:
Detail (default, cannot be removed)
Report Header and Footer (default, can be removed)
Page Header and Footer (can be added)
Group Header and Footer (can be added)

Each control, for example:
TextBox
Picture
PageBreak
SubReport

Fields
Bound (lists fields from the bound data source)
Calculated (right-click to add calculated fields)

Parameters (right-click to add parameters)
Report Settings (opens a dialog for page setup, printer settings, styles and global settings)

In the Report Explorer, in addition to removing controls, adding, editing or removing parameters, adding a data source,
and dragging fields onto the report, you can also add, edit, or remove calculated fields; drag bound data fields onto the
report as textbox controls; change report settings like margins, printer settings, styles, and ruler and grid settings. You can
also select the report or any element in the report to display in the Properties window, where you can modify its
properties.

To add a DataSource

1. Click the gray report DataSource icon on the Detail section band to open the Report Data Source dialog.
2. On the OLE DB tab, next to Connection String, click the Build button.
3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next

button. Click the ellipsis (...) button to browse to your database or the sample Northwind database, nwind.mdb.
4. Once you have selected your *.mdb file, click Open.
5. Click OK to close the window and fill in the Connection String field.
6. In the Query field, enter a SQL query to select the data that you want, for example

Example Query

SELECT * FROM Customers

7. Click OK to save the data source and return to the report design surface. In the Report Explorer, under the Fields
node, the Bound node is populated with fields returned by the query.

To add a calculated field

1. In the Report Explorer, expand the Fields node.
2. Right-click the Calculated node and select Add. The new calculated field is displayed in the Report Explorer and in

the Properties window.
3. In the Properties window, set the Formula property to a calculation, for example: = UnitPrice * 1.07

ActiveReports 14 269

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Drag the field from the Report Explorer onto the design surface of your report to create a textbox that is bound to
the field.

To bind a Field to a TextBox control

1. In the Report Explorer, expand the Fields node, then the Bound or Calculated node that you want to use.
2. Click the field that you want to bind to a TextBox control, drag it onto the report surface and drop it into the

section where you want the TextBox to appear.
3. A TextBox control is created and bound to the field with the filed name in the DataField property, and a related

value in the Name and Text properties. For example, if you drag the City field onto the report, the DataField
property of the TextBox becomes City, the Name and Text properties become txtCity1.

To add parameters

1. In the Report Explorer, right-click the Parameters node and select Add. The new parameter is displayed in the
Report Explorer and in the Properties window.

2. In the Properties window, set the Prompt property to a string value to ask users for data.
3. Leave the PromptUser property set to True. When you run the report, a dialog displays the Prompt to the user.
4. From the Report Explorer, drag the parameter to the report design area to create a TextBox that is bound to the

parameter. When you run the report, the value that the user supplies in the prompt dialog displays in the bound
TextBox on the report.

To change report settings

1. In the Report Explorer, double-click the Settings node. The Report Settings dialog appears.
2. You can set a number of options on the four tabs in the dialog.
3. When you have finished changing report settings, click OK.

Toolbox
In ActiveReports, the Visual Studio integrated toolbox tabs display all of the controls specific to the type of report that has
focus, or the ActiveReports controls that you can use on Web Forms or Windows Forms.

When a Section report has focus, the ActiveReports 14 Section Report toolbox becomes available. For information
about the report controls available in this toolbox, please see the Section Report Toolbox topic.

When a Page report has focus, the ActiveReports 14 Page Report toolbox becomes available. For information about the
report controls available in this toolbox, please see the Toolbox topic.

When a RDL report has focus, the ActiveReports 14 RDL Report toolbox becomes available. For information about the
report controls available in this toolbox, please see the Toolbox topic.

When a Windows Form has focus, the ActiveReports 14 toolbox group offers the following Windows Forms controls:

ReportExplorer (requires Professional Edition license)
Toolbox (requires Professional Edition license)
Designer (requires Professional Edition license)
Viewer

When a Web Form has focus, the ActiveReports 14 toolbox group offers one Web control: the WebViewer (requires
Professional Edition license). For more information, see Getting Started with the WebViewer .

ActiveReports 14 270

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Properties Window
The Visual Studio Properties window is an important tool when you design a report. Select any page, section, data region,
control or the report itself to gain access to its properties in the Properties window. By default, this window is placed to
the right of the report design area, or wherever you may have placed it in Visual Studio. You can show the list of
properties by category or in alphabetical order by clicking the buttons at the top of the Properties window.

Select a property to reveal a description at the bottom of the window. Just above the description is a commands section
that contains commands, links to dialogs that give you access to further properties for the item. You can resize the
commands or description sections by dragging the top or bottom edges up or down.

Tip: If the commands or description section is missing in Visual Studio, you can toggle it back on by right-clicking
anywhere in the Properties window and clicking Commands or Description.

In the image below, you can see a chart control selected on the designer surface, revealing its properties in the Properties
window, along with any associated commands, and a description of the selected property.

Rulers
In ActiveReports, rulers appear to the top and left of the Design View to guide you in vertically and horizontally aligning
items in the report. They have large tick marks to indicate half inch points and smaller tick marks to indicate eighths of an
inch.

Note: The numbers indicate the distance in inches from the left margin, not from the edge of the page.

Section Reports

In Section Reports, the white area on the ruler indicates the designable area of the report. The grey area at the bottom of
the vertical ruler and at the right of the horizontal ruler indicate the report margins. Grab handles on the vertical ruler
indicate the height of individual sections. You can drag them up or down to change section heights, or double-click to
automatically resize the section to fit the controls in it.

ActiveReports 14 271

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In a section layout, you can change ruler measurements from inches to centimeters and centimeters to inches. Use the
following instructions to modify ruler measurements at design- time.

To change ruler measurements at design-time in Section Report

At design time, you can change the ruler measurements from the Report Settings Dialog.

1. In the Report Explorer, double-click the Settings node.
2. In the Report Settings dialog that appears, click Global Settings.
3. From the Ruler Units dropdown select Centimeters or Inches.

In section reports, you can change the units of measure for the rulers. See Change Ruler Measurements for further details.

Page/RDL Reports

In Page Reports or RDL Reports, margin markers indicate the designable area of the report. The area inside the margin
markers is designable, and the areas outside the markers are the margins. To change the margins, you can drag the
margin markers to the desired locations.

In a page layout, you can change ruler measurements from inches to centimeteres and centimeteres to inches. Use the
following instructions to modify ruler measurements in page reports.

To change ruler measurements at design-time in Page Report

At design time, you can change the ruler measurements from the Report Dialog.

1. In the Report Explorer, select the Report node.

ActiveReports 14 272

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the command section of the Properties Window, click Property dialog.
3. In the dialog that appears, go to the General tab.
4. From the Ruler Units dropdown select Centimeters or Inches.

Scroll Bars
Scroll Bars appear automatically when controls or data regions do not fit the visible area of the report design surface. A
scroll bar consists of a shaded column with a scroll arrow at each end and a scroll box (also called a thumb) between the
arrows. You can scroll up, down, right or left using the scroll arrow buttons, scroll box or mouse wheel.

Auto Scrolling

When a user drags a control beyond the edge of the design surface and the mouse pointer reaches near the surface edge,
scrolling starts automatically in the direction of the mouse movement. Auto scrolling works in all four directions. This
feature is useful while designing reports with a magnified design view.

Note: In Section Layout and Report Definition Language (RDL), when the mouse button is released during auto
scrolling at a location outside the design surface, the surface extends to accommodate the control.

Scrolling stops in the following scenarios:

The user stops dragging the mouse (Mouse Up).
The user moves the mouse in the opposite direction.
The [Esc] key is pressed while dragging the mouse.

Tip: To enable auto scrolling for multiple controls, hold down the [Ctrl] or [Shift] key to select the controls. Drag
them together to the edge of the design surface and enable auto scrolling.

Snap Lines
Snap lines assist in accurate positioning of elements on a report design surface while you drag report controls on it.
These dynamic horizontal and vertical layout guidelines are similar to the ones found in Visual Studio. You can see snap
lines on the ActiveReports Designer as well as the Stand-alone designer application.

ActiveReports 14 273

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Snap lines appear on the design surface by default. In order to disable them, click the Snap Lines button below the design
surface, or in section reports, hold down the [Alt] key while dragging a control to temporarily hide the snap lines.

When you drag a control on the design surface, blue snap lines appear and the control slows down as it aligns with
another control or a section edge. Unless you are also using the Snap to Grid setting, with Snap Lines, the control can
move freely around the report and can be placed anywhere on the design surface.

Tip: If you plan to export a report to Excel format, use snap lines to ensure that your controls are aligned in columns
and rows to avoid empty cells or overlapping of controls in the spreadsheet.

Snap Line Behavior
On dragging with a mouse

When you drag report controls across the design surface, they snap to other controls, report and section edges. Snap lines
appear when the control you are dragging aligns with any edge of any of the following:

Any control inside any section of the report.

Another control inside the same data region.

Parts of a data region (bands in a Banded List, or columns and rows in a Table).

ActiveReports 14 274

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Report edges and section edges.

Other control edges while resizing with a mouse.

On selecting multiple items where all the items move as a single unit, snap lines appear for all items in the
selection.

With keyboard actions

Use [Ctrl] + [Shift] + Arrow keys to resize the selected control from one snap line to the next.
Use [Ctrl] + Arrow keys to move the selected control to the next snap line.
Use [Ctrl] + Left mouse button to copy the control and see snap lines appear between the edges of the copied
control being dragged and the original control.

Note: Snap lines do not appear when you move a control with arrow keys.

Zoom Support
ActiveReports allows you to zoom in or out on the report design surface for better control over your report layout. As you
zoom in or out, the size of every item on the design surface changes.

In the designer, you can access the zoom feature from the Zoom bar below the report design surface where the slider

ActiveReports 14 275

Copyright © 2020 GrapeCity, Inc. All rights reserved.

thumb is set to 100% by default. The slider allows you to zoom in and out of the report designer surface. Using this slider
you can magnify the layout from 50% to 400%. You can also use the zoom in (+) and zoom out (-) buttons at either end of
the slider to change the zoom level.

Zoom settings are also available on the ActiveReports toolbar where you can change the zoom percentage or use the
zoom in/zoom out buttons. See Toolbar for further information.

Keyboard Shortcuts
You can hold down the Ctrl key and use the mouse wheel to zoom in and zoom out of the design surface.

You can also use keyboard shortcuts for the following functions:

[Ctrl] + [+] : Zoom in
[Ctrl] + [-] : Zoom out
[Ctrl] + 0 : Return to 100%

ActiveReports Web Designer
The ActiveReports Web Designer component can be embedded into web applications to create and edit reports. The
following topics explain concepts behind setting up Web Designer and using the API, and finally creating a simple Web
Designer sample:

Set Up Web Designer
Designer Server API Object
Designer Options Object
Create a Simple Web Designer Sample

Set up Web Designer
This document provides information on how to set up the Web Designer.

General
Implementation Details

Supplementary Functions
On Save Implementation
On Save As Implementation
On Open Implementation
Open File View Implementation
Open Viewer Implementation
Open/Close Data Set Picker Implementation
Open Data Source Editor Implementation

General

index.html

<!DOCTYPE html>
<html lang="en">

ActiveReports 14 276

Copyright © 2020 GrapeCity, Inc. All rights reserved.

<head>

 <title>ActiveReports Web Designer</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta http-equiv="x-ua-compatible" content="ie=edge">

 <!-- Mandatory -->
 <link rel="stylesheet" href="vendor/css/materialdesignicons.min.css" media="all"
type="text/css" />
 <link rel="stylesheet" href="vendor/css/bootstrap.min.css" />
 <link rel="stylesheet" href="vendor/css/font-awesome.min.css">
 <link rel="stylesheet" href="vendor/css/ionicons.min.css">
 <link rel="stylesheet" href="vendor/css/fonts-googleapis.css" type="text/css">
 <!--------------->

 <!-- Optional: Open-Report/Save-Report-As Dialogs -->
 <link rel="stylesheet" href="file-dialog.css" />

 <!-- Optional: Preview Report -->
 <link rel="stylesheet" href="viewer-container.css" type="text/css">

 <!-- Optional: Add Data Sets using Data Set Picker -->
 <link rel="stylesheet" href="data-set-picker.css" />

 <!-- Optional: File View -->
 <link rel="stylesheet" href="file-view.css" />

 <!-- Optional: Add/Edit Data Sources using Data Source Editor -->
 <link rel="stylesheet" href="ar-datasource-editor.css" />

 <!-- Mandatory -->
 <link rel="stylesheet" href="web-designer.css" />

</head>
<body>

 <!-- Mandatory -->
 <script src="vendor/js/jquery.js"></script>
 <script src="vendor/js/bootstrap.min.js"></script>
 <!--------------->

 <!-- Optional: Open-Report/Save-Report-As Dialogs -->
 <script src="file-dialog.js"></script>

 <!-- Optional - Preview Report -->
 <script src="viewer-container.js"></script>

ActiveReports 14 277

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 <!-- Optional: Add Data Sets using Data Set Picker -->
 <script src="data-set-picker.js"></script>

 <!-- Optional: File View -->
 <script src="file-view.js"></script>

 <!-- Optional: Add/Edit Data Sources using Data Source Editor -->
 <script src="ar-datasource-editor.js"></script>

 <!-- Mandatory -->
 <script src="baseServerApi.js"></script>
 <script src="web-designer.js"></script>
 <!--------------->

 <!-- Mandatory -->
 <div id="designer-id" style="width: 100%; height: 100%;"></div>

 <!-- Optional: File View -->
 <div id="file-view-id" style="width: 100%; height: 100%; display: none;"></div>

 <!-- Optional - Preview Report -->
 <div id="viewer-container-id" style="width: 100%; height: 100%; display: none;">
</div>

 <!-- Optional: Save-Report-As Dialog -->
 <div id="save-as-dialog-id" style="position: absolute;top: 0;left: 0;width:
100%;height: 100%;display: none;z-index: 9999;"></div>

 <!-- Optional: Open-Report Dialog -->
 <div id="open-dialog-id" style="position: absolute;top: 0;left: 0;width:
100%;height: 100%;display: none;z-index: 9999;"></div>

 <!-- Optional: Add Data Sets using Data Set Picker -->
 <div id="data-set-picker-dialog-id" style="position: absolute;top: 0;left: 0;width:
100%;height: 100%;display: none;z-index: 9999;background-color: #dedede;"></div>

 <!-- Optional: Add/Edit Data Sources using Data Source Editor -->
 <div id="data-source-editor-dialog-id"></div>
 <script>

 var designerId = 'designer-id';
 var viewerContainerId = 'viewer-container-id';
 var fileViewId = 'file-view-id';
 var saveAsDialogId = 'save-as-dialog-id';
 var openDialogId = 'open-dialog-id';
 var dataSetPickerDialogId = 'data-set-picker-dialog-id';
 var dataSourceEditorDialogId = 'data-source-editor-dialog-id';

ActiveReports 14 278

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 /* Implementation Details - See the section below. */

 /* Mandatory: Create Designer Options */
 var designerOptions =
GrapeCity.ActiveReports.WebDesigner.createDesignerOptions(baseServerApi);

 /* Optional: Save Report */
 designerOptions.saveButton.visible = true;
 designerOptions.onSave = onSaveImpl;

 /* Optional: Save Report As */
 designerOptions.saveAsButton.visible = true;
 designerOptions.onSaveAs = onSaveAsImpl;

 /* Optional: Open Report */
 designerOptions.openButton.visible = true;
 designerOptions.onOpen = onOpenImpl;

 /* Optional: File View */
 designerOptions.openFileView = openFileViewImpl;

 /* Optional: Preview Report */
 designerOptions.openViewer = openViewerImpl;

 /* Optional: Add/Edit/Remove Data Sets */
 designerOptions.dataTab.dataSets.canModify = true;

 /* Optional: Add Data Sets using Data Set Picker */
 designerOptions.dataSetPicker.open = openDataSetPickerImpl;
 designerOptions.dataSetPicker.close = closeDataSetPickerImpl;

 /* Optional: Add/Edit/Remove Data Sources */
 designerOptions.dataTab.dataSources.canModify = true;

 /* Optional: Add/Edit Data Sources using Data Source Editor */
 ARDataSourceEditor.init(dataSourceEditorDialogId);
 designerOptions.openDataSourceEditor = openDataSourceEditorImpl;

 /* Mandatory: Render Designer Application */
 GrapeCity.ActiveReports.WebDesigner.renderApplication(designerId,
designerOptions);

 </script>
</body>

</html>

Implementation Details

ActiveReports 14 279

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Supplementary Functions

javascript

var dialogs = [
 saveAsDialogId, openDialogId,
 dataSetPickerDialogId, dataSourceEditorDialogId,
];

var showElement = function (id) {
 if (!id) return;
 ($('#' + id)).css('display', 'block');
};

var hideElement = function (id) {
 if (!id) return;
 ($('#' + id)).css('display', 'none');
};

var hideDialogs = function () {
 dialogs.forEach(hideElement);
}

var showDesigner = function () {
 var info = GrapeCity.ActiveReports.WebDesigner.api.getReportInfo();
 var isDirty = GrapeCity.ActiveReports.WebDesigner.api.isReportDirty();
 document.title = info.name + (isDirty ? ' *' : '');
 showElement(designerId);
 GrapeCity.ActiveReports.WebDesigner.focus();
};

var makeOptions = function (baseOptions, additionalOptions) {
 return $.extend({}, baseOptions || {}, additionalOptions || {});
}

On Save Implementation

javascript

/* Optional: Save Report */
var onSaveImpl = function (options) {
 baseServerApi
 .saveExistingReport({ id: options.reportInfo.id, content:
options.reportInfo.content })
 .then(function (saveResult) {
 options.onSuccess({
 id: saveResult.Id,

ActiveReports 14 280

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 name: options.reportInfo.name
 });
 });
};

On Save As Implementation

javascript

/* Optional: Save Report As */
var onSaveAsImpl = function (options) {
 showElement(saveAsDialogId);

 fileDialog.createSaveReportAsDialog(saveAsDialogId, {
 locale: options.locale,

 api: {
 getReportsList: function () {
 return baseServerApi.getReportsList().then(function (reportsList) {
 return reportsList.map(function (reportInfo) {
 return { path: reportInfo.Name };
 });
 });
 },
 saveReport: function (saveOptions) {
 return baseServerApi.saveNewReport({ name: saveOptions.path, content:
options.reportInfo.content }).then(function (saveResult) {
 return { id: saveResult.Id };
 });
 },
 },
 reportInfo: {
 path: options.reportInfo.name,
 },
 onSuccess: function (saveResult) {
 hideElement(saveAsDialogId);
 options.onSuccess({ id: saveResult.id, name: saveResult.path });
 },
 onClose: function () {
 hideElement(saveAsDialogId);
 showDesigner();
 },
 });
};

On Open Implementation

ActiveReports 14 281

Copyright © 2020 GrapeCity, Inc. All rights reserved.

javascript

/* Optional: Open Report */
var onOpenImpl = function (options) {
 showElement(openDialogId);
 var loadedReportList = null;

 fileDialog.createOpenReportDialog(openDialogId, {
 locale: options.locale,

 api: {
 getReportsList: function () {
 return baseServerApi.getReportsList().then(function (reportsList) {
 loadedReportList = reportsList;
 return reportsList.map(function (reportInfo) {
 return { path: reportInfo.Name };
 });
 });
 },
 openReport: function (openOptions) {
 return new $.Deferred(function (def) {
 var reportInfo = (loadedReportList || []).find(function (r) {
 return r.Name === openOptions.path;
 });
 if (!reportInfo) return def.reject();
 GrapeCity.ActiveReports.WebDesigner.api.openReport({
 reportInfo: {
 id: reportInfo._id,
 name: reportInfo.Name,
 permissions: ['all'],
 },
 onFinish: function () {
 def.resolve({ id: reportInfo._id });
 },
 });
 });
 },
 },
 onSuccess: function (openResult) {
 hideElement(openDialogId);
 },
 onClose: function () {
 hideElement(openDialogId);
 showDesigner();
 },
 });
};

ActiveReports 14 282

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Open File View Implementation

javascript

/* Optional: File View */
var openFileViewImpl = function (options) {
 hideElement(designerId);
 showElement(fileViewId);

 var fileViewOptions = makeOptions(options, {
 onClose: function () {
 if (options.onClose) options.onClose();
 hideElement(fileViewId);
 showDesigner();
 },
 serverApi: {
 getReportsList: baseServerApi.getReportsList,
 getReportRevisions: baseServerApi.getReportRevisions,
 getDataSetsList: baseServerApi.getDataSetsList,
 getTemplatesList: baseServerApi.getTemplatesList,
 getTemplateContent: baseServerApi.getTemplateContent,
 getTemplateThumbnail: baseServerApi.getTemplateThumbnail,
 },
 createReport: GrapeCity.ActiveReports.WebDesigner.api.createReport,
 openReport: GrapeCity.ActiveReports.WebDesigner.api.openReport,
 saveReport: GrapeCity.ActiveReports.WebDesigner.api.saveReport,
 ignoreCase: true,
 delimiter: '/',
 });

 fileView.renderFileView(fileViewId, fileViewOptions);
};

Open Viewer Implementation

javascript

/* Optional: Preview Report */
var openViewerImpl = function (options) {
 hideElement(designerId);
 showElement(viewerContainerId);

 var viewerContainerOptions = makeOptions(options, {
 makeViewerUrl: function () {
 var baseUrl = 'http://localhost:58723/preview/';
 var reportId = encodeURIComponent(options.reportInfo.id);
 var language = options.locale;
 return baseUrl + reportId + '?lng=' + language;

ActiveReports 14 283

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 },
 });
 viewerContainer.renderViewerContainer(viewerContainerId, viewerContainerOptions,
function () {
 var isTemporaryReport = options.reportInfo.isTemporary;
 if (isTemporaryReport) {
 var reportId = options.reportInfo.id;
 baseServerApi.deleteTemporaryReport({ id: reportId });
 }
 hideElement(viewerContainerId);
 showDesigner();
 });
};

Open/Close Data Set Picker Implementation

javascript

/* Optional: Add Data Sets using Data Set Picker */
var openDataSetPickerImpl = function (options) {
 var openInPanel = options.mode === 'Panel';
 if (!openInPanel) {
 hideDialogs();
 showElement(dataSetPickerDialogId);
 }
 dataSetPicker.renderDataSetPicker(openInPanel ? options.elementId :
dataSetPickerDialogId, makeOptions(options, {
 serverApi: {
 getDataSetsList: baseServerApi.getDataSetsList,
 getDataSourcesAndDataSets: baseServerApi.getDataSourcesAndDataSets,
 },
 onClose: function () {
 options.onClose();
 if (!openInPanel) hideElement(dataSetPickerDialogId);
 dataSetPicker.dispose();
 }
 }));
};
var closeDataSetPickerImpl = function () {
 dataSetPicker.dispose();
};

Open Data Source Editor Implementation

javascript

/* Optional: Add/Edit Data Sources using Data Source Editor */
var openDataSourceEditorImpl = function (options) {

ActiveReports 14 284

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ARDataSourceEditor.open(makeOptions(options, {
 serverApi: {
 testConnection: baseServerApi.testDataSourceConnection,
 },
 }));
};

Designer Server API Object
The module baseServerApi.js contains certain functions required for Web Designer operation related to reports, data, themes,
images, and report templates. These functions are described as follows. For more information, see Web Designer API (on-line
documentation).

Note: Certain properties and functions are marked 'Reserved' since these are not relevant in ActiveReports 14 (for example
report revisions) but it is still required to have them for proper working of Web Designer. Web Designer is used not only in
ActiveReports 14 but also in older version in ActiveReports Server.

Reports

GET REPORTS LIST

Parameters Return Value Response Model

getReportsList() Promise Array<ReportsListItem>

REPORTS LIST ITEM OBJECT

type ReportsListItem = {
 _id: string, // report id
 Name: string, // report name
 IsCpl: boolean, // specifies whether report is RDL or FPL
 Type: 'PageReport', // RESERVED - for now only 'PageReport' is supported
 $effectivePermissions: 'All', // RESERVED - for now only 'All' is supported
}

GET REPORT CONTENT

Parameters Return Value Response Model

getReportContent(options: GetReportContentOptions) Promise Report JSON Model

GET REPORT CONTENT OPTIONS OBJECT

type GetReportContentOptions {
 id: string, // report id
 version: null, // RESERVED - for now only null is supported
}

GET REPORT REVISIONS - RESERVED

ActiveReports 14 285

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Parameters Return Value Response Model

getReportRevisions(options: GetReportRevisionsOptions) Promise Array<ReportRevision>

GET REPORT REVISIONS OPTIONS OBJECT

type GetReportRevisionsOptions {
id: string, // report id
}

REPORT REVISION OBJECT

type ReportRevision = {
_id: string, // report id
Name: string, // report name
IsCpl: boolean, // specifies whether report is RDL or FPL
Type: 'PageReport', // RESERVED - for now only 'PageReport' is supported
$effectivePermissions: 'All', // RESERVED - for now only 'All' is supported
}

SAVE NEW REPORT

Parameters Return Value Response Model

saveNewReport(options: SaveNewReportOptions) Promise SaveReportResponse

SAVE NEW REPORT OPTIONS OBJECT

type SaveNewReportOptions = {
 name: string, // report name
 content: object, // report JSON model
}

SAVE REPORT RESPONSE OBJECT

type SaveReportResponse = {
 Id: string, // saved report id
}

SAVE EXISTING REPORT

Parameters Return Value Response Model

saveExistingReport(options: SaveExistingReportOptions) Promise SaveReportResponse

SAVE EXISTING REPORT OPTIONS OBJECT

type SaveExistingReportOptions = {
 id: string, // report id

ActiveReports 14 286

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 content: object, // report JSON model
}

SAVE TEMPORARY REPORT

Parameters Return Value Response Model

saveTemporaryReport(options: SaveTemporaryReportOptions) Promise SaveReportResponse

SAVE TEMPORARY REPORT OPTIONS OBJECT

type SaveTemporaryReportOptions = {
 name: string, // report name
 content: object, // report JSON model
}

DELETE TEMPORARY REPORT

This is an optional service function that is used outside of Designer. It can be used for deleting temporary reports when Report Viewer
is closed and view is switched back to Designer.

Parameters Return Value Response Model

deleteTemporaryReport(options: DeleteTemporaryReportOptions) Promise DeleteReportResponse

DELETE TEMPORARY REPORT OPTIONS OBJECT

type DeleteTemporaryReportOptions = {
 id: string, // report id
}

DELETE REPORT RESPONSE OBJECT

type DeleteReportResponse = {
 Id: string, // deleted report id
}

Data

GET DATA SETS LIST

Parameters Return Value Response Model

getDataSetsList() Promise Array<DataSetsListItem>

DATA SETS LIST ITEM OBJECT

type DataSetsListItem = {
 id: string, // data set id
 name: string, // data set name

ActiveReports 14 287

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 version: null, // RESERVED - for now only null is supported
}

GET DATA SOURCES AND DATA SETS

Parameters Return
Value

Response Model

getDataSourcesAndDataSets(options:
GetDataSourcesAndDataSetsOptions)

Promise GetDataSourcesAndDataSetsResponse

WHETHER A DATA SOURCE CAN BE EDITED

Parameters Return Value Response Model

canEditDataSource(options: CanEditDataSourceOptions) Promise GetDataSourcesAndDataSetsResponse

GET CANEDITDATASOURCE OPTIONS OBJECT

type CanEditDataSourceOptions = {
 /** data source */
 dataSource: DataSource;
 /** data provider of data source */
 dataProvider: string;
};

WHETHER A DATASET CAN BE CREATED FOR A SPECIFIC DATA SOURCE

Parameters Return
Value

Response Model

canAddDataSetForDataSource(options: CanAddDataSetForDataSourceOptions)) Promise GetDataSourcesAndDataSetsResponse

GET CANADDDATASETFORDATASOURCE OPTIONS OBJECT

type CanAddDataSetForDataSourceOptions = {
 /** data source */
 dataSource: DataSource;
 /** data provider of data source */
 dataProvider: string;
};

WHETHER A DATA SET CAN BE EDITED

Parameters Return Value Response Model

canEditDataSet:(options: CanEditDataSetOptions) Promise GetDataSourcesAndDataSetsResponse

GET EDITDATASET OPTIONS OBJECT

ActiveReports 14 288

Copyright © 2020 GrapeCity, Inc. All rights reserved.

type CanEditDataSetOptions = {
 /** data set */
 dataSet: DataSet;
 /** data provider of data set's parent data source */
 dataProvider: string;
};

RETURNS A DATA SET INITIALIZED FOR A SPECIFIC DATA SOURCE

Parameters Return Value Response Model

 initDataSetForDataSource:(options: InitDataSetForDataSourceOptions) Promise GetDataSourcesAndDataSetsResponse

GET INITDATASETFORDATASOURCE OPTIONS OBJECT

type InitDataSetForDataSourceOptions = {
 /** data source */
 dataSource: DataSource;
 /** data provider of data source */
 dataProvider: string;
 /** data set name to be initialized */
 dataSetName: string;
};

GET PROPERTIES AVAILABLE FOR A SPECIFIC DATA SET

Parameters Return Value Response Model

 getDataSetProperties:(options: GetDataSetPropertiesOptions) Promise GetDataSourcesAndDataSetsResponse

GET GETDATASETPROPERTIES OPTIONS OBJECT

type GetDataSetPropertiesOptions = {
 /** data provider of data set's parent data source */
 dataProvider: string;
};

GET GETDATASETPROPERTIES RESPONSE OBJECT

type DataSetProperty = 'name' | 'commandType' | 'query' | 'fields' | 'calculatedFields' |
'parameters' | 'filters' | 'caseSensitivity' | 'collation' | 'kanatypeSensitivity' |
'widthSensitivity' | 'accentSensitivity';

GET SCHEMA FOR A SPECIFIC DATA SET

ActiveReports 14 289

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Parameters Return Value Response Model

 getDataSetSchema(options: GetDataSetSchemaOptions) Promise GetDataSourcesAndDataSetsResponse

GET GETDATASETSCHEMA OPTIONS OBJECT

type GetDataSetSchemaOptions = {
 /** data set */
 dataSet: DataSet;
 /** data set's parent data source */
 dataSource: DataSource;
};

GET GETDATASETSCHEMA RESPONSE OBJECT

type GetDataSetSchemaResponse = {
 /** data set fields */
 fields: Array<Field>;
 /** data set query parameters */
 parameters: Array<QueryParameter>;
};

GET DATA SOURCES AND DATA SETS

Parameters Return
Value

Response Model

getDataSourcesAndDataSets(options: GetDataSourcesAndDataSetsOptions) Promise GetDataSourcesAndDataSetsResponse

GET DATA SOURCES AND DATA SETS OPTIONS OBJECT

type GetDataSourcesAndDataSetsOptions = {
 dataSetInfo: {
 id: string, // data set id
 name: string, // data set name
 version: null, // RESERVED - for now only null is supported
 },
 dataSourceInfo: object, // RESERVED
 reportDataSets: Array<DataSet>, // data sets used in report
 reportDataSources: Array<DataSource>, // data sources used in report
}

GET DATA SOURCES AND DATA SETS RESPONSE OBJECT

ActiveReports 14 290

Copyright © 2020 GrapeCity, Inc. All rights reserved.

type GetDataSourcesAndDataSetsResponse = {
 dataSources: Array<DataSource>,
 dataSets: Array<DataSet>,
}

GET DATA SET CONTENT

This function is intended to be used in getDataSourcesAndDataSets(). The result dataSetContent object may store information
required to create a data set and its parent data source.

Parameters Return Value Response Model

getDataSetContent(options: GetDataSetContentOptions) Promise dataSetContent: object

GET DATA SET CONTENT OPTIONS OBJECT

type GetDataSetContentOptions = {
 id: string, // data set id
}

DATA SOURCE AND DATA SET OBJECTS

Basic properties of DataSource and DataSet types are listed. Object models of DataSource and DataSet correlate with their
structure in RDLX report definition.

type DataSource = {
 Name: string, // data source name
 ConnectionProperties: {
 ConnectString: string, // connection string
 DataProvider: string, // data provider - see AR Documentation
 },
 // ... more properties - see AR Documentation
}
type DataSet = {
 Name: string, // data set name
 Fields: Array<Field>, // data set fields
 Query: {
 DataSourceName: string, // parent data source name
 CommandType: 'Text' | 'StoredProcedure', // query command type
 CommandText: string, // query command text
 QueryParameters: Array<QueryParameter>,
 }
 // ... more properties - see AR Documentation
}
type Field = {
 Name: string, // field name
 // Either DataField or Value needs to be available.
 DataField?: string, // data field name - valid for bound fields
 Value?: string, // field value - valid for calculated fields
 /* Extra optional properties */

ActiveReports 14 291

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 // default field aggregate - see AR Documentation for more available aggregates
 Aggregate?: 'Count' | 'Sum' | 'Max' | 'Min' /* etc. */,
 // field data type
 DataType?: 'String' | 'Integer' | 'Float' | 'Number' | 'Boolean' | 'DateTime',
}
type QueryParameter = {
 Name: string, // query parameter name
 Value: string, // query parameter value
}

OPEN DATA SOURCE EDITOR IMPLEMENTATION

/* Optional: Add/Edit Data Sources using Data Source Editor */
var openDataSourceEditorImpl = function (options) {
 ARDataSourceEditor.open(makeOptions(options, {
 serverApi: {
 testConnection: baseServerApi.testDataSourceConnection,
 },
 }));
};

CAN EDIT DATA SOURCE OPTIONS

export type CanEditDataSourceOptions = {
 /** data source */
 dataSource: DataSource;

 /** data provider of data source */
 dataProvider: string;
};

export type CanEditDataSetOptions = {
 /** data set */
 dataSet: DataSet;

 /** data provider of data set's parent data source */
 dataProvider: string;
};

INIT DATA SET FOR DATA SOURCE OPTIONS

export type InitDataSetForDataSourceOptions = {
/** data source */
dataSource: DataSource;

/** data provider of data source */
dataProvider: string;

/** data set name to be initialized */
dataSetName: string;

ActiveReports 14 292

Copyright © 2020 GrapeCity, Inc. All rights reserved.

};

GET DATA SET PROPERTIES OPTIONS

export type GetDataSetPropertiesOptions = {
 /** data provider of data set's parent data source */
 dataProvider: string;
};

export type DataSetProperty = 'name' | 'commandType' | 'query' | 'fields' | 'calculatedFields' |
'parameters' | 'filters'
| 'caseSensitivity' | 'collation' | 'kanatypeSensitivity' | 'widthSensitivity' |
'accentSensitivity';

GET DATA SET SCHEMA OPTIONS

export type GetDataSetSchemaOptions = {
 /** data set */
 dataSet: DataSet;

 /** data set's parent data source */
 dataSource: DataSource;
};

GET DATA SET SCHEMA RESPONSE

export type GetDataSetSchemaResponse = {
 /** data set fields */
 fields: Array;

 /** data set query parameters */
 parameters: Array;
};

OPEN DATA SOURCE EDITOR BASE OPTIONS

export type OpenDataSourceEditorBaseOptions = {
 /** locale passed by Designer */
 locale: 'en' | 'ja' | 'zh';

 /** **Non-null** if an existing data source edited, **null** - if a new one is created.
*/
 dataSource: DataSource | null;

 /** data sources used in report */
 reportDataSources: Array;

ActiveReports 14 293

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 /** callback on successful data source editing/creation */
 onSuccess: (options: DataSourceEditorOnSuccessOptions) => void;

 /** callback on closing Data Source Editor */
 onClose: () => void;
};

DATA SOURCE EDITOR ONSUCCESS OPTIONS

export type DataSourceEditorOnSuccessOptions = {
 /** successfully created or edited data source */
 dataSource: DataSource;
};

OPEN DATA SET PICKER BASE OPTIONS

export type OpenDataSetPickerBaseOptions = {
 /** locale passed by Designer */
 locale: 'en' | 'ja' | 'zh';

 /** If mode is **Panel**, Data Set Picker is rendered within **Data** tab. */
 mode: DataSetPickerMode;

 /** If mode is not **Panel**, Data Set Picker is rendered to an element with this id. */
 elementId?: string;

 /** data sources used in report */
 reportDataSources: Array;

 /** data sets used in report */
 reportDataSets: Array;

 /** New data sources and data sets to be added are passed as parameters to this
function. */
 addDataSourcesAndDataSets: (options: AddDataSourcesAndDataSetsOptions) => void;

 /** callback on closing Data Set Picker */
 onClose: () => void;
};

DATA SET PICKER MODE

export type DataSetPickerMode = 'Panel' | 'Dialog';

ADD DATA SOURCES AND DATA SETS OPTIONS

export type AddDataSourcesAndDataSetsOptions = {
 /** data sources to-be-added */
 dataSources: Array;

ActiveReports 14 294

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 /** data sets to-be-added */
 dataSets: Array;
};

CAN ADD DATA SET FOR DATA SOURCE OPTIONS

export type CanAddDataSetForDataSourceOptions = {
 /** data source */
 dataSource: DataSource;

 /** data provider of data source */
 dataProvider: string;
};

DATA SOURCE EDITOR API

 /**
 * Type of **ARDataSourceEditor** object exported by **ar-datasource-editor.js** module.
 */
export type DataSourceEditorApi = {
 /* Initializes **Data Source Editor** using the specified
DataSourceEditorInitOptions object and renders it to ** element with id
dataSourceEditorElementId.
 *
 * **Example:**
 * ```javascript
 * ARDataSourceEditor.init('data-source-editor-id', dataSourceEditorInitOptions);
 * ```
 *
 * @param dataSourceEditorElementId string
 * @param options DataSourceEditorInitOptions object
 */
 init: (dataSourceEditorElementId: string, options?: DataSourceEditorInitOptions) =>
void;

 /**
 * Opens Data Source Editor.
 *
 * **Example:**
 * ```javascript
 * ARDataSourceEditor.open(dataSourceEditorOptions);
 * ```
 *
 * @param options DataSourceEditorOptions object
 */
 open: (options: DataSourceEditorOptions) => void;
};

export type CustomProviderDescriptor = {

ActiveReports 14 295

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 /**
 * key - data provider identifier\
 * This value is used for **DataSource.ConnectionProperties.DataProvider** property.
 */
 key: string;

 /**
 * name - data provider label\
 * This value is used as a friendly data provider label in UI.
 */
 name: string;
};

export type DataSourceEditorInitOptions = {
 /** predefined providers */
 predefinedProviders?: Array;

 /** OLE DB providers */
 oleDbProviders?: Array;

 /** custom providers */
 customProviders?: Array;
};

export type PredefinedProvider = 'SQL' | 'OLEDB' | 'ODBC' | 'JSON' | 'CSV' | 'XML';

export type OleDbProvider = PredefinedOleDbProvider | string;

export type PredefinedOleDbProvider = 'Microsoft.Jet.OLEDB.4.0' | 'SQLOLEDB.1' | 'MSDataShape.1'
| 'MSDASQL.1';

export type DataSourceEditorOptions = OpenDataSourceEditorBaseOptions & {
 /** Specifies custom localization data. */
 localeData?: Array;

DATA SOURCE EDITOR SERVER API

/** **Data Source Editor** server API */
 serverApi: {
 /**
 * Tests data source connection.
 *
 * @param options TestConnectionOptions object
 */
 testConnection: (options: TestConnectionOptions) => Promise;
 };
};

export type TestConnectionOptions = {
 /** data source */

ActiveReports 14 296

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 dataSource: DataSource;
};

export type TestConnectionResponse = {
 /** error code - 0 means success */
 Code: number;

 /** databases list available for test connection settings */
 Databases: Array | null,

 /** error message */
 Error: string | null,
};

Themes

GET THEMES LIST

Parameters Return Value Response Model

getThemesList() Promise Array<ThemesListItem>

THEMES LIST ITEM OBJECT

type ThemesListItem = {
 _id: string, // theme id
 Name: string, // theme name
 IsDefault: boolean, // specifies whether theme is default or not, only a single theme can be
default
 Dark1: string, // Dark1 theme color
 Dark2: string, // Dark2 theme color
 Light1: string, // Light1 theme color
 Light2: string, // Light2 theme color
 Accent1: string, // Accent1 theme color
 Accent2: string, // Accent2 theme color
 Accent3: string, // Accent3 theme color
 Accent4: string, // Accent4 theme color
 Accent5: string, // Accent5 theme color
 Accent6: string, // Accent6 theme color
 MajorFontFamily: string, // Major text theme font family
 MinorFontFamily: string, // Minor text theme font family
}

GET THEME CONTENT

Parameters Return Value Response Model

getThemeContent(options: GetThemeContentOptions) Promise ThemeModel

GET THEME CONTENT OPTIONS OBJECT

ActiveReports 14 297

Copyright © 2020 GrapeCity, Inc. All rights reserved.

type GetThemeContentOptions = {
 id: string, // theme id
}

THEME MODEL OBJECT

type ThemeModel = {
 Colors: {
 Dark1: string, // Dark1 theme color
 Dark2: string, // Dark2 theme color
 Light1: string, // Light1 theme color
 Light2: string, // Light2 theme color
 Accent1: string, // Accent1 theme color
 Accent2: string, // Accent2 theme color
 Accent3: string, // Accent3 theme color
 Accent4: string, // Accent4 theme color
 Accent5: string, // Accent5 theme color
 Accent6: string, // Accent6 theme color
 Hyperlink: string, // Hyperlink theme color
 HyperlinkFollowed: string, // Followed hyperlink theme color
 },
 Fonts: {
 MajorFont: ThemeFont,
 MinorFont: ThemeFont,
 }
 Images: Array<ThemeImage>,
 Constants: Array<ThemeConstant>,
}
type ThemeFont = {
 Family: string, // font family
 Style: string, // font style
 Size: string, // font size
 Weight: string, // font weight
}
type ThemeImage = {
 Name: string, // image name
 MIMEType: string, // image MIME type
 ImageData: string, // Base64 image data
}
type ThemeConstant = {
 Key: string, // constant key
 Value: string, // constant value
}

Images

GET IMAGES LIST

Parameters Return Value Response Model

getImagesList() Promise Array<ImagesListItem>

ActiveReports 14 298

Copyright © 2020 GrapeCity, Inc. All rights reserved.

IMAGES LIST ITEM OBJECT

type ImagesListItem = {
 _id: string, // image id
 Name: string, // image name
 MimeType: string, // image MIME type
 Thumbnail: null, // RESERVED - for now only null is supported
}

GET IMAGE URL

This url is used to display external image in design-time.

Parameters Return Value

getImageUrl(options: GetImageUrlOptions) imageUrl: string

GET IMAGE URL OPTIONS OBJECT

type GetImageUrlOptions = {
 id: string, // image id
}

Report Templates

GET TEMPLATES LIST

This function can be used in some custom File View ('Web Designer API' in the on-line documentation) implementation.

Parameters Return Value Response Model

getTemplatesList() Promise Array<TemplatesListItem>

TEMPLATES LIST ITEM OBJECT

type TemplatesListItem = {
 _id: string, // template id
 Name: string, // template name
}

GET TEMPLATE CONTENT

Parameters Return Value Response Model

getTemplateContent(options: GetTemplateContentOptions) Promise Report JSON Model

GET TEMPLATE CONTENT OPTIONS OBJECT

type GetTemplateContentOptions = {

ActiveReports 14 299

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 id: string, // template id
}

GET TEMPLATE THUMBNAIL

This function can be used in some custom File View ('Web Designer API' in the on-line documentation) implementation.

Parameters Return Value Response Model

getTemplateThumbnail(options: GetTemplateThumbnailOptions) Promise base64ImageData: string

GET TEMPLATE THUMBNAIL OPTIONS OBJECT

type GetTemplateThumbnailOptions = {
 id: string, // template id
}

Miscellaneous

CREATE RESOURCE LINK

This function creates a resource (report/image/theme) link to be stored in RDLX report definition. The Resource links are then
resolved while rendering report. These links need to be correct for successful report preview.

Parameters Return Value

createResourceLink(options: ResourceLinkOptions) resourceLink: string

RESOURCE LINK OPTIONS OBJECT

type ResourceLinkOptions = {
 id: string, // resource id
 type: 'report' | 'image' | 'theme' | null, // resource type
 version: null, // RESERVED - for now only null is supported
}

PARSE RESOURCE LINK

The opposite operation to createResourceLink().

Parameters Return Value

parseResourceLink(resourceLink: string) ResourceLinkOptions

UPDATE ROUTE

This function can be used to update Designer url when a new or an existing report editing is started.

Parameters Return Value

updateRoute(options: UpdateRouteOptions) void

ActiveReports 14 300

Copyright © 2020 GrapeCity, Inc. All rights reserved.

UPDATE ROUTE OPTIONS OBJECT

type UpdateRouteOptions = {
 id: string, // report id
 version: null, // RESERVED - for now only null is supported
}

Designer Options Object
This topic describes Designer Options Object Properties. For more information see Web Designer API (on-line
documentation).

serverApi

Description: Specifies server-api calls for getting server resources, for example, reports, themes, data-sets, etc.

Type: DesignerServerApi

reportInfo (optional)

Description: If report id is specified, the corresponding report will be opened in designer when designer application is
rendered.

Type:

{ id?: string }

Example:
designerOptions.reportInfo.id = 'MyReport.rdlx';

locale (optional)

Description: If the locale value is not specified explicitly here, the locale corresponding to the browser preferences is
used.

Type: 'en' | 'zh' | 'ja'

Example:
designerOptions.locale = 'zh';

units (optional)

Description: If measurement units are not specified explicitly here, they are identified depending on locale.

Type: 'in' | 'cm'

Example:

designerOptions.units = 'cm';

reportItems (optional)

Description: It is possible to limit and/or reorder available report items. Specify comma-separated report items keys from
following: TextBox, CheckBox, Container, Line, Shape, TableOfContents, Image, InputField, List, Table, Tablix, Chart, Bullet,
Barcode, FormattedText, Sparkline, Subreport, and OverflowPlaceholder.

ActiveReports 14 301

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Type: string

Example:
designerOptions.reportItems = 'TextBox,CheckBox,Table,Chart,Image';

lockLayout

Description: By default lockLayout is disabled. When lockLayout is enabled, it is only possible to modify properties of
existing report items. That is, adding a new report item or deleting an existing one is not possible as well as other
operations that modify report layout structure.

Type: boolean

Example:

designerOptions.lockLayout = true;

restoreUnsavedReport

Description: By default restoreUnsavedReport is enabled. In this case the last unsaved report can be restored if browser
tab or browser itself gets accidentally closed. When restoreUnsavedReport is disabled, the aforementioned functionality
is not available.

Type: boolean

Example:
designerOptions.restoreUnsavedReport = false;

saveButton

Description: Specifies whether Save button needs to be shown. Save button is not visible by default.

Type:

{ visible: boolean }

Example:

designerOptions.saveButton.visible = true;

saveAsButton

Description: Specifies whether Save As button needs to be shown. Save As button is not visible by default.

Type:

{ visible: boolean }

Example:
designerOptions.saveAsButton.visible= true;

reportExplorer

Description: Specifies whether Report Explorer button needs to be shown. Report Explorer button is visible by default.

Type:

{ visible: boolean }

Example:

ActiveReports 14 302

Copyright © 2020 GrapeCity, Inc. All rights reserved.

designerOptions.reportExplorer.visible= false;

groupEditor

Description: Specifies whether Group Editor button needs to be shown. Group Editor button is visible by default.

Type:

{ visible: boolean }

Example:
designerOptions.groupEditor.visible = false;

toolBox

Description: Specifies whether left-side menu Toolbox needs to be shown. Toolbox is visible by default.

Type:

{ visible: boolean }

Example:
designerOptions.toolBox.visible = false;

insertTab

Description: Specifies whether application bar menu Insert Tab needs to be shown. Insert Tab is not visible by default.
Toolbox and Insert Tab are interchangeable.

Type:

{ visible: boolean }

Example:

designerOptions.insertTab.visible = true;

propertiesTab

Description:

visible - Specifies whether Properties Tab needs to be shown. Properties Tab is visible by default.
mode - Specifies available properties modes. The default value is 'Both'.
dataSets -

visible - Specifies whether Data Sets section needs to be shown. 'Data Sets' section is visible by default.
canModify - Specifies whether it is possible to modify (including add/remove) data sets. By default this
feature is disabled.

defaultMode - Relevant only when mode is 'Both'. If undefined, the last used properties mode is set.

Type:
{
 visible: boolean,
 mode: 'Both' | 'Advanced' | 'Basic',
 defaultMode?: 'Advanced' | 'Basic',
}

Example:

ActiveReports 14 303

Copyright © 2020 GrapeCity, Inc. All rights reserved.

designerOptions.propertiesTab.visible = false;
designerOptions.propertiesTab.mode = 'Basic';
designerOptions.propertiesTab.defaultMode = 'Advanced';

dataTab

Description:

visible - Specifies whether Data Tab needs to be shown. Data Tab is visible by default.
dataSources -

visible - Specifies whether Data Sources section needs to be shown. Data Sources section is visible by
default.

dataSets -
visible - Specifies whether Data Sets section needs to be shown. Data Sets section is visible by default.
canModify - Specifies whether it is possible to modify (including add/remove) data sets. By default this
feature is disabled.

parameters -

visible - Specifies whether Parameters section needs to be shown. Parameters section is visible by default.
canModify - Specifies whether it is possible to modify (including add/remove) report parameters. By default
this feature is enabled.

commonValues -

visible - Specifies whether Common Values section needs to be shown. Common Values section is visible
by default.

Type:
{
 visible: boolean,
 dataSources: {
 visible: boolean,
 },
 dataSets: {
 visible: boolean,
 canModify: boolean,
 },
 parameters: {
 visible: boolean,
 canModify: boolean,
 },
 commonValues: {
 visible: boolean,
 },
}

Example:

designerOptions.dataTab.visible = false;
designerOptions.dataTab.dataSources.visible = false;
designerOptions.dataTab.dataSets.visible = false;
designerOptions.dataTab.dataSets.canModify = true;
designerOptions.dataTab.parameters.visible = false;
designerOptions.dataTab.parameters.canModify = false;

ActiveReports 14 304

Copyright © 2020 GrapeCity, Inc. All rights reserved.

designerOptions.dataTab.dataSources.visible = false;

gridSize

Description:

visible - Specifies whether Grid Size editor in Status Bar needs to be shown. Grid Size editor is visible by default.
value - If Grid Size editor is not visible, it is possible to specify grid size value in in/cm (inches or centimeters).

Type:
{
visible: boolean,
value?: string,
}

Example:

designerOptions.gridSize.visible = false;
designerOptions.gridSize.value = '0.75cm';
/* or */
designerOptions.gridSize.value = '0.5in';

showGrid

Description:

visible - Specifies whether Show Grid toggle in Status Bar needs to be shown. Show Grid toggle is visible by
default.
value - If Show Grid toggle is not visible, it is possible to specify show grid value as true or false.

Type:
{
visible: boolean,
value?: boolean,
}

Example:

designerOptions.showGrid.visible = false;
designerOptions.showGrid.value = false;

canEditDataSource

Description: Indicates whether a data source can be edited.

Type: boolean

Example:

@param options CanEditDataSourceOptions object

canEditDataSet

Description: Indicates whether a data set can be edited.

Type: boolean

Example:

ActiveReports 14 305

Copyright © 2020 GrapeCity, Inc. All rights reserved.

@param options CanEditDataSetOptions object

canAddDataSetForDataSource

Description: Returns a data set initialized for the specified data source.

Type: boolean

Example:

@param options InitDataSetForDataSourceOptions object

initDataSetForDataSource

Description: Returns properties available for the specified data set.

Type: Dataset

Example:

@param options GetDataSetPropertiesOptions object

getDataSetSchema

Description: Gets schema for the specified data set.

Example:

@param option GetDataSetSchemaOptions object
getDataSetSchema: (options: GetDataSetSchemaOptions) => Promise;

fonts

Description: Specifies the list of fonts displayed in font properties drop-downs all over Designer. If fonts are not specified
explicitly here, the default list of fonts is used.

Type: Array<string>

Example:

designerOptions.fonts = ['Arial', 'Courier New', 'Times New Roman'];

openViewer

Description: You can plug-in Report Viewer component by providing openViewer() function implementation to
DesignerOptions object. When openViewer() is implemented and passed to DesignerOptions, Preview button appears
in Designer application bar.

Example:

designerOptions.openViewer = openViewerImpl;

openFileView

Description: You can plug-in File View component by providing openFileView() function implementation to
DesignerOptions object. When openFileView() is implemented and passed to DesignerOptions, File tab appears in
Designer application bar.

Example:

ActiveReports 14 306

Copyright © 2020 GrapeCity, Inc. All rights reserved.

designerOptions.openFileView = openFileViewImpl;

onSave

Description: You can specify behavior for Save Report scenario by providing onSave() function implementation to
DesignerOptions object.

Example:

designerOptions.onSave = onSaveImpl;

onSaveAs

Description: You can specify behavior for Save Report As scenario by providing onSaveAs() function implementation to
DesignerOptions object.

Example:

designerOptions.onSaveAs = onSaveImpl;

onOpen

Description: You can specify behavior for Open Report scenario by providing onOpen() function implementation to
DesignerOptions object.

Example:

designerOptions.onOpen = onOpenImpl;

openDataSourceEditor

Description: You can specify behavior for Add/Edit Data Source scenario by providing openDataSourceEditor()
function implementation to DesignerOptions object.

Example:

designerOptions.openDataSourceEditor = openDataSourceEditorImpl;

openButton

Description: Specifies whether Open button needs to be shown. Open button is not visible by default.

Type: { visible: boolean }

Example:

designerOptions.openButton.visible = true;

dataSetPicker

Description:

mode- Data Set Picker mode.
open- Specifies behavior on opening Data Set Picker.
close- Specifies behavior on closing Data Set Picker

Example:

designerOptions.dataSetPicker.mode = 'Panel';
designerOptions.dataSetPicker.open = openDataSetPickerImpl;

ActiveReports 14 307

Copyright © 2020 GrapeCity, Inc. All rights reserved.

designerOptions.dataSetPicker.close = closeDataSetPickerImpl;

reportItemsFeatures

Barcode features

defaultSymbology

Description: Overrides the default symbology used for newly-created barcodes. By default new barcodes are created with
QR Code symbology.

Type: BarcodeSymbology

Example:

designerOptions.reportItemsFeatures.barcode.defaultSymbology = 'Code_128_A';

symbologies

Description: Limits the list of barcode symbologies available for creation. By default all barcode symbologies supported
by ActiveReports are available..

Type: Array<BarcodeSymbology>

Example:

designerOptions.reportItemsFeatures.barcode.symbologies = ['Code_128_A', 'Code_128_B',
'Code_128_C']

Table features

autoFillHeader

Description: Specifies whether Table Header needs to be auto-filled when a field is dropped to Table Details. For
example, if ProductName field is dropped to Details, Product Name value is set to Header. By default this feature is
enabled.

Type: Boolean

Example:

designerOptions.reportItemsFeatures.table.autoFillHeader = false;

autoFillFooter

Description: Specifies whether Table Footer needs to be auto-filled when a field is dropped to Table Details. For
example, if ProductName field is dropped to Details, =Count([ProductName]) value is set to Footer. By default this feature
is disabled.

Type: Boolean

Example:

designerOptions.reportItemsFeatures.table.autoFillFooter = true;

canMergeCellsVertically

Description: Specifies whether vertical merge of cells is enabled within Table Header, Details, and Footer. By default this

ActiveReports 14 308

Copyright © 2020 GrapeCity, Inc. All rights reserved.

feature is enabled.

Type: Boolean

Example:

designerOptions.reportItemsFeatures.table.canMergeCellsVertically = false;

Tablix features

autoFillCorner

Description: Specifies whether Tablix Corner Cell needs to be auto-filled when a field is dropped to Tablix Row Group
Cell. For example, if ProductName field is dropped to Row Group Cell, Product Name value is set to Corner Cell. By default
this feature is enabled.

Type: Boolean

Example:

designerOptions.reportItemsFeatures.tablix.autoFillCorner = false;

canUseWizard

Description: Specifies whether Tablix Wizard is available for creating or editing Tablix. By default this feature is enabled.

Type: Boolean

Example:

designerOptions.reportItemsFeatures.tablix.canUseWizard = false;

Create a Simple Web Designer Sample
The topic describes creating Web Designer sample using ASP .NET MVC Core and ASP .NET MVC.

ASP .NET MVC Core

The steps to create a Web Designer sample using ASP .NET MVC Core application are as follows:

1. Open Microsoft Visual Studio 2019 and create a new ASP .NET Core Web Application project.

ActiveReports 14 309

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. Select Empty project template with default .NET Core and ASP .NET Core 3.1 options.

ActiveReports 14 310

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. In Solution Explorer right-click Dependencies and go to Manage NuGet Packages.
4. In the window that appears, go to Browse and input Microsoft.AspNetCore.StaticFiles, select the latest version and click

Install.

5. In the window that appears, go to Browse and input GrapeCity.ActiveReports.Aspnetcore.Designer and click Install.

6. In the License Acceptance dialog that appears, click I Accept.
7. In Solution Explorer, find Startup.cs and modify its content as follows:

Startup.cs

using System.IO;
using Microsoft.AspNetCore.Builder;

ActiveReports 14 311

Copyright © 2020 GrapeCity, Inc. All rights reserved.

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using GrapeCity.ActiveReports.Aspnetcore.Designer;
namespace WebDesignerSample
{
 public class Startup
 {
 // resources (reports, themes, images) location
 private static readonly DirectoryInfo ResourcesRootDirectory = new
DirectoryInfo(".\\resources\\");
 public void ConfigureServices(IServiceCollection services)
 {
 // web designer services
 services.AddDesigner();
 }
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 // web designer middleware
 app.UseDesigner(config =>
config.UseFileStore(ResourcesRootDirectory));
 // static files middlewares
 app.UseDefaultFiles();
 app.UseStaticFiles();
 }
 }
}

8. Create 'resources' folder in your sample project root; you can put your existing reports, themes, and images in this folder.

ActiveReports 14 312

Copyright © 2020 GrapeCity, Inc. All rights reserved.

9. To use npm packages, your project must contain package.json file. Run the following command in the command line
before installing any code dependencies:

npm init -y

10. Download and install the WebDesigner-related files and folders from NPM using the following command in the command
line:

npm install @grapecity/ar-designer

The designer files/folders will be downloaded in your current directory: .\node_modules\@grapecity\ar-designer\dist
11. Copy the following designer files/folder and paste it to your sample project wwwroot subfolder:

baseServerApi.js
web-designer.css
web-designer.js
vendor folder

Optionally you can also copy file-dialog.css and file-dialog.js if you would like to use our sample dialog for saving
reports.

12. In Solution Explorer, right-click wwwroot and select Add > New Item.

ActiveReports 14 313

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.npmjs.com/package/@grapecity/ar-viewer

13. Select HTML Page item type, input index.html and click Add.

ActiveReports 14 314

Copyright © 2020 GrapeCity, Inc. All rights reserved.

14. In Solution Explorer, find newly-added index.html and modify its content as follows:

index.html

<!DOCTYPE html>
<html>
<head>
 <title>Web Designer Sample</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <!-- No Virtual Directory -->
 <base href="/">
 <!-- designer-related css -->
 <link rel="stylesheet" href="vendor/css/materialdesignicons.min.css" media="all"
type="text/css" />
 <link rel="stylesheet" href="vendor/css/bootstrap.min.css" />
 <link rel="stylesheet" href="vendor/css/font-awesome.min.css">
 <link rel="stylesheet" href="vendor/css/ionicons.min.css">
 <link rel="stylesheet" href="vendor/css/fonts-googleapis.css" type="text/css">
 <link rel="stylesheet" href="web-designer.css" />
</head>
<body class="theme-blue">
 <!-- designer-related js -->
 <script src="vendor/js/jquery.min.js"></script>
 <script src="vendor/js/bootstrap.min.js"></script>
 <script src="baseServerApi.js"></script>
 <script src="web-designer.js"></script>
 <!-- designer root div -->
 <div id="designer-id" style="width: 100%; height: 100%;"></div>
 <script>

ActiveReports 14 315

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 // create designer options
 var designerOptions =
GrapeCity.ActiveReports.WebDesigner.createDesignerOptions(baseServerApi);
 // render designer application
 GrapeCity.ActiveReports.WebDesigner.renderApplication('designer-id',
designerOptions);
 </script>
</body>
</html>

15. Build your solution (Build> Build Solution) and run it. WebDesigner with a blank RDL report opens in your browser.

16. If you would like to open not a blank report but one of your existing reports in resources subfolder (added above in step
12), you will need to add the following line with your report name in index.html after createDesignerOptions() function
call:

index.html

designerOptions.reportInfo.id = "MyReport.rdlx";

17. In case you copied file-dialog.css and file-dialog.js to the sample project wwwroot subfolder in step 14., you can plug-in
our sample dialog for saving reports.
 Following steps are required to be performed in index.html to plug-in the dialog component:

ActiveReports 14 316

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 i. In <head> tag, add file-dialog.css near web-designer.css:

<link rel="stylesheet" href="file-dialog.css" />
<link rel="stylesheet" href="web-designer.css" />

 ii. In <body> tag, add file-dialog.js near web-designer.js:

<script src="file-dialog.js"></script>
<script src="web-designer.js"></script>

 iii. Near designer root div and dialog root div:

<!-- designer root div -->
< div id="designer-id" style="width: 100%; height: 100%;"></div>
<!-- save as dialog root div -->
< div id="save-as-dialog-id" style="position: absolute; top: 0; left: 0; width: 100%;
height: 100%; display: none; z-index: 9999;"></div>

 iv. Modify <script> tag contents where designer application is rendered:

<script>
 var showElement = function (id) {
 if (!id) return;
 ($('#' + id)).css('display', 'block');
 };
 var hideElement = function (id) {
 if (!id) return;
 ($('#' + id)).css('display', 'none');
 };
 var designerId = 'designer-id';
 var saveAsDialogId = 'save-as-dialog-id';
 function onSaveAs(options) {
 showElement(saveAsDialogId);
 // render save-as dialog
 fileDialog.createSaveReportAsDialog(saveAsDialogId, {
 locale: options.locale,
 api: {
 getReportsList: function () {
 return baseServerApi.getReportsList()
 .then(function (reportsList) {
 return reportsList.map(function (reportInfo) {
 return { path: reportInfo.Name };
 });
 });
 },
 saveReport: function (saveOptions) {
 return baseServerApi.saveNewReport({
 name: saveOptions.path,
 content: options.reportInfo.content,
 }).then(function (saveResult) {

ActiveReports 14 317

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 return { id: saveResult.Id };
 });
 },
 },
 reportInfo: {
 path: options.reportInfo.name,
 },
 onSuccess: function (saveResult) {
 hideElement(saveAsDialogId);
 options.onSuccess({ id: saveResult.id, name: saveResult.path });
 },
 onClose: function () {
 hideElement(saveAsDialogId);
 },
 });
 };
 // create designer options
 var designerOptions =
GrapeCity.ActiveReports.WebDesigner.createDesignerOptions(baseServerApi);
 // enable showing save-as button
 designerOptions.saveAsButton.visible = true;
 // specify behavior on save-as
 designerOptions.onSaveAs = onSaveAs;
 // render designer application
 GrapeCity.ActiveReports.WebDesigner.renderApplication(designerId, designerOptions);
</script>

You get a designer with plugged-in sample save-as dialog. Such minimalistic designer can be used for editing the existing
reports without adding new data sets.

However, in case you need to create brand-new reports, add data sets and preview reports from designer, please refer Web
Designer API (on-line documentation) topic.

ASP .NET MVC

The steps to create a Web Designer sample using ASP .NET MVC application are as follows:

1. Open Microsoft Visual Studio 2013 and create a NET Framework 4.6.2 ASP .NET Empty Web Application project.

ActiveReports 14 318

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In Solution Explorer, right-click References and go to Manage NuGet Packages.

3. In the window that appears, go to Online > nuget.org.

ActiveReports 14 319

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. In the right-upper corner search box, input Microsoft ASP.NET MVC and install this package.

In the License Acceptance dialog that appears, click I Accept.
5. In search box input OWIN, find 'OWIN' in search results and install this package:

ActiveReports 14 320

Copyright © 2020 GrapeCity, Inc. All rights reserved.

6. In search box input Microsoft.Owin and install this package.

In the License Acceptance dialog that appears, click I Accept.
7. In search box input Microsoft.Owin.Host.SystemWeb and install this package.

ActiveReports 14 321

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In the appeared License Acceptance dialog click I Accept.

8. In search box input Microsoft.Owin.StaticFiles and install this package.

In the License Acceptance dialog that appears, click I Accept.

9. In search box input Microsoft.Owin.FileSystems.
However, this package should be already installed together with Microsoft.Owin.StaticFiles in the previous step.

ActiveReports 14 322

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Therefore, all the needed packages are installed. Now, lets add the designer package in the next step.
10. In the search box in NuGet Package Manager, input GrapeCity.ActiveReports.Aspnet.Designer and click Install.
11. In the Preview Changes dialog that appears, click OK.
12. In the License Acceptance dialog that appears, click I Accept.
13. In Solution Explorer, right-click your project, go to Add > New Item...

ActiveReports 14 323

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In the window that appears, go to Code > Class, input Startup.cs and click Add.

ActiveReports 14 324

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Modify the contents of newly-added Startup.cs as follows:

using System;
using System.IO;
using System.Linq;
using System.Web;
using GrapeCity.ActiveReports.Aspnet.Designer;
using Owin;
using Microsoft.Owin;
using Microsoft.Owin.StaticFiles;
using Microsoft.Owin.FileSystems;
using System.Web.Mvc;
using System.Web.Routing;
[assembly: OwinStartup(typeof(AspNetDesignerSample.Startup))]
namespace AspNetDesignerSample
{
 public class Startup
 {
 // resources (reports, themes, images) location
 private static readonly DirectoryInfo ResourcesRootDirectory =
 new DirectoryInfo(String.Format("{0}.\\resources\\",
HttpRuntime.AppDomainAppPath));
 public void Configuration(IAppBuilder app)
 {
 // web designer middleware
 app.UseDesigner(config => config.UseFileStore(ResourcesRootDirectory));
 // static files middlewares

ActiveReports 14 325

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 var fileSystem = new PhysicalFileSystem(String.Format("{0}.\\wwwroot\\",
HttpRuntime.AppDomainAppPath));
 app.UseDefaultFiles(new DefaultFilesOptions { DefaultFileNames = new[] {
"index.html" }, FileSystem = fileSystem });
 app.UseStaticFiles(new StaticFileOptions { FileSystem = fileSystem });
 }
 }
}

14. Create 'resources' folder in your sample project root; you can put your existing reports, themes, and images in this folder.

15. Download and install the WebDesigner-related files and folders from NPM using the following command in the command
line:

npm install @grapecity/ar-designer

The designer files/folders will be downloaded in your current directory: ..\node_modules\@grapecity\ar-designer\dist
16. Create 'wwwroot' folder in your sample project root. Copy following basic WebDesigner-related files and paste it to your

sample project wwwroot subfolder:
baseServerApi.js
web-designer.css
web-designer.js
vendor folder
Optionally you can also copy file-dialog.css and file-dialog.js if you would like to use our sample dialog
component for saving reports.

17. In Solution Explorer top bar, check Show All Files.

ActiveReports 14 326

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Right-click wwwroot and select Include In Project.

Uncheck Show All Files.
18. Right-click wwwroot and select Add > New Item...:

ActiveReports 14 327

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In the window that appears, go to Web > HTML Page, input index.html and click Add.

ActiveReports 14 328

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In Solution Explorer find newly-added index.html and modify its content as follows:

<!DOCTYPE html>
<html>
<head>
 <title>Web Designer Sample</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <!-- designer-related css -->
 <link rel="stylesheet" href="vendor/css/materialdesignicons.min.css" media="all"
type="text/css" />
 <link rel="stylesheet" href="vendor/css/bootstrap.min.css" />
 <link rel="stylesheet" href="vendor/css/font-awesome.min.css">
 <link rel="stylesheet" href="vendor/css/ionicons.min.css">
 <link rel="stylesheet" href="vendor/css/fonts-googleapis.css" type="text/css">
 <link rel="stylesheet" href="web-designer.css" />
</head>
<body class="theme-blue">
 <!-- designer-related js -->
 <script src="vendor/js/jquery.min.js"></script>
 <script src="vendor/js/bootstrap.min.js"></script>

ActiveReports 14 329

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 <script src="baseServerApi.js"></script>
 <script src="web-designer.js"></script>
 <!-- designer root div -->
 <div id="designer-id" style="width: 100%; height: 100%;"></div>
 <script>
 // create designer options
 var designerOptions =
GrapeCity.ActiveReports.WebDesigner.createDesignerOptions(baseServerApi);
 // render designer application
 GrapeCity.ActiveReports.WebDesigner.renderApplication('designer-id',
designerOptions);
 </script>
</body>
</html>

Build your solution and run it. WebDesigner with a blank RDL report opens in your browser.
19. See steps from Step 16 of ASP .NET MVC Core application to complete this sample.

Designer Control (Pro Edition)
With the Professional Edition of ActiveReports, you can host the ActiveReports Designer control in your Windows
Forms application and provide your end users with report editing capabilities. The control's methods and properties allow
you to save and load report layouts, monitor and control the design environment, and customize the look and feel.

In addition to the Designer control, ActiveReports offers a CreateToolStrips method to help you add default toolbars to
the designer and add and remove individual tool bars and commands. This gives your designer a finished look and allows
you to quickly create a functioning report designer application.

Note: You cannot host the ActiveReports Designer control in the Web application and Web site project types.

Standalone Viewers
ActiveReports provides executable files for the Viewer controls (Windows and WPF) in the startup menu. These executable
files function as standalone applications to help view a report quickly.

Use the standalone designer application to create a report layout, save it in .rpx or .rdlx format and then load it in the
stand-alone viewer application to view the report.

To access the Standalone Viewer application

From the Start Menu, select ActiveReports 14 Viewer.

OR

Select the application located under: ..\GrapeCity\ActiveReports 14\Tools.

GrapeCity.ActiveReports.Viewer.exe
GrapeCity.ActiveReports.WpfViewer.exe

ActiveReports 14 330

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Stand-alone Viewer refers to the GrapeCity.ActiveReports.Viewer.exe bundled with the ActiveReports installer. This is
basically a Windows Form application with an ActiveReports Viewer control in it. The default user interface of this
application provides an ActiveReports Viewer control along with a menu bar.

You can open a .rdlx or .rpx report in the stand-alone viewer application, by going to the File menu > Open menu option
and selecting a report to load in the viewer. Unlike the Viewer control, no code implementation is required to load the
report in the stand-alone application.

Please note that any additional features activated through code like the annotation toolbar, are not available in the stand-
alone viewer application. See Windows Forms Viewer for more information on how to implement these features in the
Viewer control.

Standalone WPF Viewer

Stand-alone WPF viewer refers to GrapeCity.ActiveReports.WpfViewer.exe bundled with ActiveReports 14 installer. This is
basically a WPF application with an ActiveReports WPF Viewer control in it. The default user interface of this application
provides an ActiveReports along with a menu bar.

 You can open an .rdlx or .rpx report in the stand-alone WPF Viewer application, by going to the File menu > Open menu
option and selecting a report to load in the viewer. Unlike the Viewer control, no code implementation is required to load
the report in the stand-alone application.

 Please note that features like customizing toolbar through code, are not available in the stand-alone WPF Viewer
application. See Using the WPF Viewer for more information on how to implement these features in the Viewer control.

Standalone ActiveReports Designer
The stand-alone designer refers to the GrapeCity.ActiveReports.Designer.exe bundled with the ActiveReports installer. This
application provides a user interface comprising of the design area at the center along with a toolbox, toolbar, menu,
Report Explorer and Properties Window to mimic the Visual Studio look and feel. The executable file for the designer is
available in the startup menu.

The stand-alone designer supports all reports - Page, RDL, and Section. By default, a stand-alone designer appears with an
RDL layout loaded in the designer. Use the stand-alone designer application to create a report layout, save it in .rpx or

ActiveReports 14 331

Copyright © 2020 GrapeCity, Inc. All rights reserved.

.rdlx format and then load it in the stand-alone viewer application to view the report.

The UI/UX of the Stand-alone designer shipped with ActiveReports 14 in comparison to the previous version, is more
modern with improved presentation and accessibility of various menu items. Note that the existing integrated designer in
Visual Studio is unchanged, with UI similar to the stand-alone designer of the previous version. See ActiveReports
Designer for more information on integrated ActiveReports Designer.

To access the stand-alone designer application:

From the Start Menu, select ActiveReports 14 Designer.

OR

Select the GrapeCity.ActiveReports.Designer.exe application located in the installation folder:
..\GrapeCity\ActiveReports 14\Tools.

Design area

Element Description

ActiveReports 14 332

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Preview Shows report preview.

Report
Explorer

Provides an overview of the hierarchy of added report items and allows managing data sources,
parameters, embedded images, embedded stylesheets, etc.

Group
Editor

Shows Column and Row group hierarchies of Tablix members for currently selected Tablix data region. You
can also switch between Horizontal and Vertical mode.

Layers Provides options to add or remove layers and send the Layer back or bring it to the front. You can edit or
customize any element only in the layer in which it was added.

Report
Controls

Report controls and data regions that can be used while creating a report.

Undo/Redo Undo or redo actions on designer.

New Creates a new report - Page report, RDL report, or Section report.

Open Opens an existing report.

Save/Save
As

Saves reports in .rpx or .rdlx format depending on the type of layout you are using.

Ribbon
Tabs

• File - Contains options to create, open, save reports or exit the designer. It also contains the version
information in the About option.
• Home - Consists of report editing options such as cut, copy, paste, and delete. It also provides shortcuts
for text formatting such as font, font size, font color, and horizontal and vertical text alignments.
• Layout - Contains options to align to grid, size to grid, bring to front, send to back and other sizing and
spacing options.
• Report - Contains options to define report parameters, embedded images, report properties and add or
remove header and footer (RDL report), and change report stylesheets.
• Script - Allows you to embed Visual Basic.NET or C# script in reports.

Report
Design
Surface

Area where you can drag and drop report controls such as the table, chart, textbox and other controls to
design your reports.

Properties Displays the properties of the selected report element. If more than one element is selected, only their
common properties are shown.

Library Allows adding reports to the designer along with its data source, dataset, parameter, etc. The elements of
the reports added in the library can be used in creating a report.

Grid Mode Shows or hides the grid. Grids help in accurate placements of controls.

Zoom
Support

Changes the zoom level of the design area by using zoom in (+) and zoom out (-) buttons, or by using
shortcuts [Ctrl] + [+] to zoom in and [Ctrl] + [-] to zoom out.

Grid
Settings

• Grid Size - Changes the size of the grid. The value should be between 0.025in and 2in.

• Snap to Grid: Allows the selected control to snap to the grid at set locations.

• Snap to Lines - Allows the selected control to snap to the vertical or horizontal lines relative to the
position of other controls.

• Dimension Lines - Displays the dimensions of the element when it is being resized.

ActiveReports 14 333

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Actual Size Restores the actual size of the report.

Pan Mode Easy report navigation by dragging it up or down.

Select
Mode

Selects all the elements in the selected area.

Preview

Element Description

Back Back to the designer.

Side
Panel

• Page Thumbnails - Displays thumbnails of all the report pages in the side panel.
• Search Results - Searches any word or phrase.

Find Opens Find window to find any word or phrase.

Copy Copies the selected text on clipboard.

Export Exports report to various formats like csv, json, jpeg, etc.

ActiveReports 14 334

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Print Prints report.

First
Page

Navigates to the first page of the report.

Previous
Page

Navigates to previous page.

Page
Number

Navigates to the specific page of the report.

Next
Page

Navigates to the next page.

Last Page Navigates to the last page of the report.

Backward Navigates to the page you accessed before the current page.

Forward Navigates to the page from where you accessed the current page.

Refresh Refreshes the report.

View • Single Page - Shows one page of a report at a time.

• Continuous - Shows all pages of the report one below the other.

• Galley - Shows RDL reports by removing automatic page breaks and displaying data in a single scrollable
page.

• Multipage - Shows multiple pages at one glance in a tabular format.

Tools • Pan - Easy report navigation by dragging it up or down.
• Selection - Select report element(s).
• Snapshot - Captures a snapshot and saves it on clipboard.

Zoom
Support

Changes the zoom level of the design area by using zoom in (+) and zoom out (-) buttons, or by using
shortcuts [Ctrl] + [+] to zoom in and [Ctrl] + [-] to zoom out.

Keyboard Shortcuts

The following shortcuts are available in the designer.

Keyboard
Shortcut

Action

Designing Ctrl + A Selects all cells in the Table and Tablix controls.
In the List, Body and Container controls, selects all controls in the current container.

Ctrl + O Opens the Open report dialog.

Ctrl + S Opens the Save report dialog.

Ctrl + Z Undoes the last action.

Ctrl + Y Redoes the last action.

Ctrl + X Cuts text and controls.

Ctrl + C Copies text and controls.

ActiveReports 14 335

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Ctrl + V Pastes text and controls.

Del Deletes text and controls.

Left, Right, Up,
Down arrow keys

Moves the visible area of the page in the corresponding direction.
In the Table, navigates between the cells.
When controls inside List and Container controls and in the Body of the report are
selected, arrow keys allow moving controls by grid-size.
In the Chart Control, arrow keys move data-fields and category-fields.

Tab Navigates in the forward direction between the cells in the Table and Tablix controls.
When controls inside List and Container controls and in the Body of the report are
selected, Tab key switches between controls in the forward direction.

Shift + Tab Navigates in the backward direction between the cells in the Table and Tablix controls.
When controls inside List and Container controls and in the Body of the report are
selected, Shift + Tab switches between controls in the backward direction.

Formatting Ctrl + B Makes the text bold.

Ctrl + I Makes the text italic.

Ctrl + U Underlines the text.

Ctrl + L Aligns text to the left.

Ctrl + E Aligns text to the center.

Ctrl + R Aligns text to the right.

Ctrl + J Aligns text justified.

Ctrl + T Aligns text to the top.

Ctrl + M Aligns text to the middle.

Ctrl + H Aligns text to the bottom.

Previewing
(F5)

Ctrl + F Finds a text in the report.

Ctrl + E Exports the report.

Ctrl + P Prints the report.

Ctrl + S Switches view mode to Single page.

Ctrl + M Switches view mode to Continuous.

Ctrl + I Switches view mode to Multiple page.

Page Report/RDL Report Concepts
There are a number of concepts that apply to page reports and RDL reports.

ActiveReports 14 336

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In this section
Toolbox

Learn about the report controls and data regions available in the ActiveReports 14 Page Report and ActiveReports 14
RDL Report group in the Visual Studio toolbox.

Data Sources and Datasets
Learn about the Data Sources you can access through ActiveReports and fetch data through DataSets along with an
overview of the Report DataSource and DataSet dialogs.

Expressions
Learn about setting expressions in reports and creating expression through the Expression Editor.

Layers
Learn about using Layers in reports and it's advantages.

Report Appearance
Learn about using Styles in reports and creating themes to define the appearance of reports for a consistent look.

Report Dialog
Learn about the various options provided in Report Dialog.

Fixed Page Dialog
Learn about the various options provided in FixedPage Dialog.

Data Visualizers
Learn about a number of ways to make your data pop using small graphs in images and background colors.

Custom Resource Locator
Learn about the ResourceLocator class that allows you to find resources on your machine for use in your RDL reports.

Toolbox
When a Page report or RDL report has focus in Visual Studio, the ActiveReports 14 Page Report and ActiveReports 14
RDL Report toolbox group offers a number of report controls and data regions that you can use when creating a report.
You can drag these from the toolbox and drop them onto your reports. These tools are different than those in the Section
Report Toolbox.

Note: Take care in naming report controls, as they are displayed to end users in the advanced search feature of the
Viewer.

In this section
Banded List

The BandedList is a data region with freeform bands in which you can place report controls. With a detail band that
repeats data for every row in the dataset, this data region resembles the Section report design surface.

Barcode
The BarCode report control renders scannable barcodes in any of 39 popular symbologies. You can bind it to
data, control the bar width, rotation, quiet zones, caption locations, whether check sum is enabled, and many other
properties.

Bullet
The Bullet report control is an easy-to-read linear gauge that is a good alternative to using a dashboard for data
visualization. You can bind it to data and set best, worst, and satisfactory values as well as labels and ranges.

Chart
The new Chart is a graphic data region similar to Classic Chart, which is based on representing the data using
encodings. It is the default chart available in the designer.

ActiveReports 14 337

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Classic Chart
The Classic Chart is a graphic data region which allows you to display data in a variety of chart styles with 3D effects
and colors, and provides many options for customization. You can choose from numerous chart types.

CheckBox (Page Report)
The CheckBox report control can display Boolean data, or you can set its Checked property. You can also enter static
text to display.

Container
The Container report control is a graphical element that is used as a container for other items. The Container report
control has no data associated with it.

Formatted Text
The FormattedText report control displays data, and allows you to format selected areas of text within the control in
different ways. This report control accepts XHTML input, and allows you to set up mail merge.

Image
The Image report control allows you to specify any image file to display from an external source, a database or an
embedded image.

InputField
The InputField report control provides support for editable fields in an exported PDF report.

Line
The Line report control, a graphical element that has no data associated with it, visually marks boundaries or
highlights specific areas of a report. You can use lines of various weight, color, and style to highlight regions of your
reports and to add style and polish.

List
The List is a freeform data region in which you can place other report controls. It repeats any report control it
contains for every record in the dataset.

Map
The Map data region shows your business data against a geographical background. You can select different types of
map, depending on the type of information you want to communicate in your report.

Overflow Place Holder
The Overflow Placeholder report control is only available with page reports. It is a simple rectangle that you link to
a List, BandedList, Tablix, or Table data region to display data that extends beyond one page.

Shape
The Shape report control, a graphical element that has no data associated with it, allows you to mark visual
boundaries or highlight specific areas of a report with rectangles, rounded rectangles, or elliptical shapes. Unlike the
Container report control, it cannot contain other controls.

Sparkline
The Sparkline report control displays a data trend over time in a graph small enough to be used inline, with a height
similar to the surrounding text. You can select from line, area, stacked bar, column, and whisker sparkline types.

Subreport
The Subreport control displays data from a separate report that you specify. You can pass a parameter to the
subreport from the main report to filter data displayed in a subreport.

Table
The Table is a data region that shows data in rows. By default, it has three columns and three rows. Once set at design
time, the columns are static, while the rows repeat for each row of data. The default rows are the header, detail, and
footer.

TableOfContents
The TableOfContents (ToC) report control is used to display the document map, an organized hierarchy of the report
bookmarks and labels along with their page numbers, in the body of a report. The TableOfContents control allows
you to quickly understand and navigate the data inside a report in all viewers that are supported in ActiveReports.

TextBox
The TextBox displays data, and is the default data region that appears in each cell of a Table or Tablix data region. It is

ActiveReports 14 338

Copyright © 2020 GrapeCity, Inc. All rights reserved.

also the data region that is created automatically when you drag a field from the Data Explorer onto your report. You
can use expressions to modify the data that appears in a TextBox.

Tablix
Tablix data region displays data in cells that are arranged in rows and columns. Tablix is mainly a combination of two
data regions- table and a matrix.

Banded List
The BandedList data region is a collection of free-form bands. By default, it is composed of three bands: a header, a footer
and a detail band. Bound report controls in the detail band repeat for every row of data. The header and footer rows
render once at the beginning and end of the BandedList, respectively, and are a good place for titles and grand totals.

Click inside each band to reveal its properties in the Properties window, or click the four-way arrow to select the entire
data region and reveal its properties. Properties for this data region include the following.

Band Properties

Property Description

CanGrow Change to True to allow the data region to grow vertically to accommodate data.

CanShrink Change to True to allow the data region to shrink if there is not enough data to fill it.

KeepTogether Change to True to have ActiveReports attempt to keep all of the data in the band together on one
page.

PageBreakAtEnd Change to True to insert a page break after rendering all of the data in the band.

PageBreakAtStart Change to True to insert a page break before rendering any of the data in the band.

RepeatOnNewPage With header and footer bands, repeats the band on every page when the related details span
multiple pages.

BandedList Properties

Property Description

DataSetName Select the dataset to use in the data region.

DataSetParameters Specify the parameters for the data set.

KeepTogether Change to True to have ActiveReports attempt to keep all of the data in the data region together
on one page.

NewSection Change to True to render the data region in a new section.

OverflowName Select the name of the OverflowPlaceHolder control in which to render data that exceeds the
allowed space for the data region on the first page of the report.

You can add group header and group footer bands. Report controls in these bands repeat once for each group instance.
You can also nest groups, plus, in RDL reports, you can nest other data regions in any header or footer band. Grouping in
the BandedList is similar to grouping in the Table data region. You can provide a grouping expression for each group, and
also sort the groups.

Caution: You cannot sort the detail data in a BandedList, so any sorting of this type must be done at the query level.

ActiveReports 14 339

Copyright © 2020 GrapeCity, Inc. All rights reserved.

BandedList Dialog
Properties for the BandedList data region are available in the BandedList dialog. To open it, with the BandedList selected
on the report, under the Properties Window, click the Property dialog link.

The BandedList dialog lets you set properties on the data region with the following pages.

Note: You can click <Expression...> in many of these properties to open the Expression Editor where you can create
an expression to determine the value.

General

Name: Enter a name for the banded list that is unique within the report. You can only use underscore (_) as a special
character in the Name field. Other special characters such as period (.), space (), forward slash (/), back slash (\),
exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Dataset name: Select a dataset to associate with the banded list. The combo box is populated with all of the datasets in
the report's dataset collection.

Has own page numbering: Select to indicate whether this banded list is in its own section with regards to pagination.

Page Breaks: Select any of the following options to apply to each instance of the banded list.

Insert a page break before this banded list
Insert a page break after this banded list
Fit banded list on a single page if possible

Header and Footer: Select any of the following options.

Repeat header band on each page
Repeat footer band on each page

Visibility

By default, the banded list is visible when the report runs, but you can hide it, hide it only when certain conditions are met,
or toggle its visibility with another report control.

Initial visibility

Visible: The banded list is visible when the report runs.
Hidden: The banded list is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the BandedList is visible. True for hidden,
False for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the BandedList. The user can click the toggle item to show or hide this BandedList.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

ActiveReports 14 340

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Bookmark ID: Enter an expression to use as a locator for this BandedList. You will then be able to provide a bookmark
link to this item from another report control using a Jump to bookmark action.

Groups

Click the plus sign button to add a new group to the BandedList, and delete them using the X button. Once you add one
or more groups, you can reorder them using the arrow buttons, and set up information for each group on the following
tabs.

General

Name: Enter a name for the group that is unique within the report. This property cannot be set until after a Group on
expression is supplied.

Group on: Enter an expression to use for grouping the data.

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Parent group: For use in recursive hierarchies. Enter an expression to use as the parent group.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right.

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

ActiveReports 14 341

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Sorting

Click the plus sign button to enter new sort expressions, and remove them using the X button.

Expression: Enter an expression by which to sort the data in the group.

Direction: Select Ascending or Descending.

Visibility

By default, the group is visible when the report runs, but you can hide a group, hide it when certain conditions are met, or
toggle its visibility with another report control.

Initial visibility

Visible: The group is visible when the report runs.
Hidden: The group is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the group is visible. True for hidden, False
for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report item. The user can click the toggle item to show or hide this band group. This enables the drop-down list where
you can select the report control that users can click to show or hide this group.

Data Output

Element name: Enter a name to be used in the XML output for this group.

Collection: Enter a name to be used in the XML output for the collection of all instances of this group.

Output: Choose Yes or No to decide whether to include this group in the XML output.

Layout

Page break at start: Inserts a page break before the group.

Page break at end: Inserts a page break after the group.

Include group header: Adds a group header band (selected by default).

Include group footer: Adds a group footer band (selected by default).

Repeat group header: Repeats the group header band on each page.

Repeat group footer: Repeats the group footer band on each page.

Has own page numbering: Used in conjunction with the "Page Number in Section" and "Total Pages in Section"
properties, tells the report that the group constitutes a new page numbering section.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right.

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.

ActiveReports 14 342

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Data Output

The Data Output page of the BandedList dialog allows you to control the following properties when you export to XML.

Element name: Enter a name to be used in the XML output for this BandedList.
Output: Choose Auto, Yes, or No to decide whether to include this BandedList in the XML output. Choosing Auto
exports the contents of the BandedList.

Barcode
The Barcode report control offers various barcode styles to choose from. This saves you the time and expense of finding
and integrating a separate component. As with other data-bound report controls, you can use an expression to bind the
value of a field to the Barcode Value property.

Apart from the barcode style, you can manage the alignment, direction, color, background color, bar width, caption
position, font, text, and check whether checksum is enabled in the Properties Window. There are more properties available
with the Code49, PDF417, and QRCode barcode styles. Click the Barcode to reveal its properties in the Properties window.
All of the properties specific to this report control are also available in the Barcode dialog.

Note: This barcode is ported from the Section report Barcode control, so if you create reports programmatically, the
Page report/RDL report barcode is treated as a CustomReportItem.

Barcode Dialog
Properties for the Barcode are available in the Barcode dialog. To open it, with the Barcode selected in the report, under
the Properties Window, click the Property dialog link.

The Barcode dialog lets you set properties on the report control with the following pages.

ActiveReports 14 343

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Note: You can select the <Expression...> option in many of these properties to open the Expression Editor where
you can create an expression to determine the value. You can also access the Expression Editor from the context
menu of the Barcode control.

General

Name: Enter a name for the barcode that is unique within the report. You can only use underscore (_) as a special
character in the Name field. Other special characters such as period (.), space (), forward slash (/), back slash (\),
exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Value: Enter an expression or a static label, or choose a field expression from the drop-down list. You can access the
expression editor by selecting <Expression...> in the list. The value of this expression or text is used to render the
barcode in the report.

Invalid Barcode Text: Enter a message to display if the barcode contains invalid values (content, character, length).

Caption

Location: Select whether to display the caption above or below the barcode, or select None to display the barcode
without a caption.

Text Alignment: Select the horizontal alignment of the caption. The default value of General centers the caption.

Barcode Settings

Symbology: Enter the type of barcode to use. ActiveReports supports all of the most popular symbologies:

Table of all included symbologies

Notes: The RSS and QRCode styles have fixed height-to-width ratios. When you resize the width, the height is
automatically calculated.

When you choose a style that offers supplemental options, the additional options appear below.

Symbology Name Example Description

Ansi39 ANSI 3 of 9 (Code 39) uses upper case,
numbers, - , * $ / + %. This is the default
barcode style.

Ansi39x ANSI Extended 3 of 9 (Extended Code 39)
uses the complete ASCII character set.

BC412 Data BC412 uses 35 characters, 0 - 9 and A
- Z. It is designed for semiconductor wafer
identification.

Codabar Codabar uses A B C D + - : . / $ and
numbers.

ActiveReports 14 344

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Code_11 Encodes the numbers 0 through 9, the
hyphen (-), and start/stop characters. It is
primarily used in labeling
telecommunications equipment.

Code_128_A Code 128 A uses control characters,
numbers, punctuation, and upper case.

Code_128_B Code 128 B uses punctuation, numbers,
upper case and lower case.

Code_128_C Code 128 C uses only numbers.

Code_128auto Code 128 Auto uses the complete ASCII
character set. Automatically selects
between Code 128 A, B and C to give the
smallest barcode.

Code_2_of_5 Code 2 of 5 uses only numbers.

Code_93 Code 93 uses uppercase, % $ * / , + -, and
numbers.

Code25intlv Interleaved 2 of 5 uses only numbers.

Code39 Code 39 uses numbers, % * $ /. , - +, and
upper case.

Code39x Extended Code 39 uses the complete ASCII
character set.

Code49 Code 49 is a 2D high-density stacked
barcode containing two to eight rows of
eight characters each. Each row has a start
code and a stop code. Encodes the
complete ASCII character set.

ActiveReports 14 345

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Code93x Extended Code 93 uses the complete ASCII
character set.

DataMatrix Data Matrix is a high density, two-
dimensional barcode with square modules
arranged in a square or rectangular matrix
pattern.

EAN_13 EAN-13 uses only numbers (12 numbers
and a check digit). It takes only
12 numbers as a string to calculate a check
digit (CheckSum) and add it to the
thirteenth position. The check digit is an
additional digit used to verify that a bar
code has been scanned correctly. The check
digit is added automatically when the
CheckSum property is set to True.

EAN_13 with the add-on code EAN-13 may include the add-on code to
the right of the main code. The add-on
code may include up to 5 supplemental
characters.

EAN_8 EAN-8 uses only numbers (7 numbers and
a check digit).

EAN128FNC1 EAN-128FNC1 is an alphanumeric one-
dimensional representation of Application
Identifier (AI) data for marking containers in
the shipping industry. This barcode is now
obsolete. You should use UCC/EAN-128
instead which provides similar functionality
with better performance.

GS1QRCode GS1QRCode is a subset of the QR Code.
The GS1 QR Code is a 2D symbol that
denotes the Extended Packaging URL for a
trade item. It is processed to obtain one
URL address associated with the trade item
identified by the Global Trade Item Number
(GTIN). GS1 QR Code requires the
mandatory association of the GTIN and
Extended Packaging URL.

GS1 QR Code allows to encode GS1 System

ActiveReports 14 346

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Application Identifiers (AI) into QR Code 2D
barcodes.

Limitation: Kanji, CN, JP and Korean
characters.

HIBCCode128 HIBCCode128 barcode uses the Code128
symbology. It encodes 'Primary Data' and
'Secondary Data' using slash (/) as delimiter.
It is used in the health care products
industry for identification purpose.

HIBCCode39 HIBCCode39 barcode uses the Code39
symbology, with
the Code39OptionalCheckDigit property set
to True. It encodes Primary Data and
Secondary Data using slash (/) as delimiter.
It is used in the health care products
industry for identification purpose.

IATA_2_of_5 IATA_2_of_5 is a variant of Code_2_of_5 and
uses only numbers with a check digit.

IntelligentMail Intelligent Mail, formerly known as the 4-
State Customer Barcode, is a 65-bar code
used for domestic mail in the U.S.

IntelligentMailPackage IntelligentMailPackage is more efficient in
terms of processing and tracking mails than
Intelligent Mail barcode.

ISBN International Standard Book Number
barcode is a special form of the EAN-13
code and is used as a unique 9-digit
commercial book identifier.

ISMN Internationally Standard Music Number
barcode is a special form of the EAN-13
code. It is used for marking printed musical
publications.

ISSN International Standard Serial Number
barcode is a special form of the EAN-13
code. It is used to identify serial
publications, publications that are issued in
numerical order, such as the volumes of a
magazine.

ActiveReports 14 347

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ITF14 Interleaved Two of Five code is used to
mark cartons that contain goods with an
EAN-13 code. One digit is added in front of
the EAN-13 code to mark the packing
variant.

JapanesePostal This is the barcode used by the Japanese
Postal system. Encodes alpha and numeric
characters consisting of 18 digits including
a 7-digit postal code number, optionally
followed by block and house
number information. The data to be
encoded can include hyphens.

Matrix_2_of_5 Matrix 2 of 5 is a higher density barcode
consisting of 3 black bars and 2 white bars.

MaxiCode MaxiCode is special polar barcode that uses
256 characters. It is used to encode a
specific amount of data.

MicroPDF417 MicroPDF417 is two-dimensional (2D),
multi-row symbology, derived from
PDF417. Micro-PDF417 is designed for
applications that need to encode data in a
two-dimensional (2D) symbol (up to 150
bytes, 250 alphanumeric characters, or 366
numeric digits) with the minimal symbol
size.

MicroPDF417 allows you to insert an FNC1
character as a field separator for variable
length Application Identifiers (AIs).

To insert FNC1 character, set “\n” for C#, or
“vbLf” for VB to Text property at run time.

MicroQRCode MicroQRCode is a two-dimensional (2D)
barcode that is designed for applications
that use a small amount of data.
It can handle numeric and alphanumeric
data as well as Japanese kanji and kana
characters. This symbology can encode up
to 35 numeric characters.

ActiveReports 14 348

Copyright © 2020 GrapeCity, Inc. All rights reserved.

MSI MSI Code uses only numbers.

Pdf417 Pdf417 is a popular high-density 2-
dimensional symbology that encodes up to
1108 bytes of information. This barcode
consists of a stacked set of smaller
barcodes. This symbology can encode up
to 35 alphanumeric characters or 2,710
numeric characters.

Pharmacode Pharmacode represents only numeric
data from 3 to 131070. It is a barcode
standard used in the pharmaceutical
industry for packaging. It is designed to be
readable despite printing errors.

Plessey Plessey uses hexadecimal digits to encode.
It is a one-dimensional barcode used
mainly in libraries.

PostNet PostNet uses only numbers with a check
digit.

PZN Pharmaceutical Central/General Number
uses the same encoding algorithm as Code
39 but can carry only digits – 0123456789.
The number of digits supported for
encoding are 6 or 7. The letters 'PZN' and
checksum digit are automatically added. It
is mainly used to identify medicine and
health-care products in Germany and other
German-speaking countries.

QRCode QRCode is a 2D symbology that is capable
of handling numeric, alphanumeric and
byte data as well as Japanese kanji and
kana characters. This symbology can
encode up to 7,366 characters.

RM4SCC Royal Mail (RM4SCC) uses only letters and
numbers (with a check digit). This is the
barcode used by the Royal Mail in the
United Kingdom.

ActiveReports 14 349

Copyright © 2020 GrapeCity, Inc. All rights reserved.

RSS14 RSS14 is a 14-digit Reduced Space
Symbology that uses EAN.UCC item
identification for point-of-sale
omnidirectional scanning. The RSS family of
barcodes is also known as GS1 DataBar.

RSS14Stacked RSS14Stacked uses the EAN.UCC
information with Indicator digits as in the
RSS14Truncated, but stacked in two rows
for a smaller width.
RSS14Stacked allows you to set Composite
Options, where you can select the type of
the barcode in the Type drop-down list and
the value of the composite barcode in the
Value field.

RSS14Stacked CCA RSS14Stacked with Composite Component
- Version A.

RSS14StackedOmnidirectional RSS14StackedOmnidirectional uses the
EAN.UCC information with omnidirectional
scanning as in the RSS14, but stacked in
two rows for a smaller width.

RSS14Truncated RSS14Truncated uses the EAN.UCC
information as in the RSS14, but also
includes Indicator digits of zero or one for
use on small items not scanned at the point
of sale.

RSSExpanded RSSExpanded uses the EAN.UCC
information as in the RSS14, but also adds
AI elements such as weight and best-before
dates.

RSSExpanded allows you to insert an FNC1
character as a field separator for variable
length Application Identifiers (AIs).

To insert FNC1 character, set “\n” for C#, or
“vbLf” for VB to Text property at run time.

ActiveReports 14 350

Copyright © 2020 GrapeCity, Inc. All rights reserved.

RSSExpandedStacked RssExpandedStacked uses the EAN.UCC
information with AI elements as in the
RSSExpanded, but stacked in two rows for a
smaller width.

RSSExpandedStacked allows you to insert
an FNC1 character as a field separator for
variable length Application Identifiers (AIs).

To insert FNC1 character, set “\n” for C#, or
“vbLf” for VB to Text property at run time.

RSSLimited RSS Limited uses the EAN.UCC information
as in the RSS14, but also includes Indicator
digits of zero or one for use on small items
not scanned at the point of sale.
RSSLimited allows you to set Composite
Options, where you can select the type of
the barcode in the Type drop-down list and
the value of the composite barcode in the
Value field.

RSSLimited CCA RSS Limited with Composite Component -
Version A.

SSCC_18 SSCC_18 is an 18-digit Serial Shipping
Container Code. It is used to identify
individual shipping containers for tracking
purposes.

Telepen Telepen has 2 different modes -
alphanumeric-only and numeric-only. Both
modes require a start character, a check
digit, and a stop character. It is mainly used
in manufacturing industries.

UCCEAN128 UCC/EAN-128 complies to GS1-128
standards. GS1-128 uses a series of
Application Identifiers to encode data.
This barcode uses the complete ASCII
character set. It also uses FNC1 character as
the first character position. Using AI's, it
encodes best before dates, batch numbers,
weights, and more such attributes. It is
also used in HIBC applications.

UPC_A UPC-A uses only numbers (11 numbers and
a check digit).

ActiveReports 14 351

Copyright © 2020 GrapeCity, Inc. All rights reserved.

UPC_A with the add-on code UPC-A may include the add-on code to the
right of the main code. The add-on code
may include up to 5 supplemental
characters.

UPC_E0 UPC-E0 uses only numbers. Used for zero-
compression UPC symbols. For the Caption
property, you may enter either a six-digit
UPC-E code or a complete 11-digit
(includes code type, which must be zero)
UPC-A code. If an 11-digit code is entered,
the Barcode control will convert it to a six-
digit UPC-E code, if possible. If it is not
possible to convert from the 11-digit code
to the six-digit code, nothing is displayed.

UPC_E0 with the add-on code UPC-E0 may include the add-on code to
the right of the main code. The add-on
code may include up to 5 supplemental
characters.

UPC_E1 UPC-E1 uses only numbers. Used typically
for shelf labeling in the retail environment.
The length of the input string for U.P.C. E1
is six numeric characters.

UPC_E1 with the add-on code UPC-E1 may include the add-on code to
the right of the main code. The add-on
code may include up to 5 supplemental
characters.

When you choose a symbology which offers supplemental options, the additional options appear below the Symbology
drop-down box.

Bar Height: Enter a value in inches (for example, .25in) for the height of the barcode.

Narrow Bar Width (also known as X dimension): This is a value defining the width of the narrowest part of the barcode.
Before using an extremely small value for this width, ensure that the scanner can read it. This value is specified in Length
units (for example, '10cm', '4mm', '1in').

ActiveReports 14 352

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tip: For accurate scanning, the quiet zone should be ten times the Narrow Bar Width value.

Narrow Width Bar Ratio (also known as N dimension): Enter a value to define the multiple of the ratio between the
narrow and wide bars in symbologies that contain bars in only two widths. For example, if it is a 3 to 1 ratio, this value is 3.
Commonly used values are 2, 2.5, 2.75, and 3.

Quiet Zone

A quiet zone is an area of blank space on either side of a barcode that tells the scanner where the symbology starts
and stops.

Left: Enter a size in inches of blank space to leave to the left of the barcode.

Right: Enter a size in inches of blank space to leave to the right of the barcode.

Top: Enter a size in inches of blank space to leave at the top of the barcode.

Bottom: Enter a size in inches of blank space to leave at the bottom of the barcode.

Note: The units of measure listed for all of these properties are the default units of measure used if you do not
specify. You may also specify cm, mm, in, pt, or pc.

Checksum

A checksum provides greater accuracy for many barcode symbologies.

Compute Checksum: Select whether to automatically calculate a checksum for the barcode.

Note: If the symbology you choose requires a checksum, setting this value to False has no effect.

Code49 Options

Code49 Options are available for the Code49 barcode style.

Use Grouping: Indicates whether to use grouping for the Code49 barcode. The possible values are True or False.

Group Number: Enter a number between 0 and 8 for the barcode grouping.

DataMatrix Options

ActiveReports 14 353

Copyright © 2020 GrapeCity, Inc. All rights reserved.

DataMatrix Options are available for the DataMatrix barcode style.

EccMode: Select the Ecc mode from the drop-down list. The possible values are ECC000, ECC050, ECC080,
ECC100, ECC140 or ECC200.

Ecc200 Symbol Size: Select the size of the ECC200 symbol from the drop-down list. The default value is
SquareAuto.

Ecc200 Encoding Mode: Select the encoding mode for ECC200 from the drop-down list. The possible values are
Auto, ASCII, C40, Text, X12, EDIFACT or Base256.

Ecc000_140 Symbol Size: Select the size of the ECC000_140 barcode symbol from the drop-down list.

Structured Append: Select whether the barcode symbol is part of the structured append symbols. The possible
values are True or False.

Structure Number: Enter the structure number of the barcode symbol within the structured append symbols.

File Identifier: Enter the file identifier of a related group of the structured append symbols. If you set the value to
0, the file identifier symbols are calculated automatically.

EAN128FNC1 Options

EAN128FNC1 Options are available for the EAN128FNC1 barcode style.

DPI: Specify the resolution of the printer as dots per inch to create an optimized barcode image with the specified
Dpi value.

Module Size: Enter the horizontal size of the barcode module. Module size is the width of the narrowest bar.

Bar Adjust: Enter the adjustment size by dot units, which affects the size of the module and not the entire barcode.

GS1Composite Options

GS1Composite Options are available for the RSS14Stacked and RSSLimited barcode styles.

Type: Select the type of the composite barcode from the drop-down list. The possible values are None or CCA.
CCA (Composite Component - Version A) is the smallest variant of the 2-dimensional composite component.

Value: Enter the expression to set the value of the composite barcode.

MaxiCode Options

 MaxiCode option to select mode is available for MaxiCode barcode.

Mode: Select the mode of the MaxiCode barcode. The available values are Mode2 to Mode6.

MicroPDF417 Options

MicroPDF417 Options are available for the MicroPDF417 barcode style.

Compaction Mode: Select the type of the compaction mode from the drop-down list. The possible values
are Auto, TextCompactionMode, NumericCompactionMode, or ByteCompactionMode.

ActiveReports 14 354

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Version: Select the version from the drop-down box to set the symbol size.

Segment Index: The segment index of the structured append symbol. The valid value is from 0 to 99998, and less
than the value in Segment Count.

Segment Count: The segment count of the structured append symbol. The valid value is from 0 to 99999.

File ID: The file id of the structured append symbol. The valid value is from 0 to 899.

PDF417 Options

PDF417 Options are available for the Pdf417 barcode style.

Columns: Enter column numbers for the barcode.

Rows: Enter row numbers for the barcode.

Error Correction Level: Enter the error correction level for the barcode.

PDF 417 Barcode Type: Select the PDF417 barcode type form the drop-down list. The possible values are Normal
or Simple.

MicroQRCode Options

MicroQRCode Options are available for the MicroQRCode barcode style.

Error Level: Select the error correction level for the barcode from the drop-down list. Valid values are M, L, or Q.
The available Error Level values change depending on the version you select.

Version: Enter the version of the MicroQRCode barcode style. Valid values are M1, M2, M3, or M4. The maximum
amount of data can be stored in version M4.

Mask: Select the pattern for the barcode masking from the drop-down list. Valid values are Mask00, Mask01,
Mask10, or Mask11.

Encoding: Select the barcode encoding from the drop-down list.

QRCode Options

QRCode Options are available for the QRCode barcode style.

Model: Select the model for the QRCode barcode style from the drop-down list. The possible values are Model1
or Model2. For GS1QRCode, Model1 is not supported.

Error Level: Select the error correction level for the barcode from the drop-down list. The possible values are M, L,
H or Q.

Version: Enter the version of the QRCode barcode style.

For Model1, valid values for Version are -1 or between 1 to 14.
For Model2, valid values for Version are -1 or between 1 to 40.

Mask: Select the pattern for the barcode masking from the drop-down list.

Connection: Select whether to use the connection for the barcode. The possible values are True or False. This
property is not applicable to GS1QRCode barcode.

ConnectionNumber: Enter the connection number for the barcode. This property is not applicable to GS1QRCode
barcode.

Encoding: Select the barcode encoding from the drop-down list.

ActiveReports 14 355

Copyright © 2020 GrapeCity, Inc. All rights reserved.

RssExpandedStacked Options

RssExpandedStacked Options are available for the RSSExpandedStacked barcode style.

Row Count: Enter the number of the barcode stacked rows.

Supplementary Options

Supplementary Options are available for UPC_A, UPC_E0, UPC_E1, EAN_13, and EAN_8 barcode styles.

Supplement Value: Enter the expression to set the value of the barcode supplement.

Caption Location: Select the location for the supplement caption from the drop-down list. The possible values are
None, Above or Below.

Supplement Bar Height: Enter the bar height for the barcode supplement.

Supplement Spacing: Enter the spacing between the main and supplement barcodes.

Appearance

Font

Family: Select a font family name or a theme font.

Size: Choose the size in points for the font or use a theme.

Style: Choose Normal or Italic or select a theme.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, or
Bolder.

Color: Choose a color to use for the text.

Decoration: Choose from None, Underline, Overline, or LineThrough.

Border

Style: Select a style for the border.

Width: Enter a value in points to set the width of the border.

Color: Select a color to use for the border, or select the <Expression...> option to open the Expression Editor and
create an expression that evaluates to a .NET color.

Background

Color: Select a color to use for the background, or select the <Expression...> option to open the Expression Editor
and create an expression that evaluates to a .NET color.

Format

Format code: Select one of the common numeric formats provided or use a custom .NET formatting code to format dates
or numbers. For more information, see MSDN's Formatting Types topic.

Amount of space to leave around report control

Top margin: Set the top padding in points.

Left margin: Set the left padding in points.

ActiveReports 14 356

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

Right margin: Set the right padding in points.

Bottom margin: Set the bottom padding in points.

Rotation: Choose None, Rotate90Degrees, Rotate180Degrees, or Rotate270Degrees.

Visibility

Initial visibility

Visible: The barcode is visible when the report runs.
Hidden: The barcode is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the barcode is visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box where you can select the TextBox control that users can click to show or
hide this barcode in the viewer.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this barcode. You will then be able to provide a bookmark link
to this item from another report control using a Jump to bookmark action.

Data Output

Element Name: Enter a name to be used in the XML output for this barcode.

Output: Choose Auto, Yes, or No to decide whether to include this barcode in the XML output. Auto exports the
contents of the barcode only when the value is not a constant.

Render as: Choose Auto, Element, or Attribute to decide whether to render barcodes as Attributes or Elements in the
exported XML file. Auto uses the report's setting for this property.

Bullet
The Bullet report control is an easy-to-read linear gauge that is a good alternative to using a dashboard for data
visualization.

A bullet graph has a pointer that shows a key measure. With this control, you can take a single value, the year-to-date
revenue for example, and compare it to a target value that you define in the control's properties. You can also define the
beginning of the graph as the worst value and the end of the graph as the best value. To make the data visualization even
more intuitive, you can define a qualitative range (bad, satisfactory and good) for segments on the bullet graph and
immediately see the position of the key measure within the bullet graph range.

ActiveReports 14 357

Copyright © 2020 GrapeCity, Inc. All rights reserved.

You can combine multiple Bullets into a data region, a table for example, to show single values side by side. You can
orient Bullets horizontally or vertically, and put them together as a stack to analyze several data dimensions at once.

Bullet Dialog
Properties for the Bullet are available in the Bullet dialog. To open it, with the Bullet control selected on the report, under
the Properties Window, click the Property dialog link.

The Bullet dialog lets you set properties on the report control with the following pages.

Note: You can click <Expression...> in many of these properties to open the Expression Editor where you can create
an expression to determine the value. For properties with enumerated values, the values are listed under Constants
in the Fields tree view on the left side of the Expression Editor.

General

Name: Enter a name for the Bullet that is unique within the report. You can only use underscore (_) as a special character
in the Name field. Other special characters such as period (.), space (), forward slash (/), back slash (\), exclamation (!), and
hyphen (-) are not supported.

Data

Value: Enter an expression to use as the bullet value.

Target Value: Enter an expression to use as the target value of the bullet graph.

Appearance

Bullet Graph Orientation

Horizontal: Select to display a horizontal bullet graph.

Vertical: Select to display a vertical bullet graph.

Value Style

Color: Select a color to use for the value marker, or select the <Expression...> option to open the Expression
Editor and create an expression that evaluates to a .NET color. The default value is Black.

ActiveReports 14 358

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Target Style

Target Type: Choose Line, Dot or Square. The default value is Line.

Color: Select a color to use for the target value marker, or select the <Expression...> option to open the
Expression Editor and create an expression that evaluates to a .NET color. The default value is Black.

Width: Enter a value in points to set the width of the target value marker. The default value is 3pt.

Note: The Width setting applies only when the Target Type is set to Line.

Tick Marks

Position: Choose None, Inside or Outside. The default value is Outside.

Color: Select a color to use for the tick marks, or select the <Expression...> option to open the Expression Editor
and create an expression that evaluates to a .NET color. The default value is LightGray.

Width: Enter a value in points to set the width of the tick marks. The default value is 1pt.

Interval between tick marks: Set the interval at which you want to show tick marks.

Ranges

Worst Value: Enter a value or expression to define the lowest value on the graph.

Bad/Satisfactory Boundary: Enter a value or expression to define the boundary between bad and satisfactory values.

Display 3 Sections: Select this check box to show three separate value ranges (bad, satisfactory, and good) instead of two
(bad and satisfactory). This enables the Satisfactory/Good Boundary.

Satisfactory/Good Boundary: Enter a value or expression to define the boundary between satisfactory and good values.

Best Value: Enter a value or expression to define the highest value on the graph.

Labels

Display Labels: Select this check box to display axis labels for the bullet graph. Selecting this box enables the rest of the
properties on this page.

Format: Select one of the provided format codes or use a custom .NET formatting code to format dates or numbers. For
more information, see MSDN's Formatting Types topic.

Font

Family: Choose the font family name. The default value is Arial.

Size: Choose the size in points for the font. The default value is 10pt.

Style: Choose Regular, Bold, Italic, Underline or Strikeout. The default value is Regular.

Color: Select a Web or custom color for the font. The default value is Black.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this Bullet. You will then be able to provide a bookmark link to
this item from another report control using a Jump to bookmark action.

ActiveReports 14 359

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

Visibility

Initial visibility

Visible: The bullet graph is visible when the report runs.
Hidden: The bullet graph is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the bullet graph is visible. True for hidden,
False for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the bullet. The user can click the toggle item to show or hide this bullet.

Data Output

Element Name: Enter a name to be used in the XML output for this Bullet.

Output: Choose Auto, Yes, No, or Content only to decide whether to include this Bullet in the XML output. Auto exports
the contents of the bullet graph only when the value is not a constant.

Chart
The Chart data region represents your data graphically. It is a data visualization control that is primarily based on slicing
data through encodings.

Chart Elements

The Chart elements help you to easily analyze the visual information and interpret numerical and relational data. The
following image illustrates the elements that make up the Chart data region.

ActiveReports 14 360

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Axis Label: A label along an axis that lets you label the units being shown.

Axis Title: The axis title allows you to provide a title for the information being shown on the axis.

Chart Title: The chart title serves as the title for the chart.

Grid Line: Grid lines can occur on horizontal and vertical axes and normally correlate to the major or minor tick marks for
the axes.

Legend: The legend serves as a key to the specific colors or patterns being used to show series values in the chart. To
display legends for each plot on a chart, use VALUESNAME as the color field encoding.

Major Tick: Major tick marks can occur on horizontal and vertical axes and normally correlate to the major gridlines for
the axes.

Minor Tick: Minor tick marks can occur on horizontal and vertical axes and normally correlate to the minor gridlines for
the axes.

Plot area: The Plot Area contains data plotted against X-axis and Y-axis.

Encodings

Encodings convert the data into visual elements. They define how each field from a data set is visualized. There are
following encodings that are used in the process of creating charts.

ActiveReports 14 361

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Category Fields
The category mapping in Category Fields groups the data set into multiple categories for each unique value (or
numerical range) that exists for the specified field.

Data Fields
The values mapping in Data Fields specifies which fields should be plotted along the Y-axis. For scatter plot charts,
the values property includes mappings for both X and Y using comma delimited notation.

Details
The detail mapping slices the data into sub-divisions that can be clustered or stacked next to each other in the plot.

Color
The color mapping determines which field should be used to determine color assignations for the plot and legend.

Shape
The shape mapping determines which field should be used to determine shape assignations for the plot and legend.

Size
The size mapping determines which field to apply a continuous size-based scale to for the plot and legend.

Important Properties

Property Description

ActiveReports 14 362

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ToolTip A textual label for the report item used to include Title or ALT attributes in HTML reports.

SwapAxes Represents whether the axes are swapped.

Reversed Represents whether the axis is reversed (top to bottom or right to left).

Padding The amount of padding to place between the text or graphics and the edge of the report item.

LabelsAngle Rotation angle of the axis labels. The angle is measured in degrees with valid values ranging from -90 to
90.

ShowNulls Represents how to show the null or an empty value.

Sweep Sweep of plots for radial plots.

InnerRadius Inner radius in percentage for radial plots.

StartAngle Starting angle of the radial plot.

Palette The color support rgb and rgba format

Plots The plots define the data fields that map to the chart. There can be single or multiple plots in a chart.

Tooltip
Template

Contains the tooltip template settings. You can choose from the list of predefined settings or set your
own in the Expression Editor.

Chart Types
Depending on the volume of data, number of variables, time period, and other data points, you can create charts from
the following available types:

ActiveReports 14 363

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Column Chart
Column, Stacked Column, and Percent Stacked Column.

Bar Chart
Bar, Stacked Bar, and Percent Stacked Bar.

Line Chart
Line and Smooth Line.

Area Chart
Area, Stacked Area, and Stacked Percent Area.

Pie Chart
Pie and Doughnut.

Spiral Chart
Spiral, Stacked Spiral, and Percent Stacked Spiral.

Polar Chart
Polar, Stacked Polar, and Percent Stacked Polar.

Other Chart Types
Pyramid, Funnel, Bubble, Scatter, Gantt, High Low close, High Low Open Close, and Candlestick.

Column Chart

ActiveReports 14 364

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Column charts present each series as a vertical column, and group the columns by category. The y-axis values determine
the heights of the columns, while the x-axis displays the category labels. With a column chart, you can select from the
following subtypes.

Column

Compares values of items across categories.

Stacked Column

A column chart with two or more data series stacked one on top of the other that shows how each value contributes
to the total.

ActiveReports 14 365

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Percent Stacked Column

A column chart with two or more data series stacked one on top of the other to sum up to 100% that shows how each
value contributes to a total with the relative size of each series representing its contribution to the total.

ActiveReports 14 366

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Bar Chart
Bar charts present each series as a horizontal bar, and group the bars by category. The x-axis values determine the lengths
of the bars, while the y-axis displays the category labels. With a bar chart, you can select from the following subtypes.

Bar

 Compares values of items across categories.

ActiveReports 14 367

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Stacked Bar

A bar chart with two or more data series stacked one on top of the other that shows how each value contributes to the
total.

ActiveReports 14 368

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Percent Stacked Bar

A bar chart with two or more data series stacked one on top of the other to sum up to 100% that shows how each value
contributes to the total with the relative size of each series representing its contribution to the total.

ActiveReports 14 369

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Line Chart
Line charts present each series as a point, and connect the points with a line. The y-axis values determine the heights of
the points, while the x-axis displays the category labels. With a line chart, you can select from the following subtypes.

Line

Compares trends over a period of time or in certain categories.

Smooth Line

Plots curves rather than angled lines through the data points in a series to compare trends over a period of time or in
certain categories.

ActiveReports 14 370

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Area Chart
Area charts present each series as a point, connect the points with a line, and fill the area below the line. The y-axis values
determine the heights of the points, while the x-axis displays the category labels. With an area chart, you can select from
the following subtypes.

Area

Compare trends over a period of time or in specific categories.

ActiveReports 14 371

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Stacked

An area chart with two or more data series stacked one on top of the other, shows how each value contributes to the
total.

ActiveReports 14 372

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Percent Stacked

An area chart with two or more data series stacked one on top of the other to sum up to 100%, shows how each value
contributes to the total with the relative size of each series representing its contribution to the total.

ActiveReports 14 373

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Pie Chart
Pie charts present each category as a slice of pie or doughnut, sized according to value. Series groups are not represented
in pie charts. With a pie chart, you can select from the following subtypes.

Pie

Shows how the percentage of each data item contributes to the total.

ActiveReports 14 374

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Doughnut

Shows how the percentage of each data item contributes to a total percentage.

ActiveReports 14 375

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Spiral Chart
Spiral charts present data in the form of a spiral that is suitable for large data sets, showing trends over a long period of
time. With a spiral chart, you can select from the following subtypes.

Spiral

Plots series along spirals, starting from the center of the circle.

ActiveReports 14 376

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Stacked Spiral

Plots multiple series one on top of the other showing contribution of each value to the total.

Percent Stacked Spiral

Plots multiple series one on top of the other showing percentage contribution of each value to the total.

ActiveReports 14 377

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Polar Chart
Polar charts present data with geographical component. With a polar chart, you can select from the following subtypes.

Polar

Polar charts plot series with circular x-axis representing angle values and radial y-axis representing radius values.

Stacked Polar

Plots multiple series one on top of the other showing contribution of each value to the total.

ActiveReports 14 378

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Percent Stacked Polar

Plots multiple series one on top of the other showing percentage contribution of each value to the total.

Other Chart Types
Pyramid

ActiveReports 14 379

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Shows how the percentage of each data item contributes to the whole, with the smallest value at the top and the largest
at the bottom. This chart type works best with relatively few data items.

Funnel

Shows how the percentage of each data item contributes to the whole, with the largest value at the top and the smallest
at the bottom. This chart type works best with relatively few data items.

ActiveReports 14 380

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Bubble

Shows each series as a bubble. The y-axis values determine the height of the bubble, while the x-axis displays the category
labels.

ActiveReports 14 381

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Scatter

Scatter charts present each series as a point or bubble. The y-axis values determine the heights of the points, while the x-
axis displays the category labels. Shows the relationships between numeric values in two or more series sets of XY values.

ActiveReports 14 382

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Gantt

This project management tool charts the progress of individual project tasks. The chart compares project task completion
to the task schedule.

ActiveReports 14 383

Copyright © 2020 GrapeCity, Inc. All rights reserved.

High Low Close

Displays stock information using High, Low, and Close values. High and low values are displayed using vertical lines,
while tick marks on the right indicate closing values.

High Low Open Close

Displays stock information using High, Low, Open, and Close values. Opening values are displayed using lines to the left,
while lines to the right indicate closing values. The high and low values determine the top and bottom points of the
vertical lines.

ActiveReports 14 384

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Candlestick

Displays stock information using High, Low, Open and Close values. The height of the wick line is determined by the High
and Low values, while the height of the bar is determined by the Open and Close values. The bar is displayed using
different colors, depending on whether the price of the stock has gone up or down.

ActiveReports 14 385

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Classic Chart
Note: The Classic Chart is by default hidden from the toolbox. If you want to use Classic Chart instead of
new Chart, you can enable it from Grapecity.ActiveReports.config file located at C:\Program Files
(x86)\GrapeCity\ActiveReports 14.

The Chart data region shows your data in a graphical representation that often makes it easier for users to comprehend
large amounts of data quickly. Different types of charts are more efficient for different types of information, so we offer a
wide variety of chart types. This makes it easy and cost effective to add charting to your reports, as there is no need to
purchase and integrate a separate charting tool.

To hone in on your needs, when you first drag the Chart report control onto a Page report/RDL report, you can select the
broad category of chart type to use: Bar, Column, Scatter, Line, or Dot Plot.

Once you select a chart category, there are a number of dialogs to help you to customize your chart.

Note: You can select <Expression...> within many of these properties to create an expression to determine the
value, or you can select a theme value to keep reports consistent.

Chart Appearance
To open the Chart Appearance dialog, select the Chart on the report, and below the Properties window, click the Chart
appearance command. This dialog has the following pages.

Tip: To go directly to the Plot Area page, click in the middle of the chart to select the Plot Area, then under the

ActiveReports 14 386

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Properties Window, click Property dialog.

Gallery

The Gallery page of the Chart dialog, in basic mode, displays each of the broad categories of chart types, plus subtypes so
that you can refine your choice. For even more chart types, click the Advanced button.

Basic Chart Types

Bar Charts

Bar charts present each series as a horizontal bar, and group the bars by category. The x-axis values determine the lengths
of the bars, while the y-axis displays the category labels. With a bar chart, you can select from the following subtypes.

Plain: Compares values of items across categories.
Stacked: A bar chart with two or more data series stacked one on top of the other that shows how each value
contributes to the total.
Percent Stacked: A bar chart with two or more data series stacked one on top of the other to sum up to 100%
that shows how each value contributes to the total with the relative size of each series representing its contribution
to the total.

Column Charts

Column charts present each series as a vertical column, and group the columns by category. The y-axis values determine
the heights of the columns, while the x-axis displays the category labels. With a column chart, you can select from the
following subtypes.

Plain: Compares values of items across categories.
Stacked: A column chart with two or more data series stacked one on top of the other that shows how each value
contributes to the total.
Percent Stacked: A column chart with two or more data series stacked one on top of the other to sum up to 100%
that shows how each value contributes to a total with the relative size of each series representing its contribution
to the total.

Scatter Charts

Scatter charts present each series as a point or bubble. The y-axis values determine the heights of the points, while the x-
axis displays the category labels. With a scatter chart, you can select from the following subtypes.

Plain: Shows the relationships between numeric values in two or more series sets of XY values.
Connected: Plots points on the X and Y axes as one series and uses a line to connect points to each other.
Smoothly Connected: Plots points on the X and Y axes as one series and uses a line with the angles smoothed
out to connect points to each other.
Bubble: Shows each series as a bubble. The y-axis values determine the height of the bubble, while the x-axis
displays the category labels. This chart type is only accessible in Advanced chart types.

Line Charts

ActiveReports 14 387

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Line charts present each series as a point, and connect the points with a line. The y-axis values determine the heights of
the points, while the x-axis displays the category labels. With a line chart, you can select from the following subtypes.

Plain: Compares trends over a period of time or in certain categories.
Smooth: Plots curves rather than angled lines through the data points in a series to compare trends over a period
of time or in certain categories. Also known as a Bezier chart.

Dot Plot Charts

A Dot Plot chart is a statistical chart containing group of data points plotted on a simple scale. Dot Plot chart are used for
continuous, quantitative, univariate data. The dot plot chart has one subtype.

Plain: Displays simple statistical plots. It is ideal for small to moderate sized data sets. You can also highlight
clusters and gaps, as well as outliers, while conserving numerical information.

Advanced Chart Types

Area Charts

Area charts present each series as a point, connect the points with a line, and fill the area below the line. The y-axis values
determine the heights of the points, while the x-axis displays the category labels. With an area chart, you can select from
the following subtypes.

Plain: Compare trends over a period of time or in specific categories.
Stacked: An area chart with two or more data series stacked one on top of the other, shows how each value
contributes to the total.
Percent Stacked: An area chart with two or more data series stacked one on top of the other to sum up to 100%,
shows how each value contributes to the total with the relative size of each series representing its contribution to
the total.

Pie Charts

Pie charts present each category as a slice of pie or doughnut, sized according to value. Series groups are not represented
in pie charts. With a pie chart, you can select from the following subtypes.

Pie: Shows how the percentage of each data item contributes to the total.
Exploded: Shows how the percentage of each data item contributes to the total, with the pie slices pulled out from
the center to show detail.
Doughnut: Shows how the percentage of each data item contributes to a total percentage.
Exploded Doughnut: Shows how the percentage of each data item contributes to the total, with the pie slices
pulled out from the center to show detail.

Financial Charts

Stock charts present each series as a line with markers showing some combination of high, low, open, and close values.
The y-axis values determine the heights of the lines, while the x-axis displays the category labels. With a financial chart,
you can select from the following subtypes.

High Low Close: Displays stock information using High, Low, and Close values. High and low values are displayed

ActiveReports 14 388

Copyright © 2020 GrapeCity, Inc. All rights reserved.

using vertical lines, while tick marks on the right indicate closing values.
Open High Low Close: Displays stock information using Open, High, Low, and Close values. Opening values are
displayed using lines to the left, while lines to the right indicate closing values. The high and low values determine
the top and bottom points of the vertical lines.
Candlestick: Displays stock information using High, Low, Open and Close values. The height of the wick line is
determined by the High and Low values, while the height of the bar is determined by the Open and Close values.
The bar is displayed using different colors, depending on whether the price of the stock has gone up or down.

Renko: Bricks of uniform size chart price movement. When a price moves to a greater or lesser value than the
preset BoxSize value required to draw a new brick, a new brick is drawn in the succeeding column. A change in box
color and direction signifies a trend reversal.
Kagi: Displays supply and demand trends using a sequence of linked vertical lines. The thickness and direction of
the lines vary depending on the price movement. If closing prices go in the direction of the previous Kagi line, then
that Kagi line is extended. However, if the closing price reverses by the preset reversal amount, a new Kagi line is
charted in the next column in the opposite direction. Thin lines indicate that the price breaks the previous low
(supply) while thick lines indicate that the price breaks the previous high (demand).
Point and Figure: Stacked columns of Xs indicate that demand exceeds supply and columns of Os indicate that
supply exceeds demand to define pricing trends. A new X or O is added to the chart if the price moves higher or
lower than the BoxSize value you set. A new column is added when the price reverses to the level of the BoxSize
value multiplied by the ReversalAmount you set. This calculation of pricing trends is best suited for long-term
financial analysis.
Three Line Break: Vertical boxes or lines illustrate price changes of an asset or market. The price in a three line
break graph must break the prior high or low set in the NewLineBreak property in order to reverse the direction of
the graph.

Other Charts

Other chart types may be used for special functions like charting the progress of individual tasks. You can select from the
following subtypes.

Funnel: Shows how the percentage of each data item contributes to the whole, with the largest value at the top
and the smallest at the bottom. This chart type works best with relatively few data items.
Pyramid: Shows how the percentage of each data item contributes to the whole, with the smallest value at the top
and the largest at the bottom. This chart type works best with relatively few data items.
Gantt: This project management tool charts the progress of individual project tasks. The chart compares project
task completion to the task schedule.

Title

Chart title: Enter an expression or text to use for the title.

Font
Family: Choose the font family name.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and Bolder.

Color: Select a Web or custom color for the font.

ActiveReports 14 389

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Decoration: Choose from None, Underline, Overline, and LineThrough.

Palette

Default: The same as Subdued below, the recommended palette for charts.

EarthTones: A palette of autumnal browns, oranges, and greens.

Excel: A palette of muted plums, blues, and creams.

GrayScale: A palette of patterns suitable for printing to a black and white printer.

Light: A palette of pale pinks and peaches.

Pastel: A palette of blues, greens, and purples.

SemiTransparent: A palette of primary and tertiary colors that allows the backdrop to show through.

Subdued: A palette of muted tones of browns, greens, blues, and grays.

Vivid: The same as Subdued, but with richer tones.

Custom: A palette of colors that you define. When you select Custom, you can list colors that are used in the order you
specify.

Area

Border
Style: Choose an enumerated style for the border.

Width: Set a width value in points between 0.25pt and 20pt.

Color: Select a Web or Custom color.

Background Fill Color
Fill Color: Select a Web or Custom color.

Gradient: Choose from one of the following gradient styles.

None: No gradient is used. The Fill Color is used to fill the area and the Gradient End Color property is ignored.
LeftRight: A gradient is used. The Fill Color property defines the color at the left, and the Gradient End Color
property defines the color at the right. The two colors are gradually blended in between these areas.
TopBottom: A gradient is used. The Fill Color property defines the color at the top, and the Gradient End Color
property defines the color at the bottom. The two colors are gradually blended in between these areas.
Center: A gradient is used. The Fill Color property defines the color at the center, and the Gradient End Color
property defines the color at the edges. The two colors are gradually blended in between these areas.
DiagonalLeft: A gradient is used. The Fill Color property defines the color at the top left, and the Gradient End
Color property defines the color at the bottom right. The two colors are gradually blended in between these areas.
DiagonalRight: A gradient is used. The Fill Color property defines the color at the top right, and the Gradient End
Color property defines the color at the bottom left. The two colors are gradually blended in between these areas.
HorizontalCenter: A gradient is used. The Gradient End Color property defines the horizontal band of color across
the center, and the Fill Color property defines the color at the top and bottom. The two colors are gradually
blended in between these areas.
VerticalCenter: A gradient is used. The Gradient End Color property defines the vertical band of color across the
center, and the Fill Color property defines the color at the left and right. The two colors are gradually blended in
between these areas.

ActiveReports 14 390

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Gradient End Color: When you choose any gradient style other than None, this property becomes available. Choose a
Web or Custom color.

Plot Area

Border
Style: Choose an enumerated style for the border.

Width: Choose a width value between 0.25pt and 20pt.

Color: Select a Web or Custom color.

Background Fill Color
Fill Color: Select a Web or Custom color.

Gradient: Choose from one of the following gradient styles.

None: No gradient is used. The Fill Color is used to fill the area and the Gradient End Color property is ignored.
LeftRight: A gradient is used. The Fill Color property defines the color at the left, and the Gradient End Color
property defines the color at the right. The two colors are gradually blended in between these areas.
TopBottom: A gradient is used. The Fill Color property defines the color at the top, and the Gradient End Color
property defines the color at the bottom. The two colors are gradually blended in between these areas.
Center: A gradient is used. The Fill Color property defines the color at the center, and the Gradient End Color
property defines the color at the edges. The two colors are gradually blended in between these areas.
DiagonalLeft: A gradient is used. The Fill Color property defines the color at the top left, and the Gradient End
Color property defines the color at the bottom right. The two colors are gradually blended in between these areas.
DiagonalRight: A gradient is used. The Fill Color property defines the color at the top right, and the Gradient End
Color property defines the color at the bottom left. The two colors are gradually blended in between these areas.
HorizontalCenter: A gradient is used. The Gradient End Color property defines the horizontal band of color across
the center, and the Fill Color property defines the color at the top and bottom. The two colors are gradually
blended in between these areas.
VerticalCenter: A gradient is used. The Gradient End Color property defines the vertical band of color across the
center, and the Fill Color property defines the color at the left and right. The two colors are gradually blended in
between these areas.

Gradient End Color: When you choose any gradient style other than None, this property becomes available. Choose a
Web or Custom color.

Series line (Bar Stacked and Percent Stacked, Column Stacked and
Percent Stacked types only)
Style: Choose an enumerated style for the series line.

Width: Choose a width value between 0.25pt and 20pt.

Color: Select a Web or Custom color.

3D Effects

These properties are enabled when you select the 3D checkbox on the Gallery page.

Display the chart with 3D visual effects: Select this check box to enable all of the following properties.

ActiveReports 14 391

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Horizontal rotation: Move the slider to rotate the chart to left and right. All the way to the left (-90°) shows the chart
from the left side, while all the way to the right (90°) shows it from the right side. The default value is 20°.

Vertical rotation: Move the slider to rotate the chart up and down. All the way to the left (-90°) shows the chart from the
bottom, while all the way to the right (90°) shows it from the top. The default value is 20°.

Wall thickness: Move the slider to change the thickness of the walls at the axes. The default value is 0% and the range of
values is 0% (left) to 100% (right). If the chart type is pie or doughnut, this property is ignored.

Perspective: Move the slider to change the perspective from which the chart is displayed. The default value is 0% and the
range of values is 0% (left) to 100% (right). If you select Orthographic Projection, this property is ignored.

Shading: Select the type of shading to apply to the chart. The default value is Real.

None: Colors are uniform.
Simple: Colors are darkened in areas where the light source does not hit them.
Real: Colors are darkened in areas where the light source does not hit them, and lightened in areas where the light
source is strongest.

Orthographic Projection: Select this check box to use orthographic or "true drawing" projection. This type of projection
is ignored with pie and doughnut chart types.

Clustered: With chart types of bar and column, select this check box to cluster series groups. Other chart types ignore this
setting.

Display bars as cylinders: With chart types of bar and column, select this check box to display cylinders instead of bars or
columns.

Defaults (button): Click this button when you want to set all of the 3D effect properties back to their default values.

Chart Data
See the Chart Data Dialog topic for all of the pages and tabs available for customizing your chart data.

Chart Legend
To open the Chart Legend dialog, select the Chart on the report, and below the Properties window, click the Chart legend
command. This dialog has the following pages.

General

Show chart legend: Clear this check box to disable the legend. This also disables all of the other properties on this page.

Use Smart Settings: Check this option to apply smart settings or clear this checkbox to activate the properties given
below.

Layout: Choose the layout style for the legend.

Column: This option displays legend items in a single vertical column.
Row: This option displays legend items in a single horizontal row.
Table: This option displays legend items in a table of vertical columns, and is best when you have a large number
of values.

Position: Select an enumerated value to determine the position of the legend relative to the chart area. The default value
is RightCenter.

Display legend inside plot area: Select this check box to display the legend inside the plot area along with your data

ActiveReports 14 392

Copyright © 2020 GrapeCity, Inc. All rights reserved.

elements.

Style

The Style page of the Chart Legend dialog allows you to control the Font, Border, and Fill properties for the legend.

Font
Family: Choose the font family name.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and Bolder.

Color: Select a Web or custom color for the font.

Decoration: Choose from None, Underline, Overline, and LineThrough.

Border
Style: Choose an enumerated style for the border.

Width: Enter a width value between 0.25pt and 20pt.

Color: Select a Web or Custom color.

Background Fill Color
Fill Color: Select a Web or Custom color.

Gradient: Choose from one of the following gradient styles.

None: No gradient is used. The Fill Color is used to fill the area and the Gradient End Color property is ignored.
LeftRight: A gradient is used. The Fill Color property defines the color at the left, and the Gradient End Color
property defines the color at the right. The two colors are gradually blended in between these areas.
TopBottom: A gradient is used. The Fill Color property defines the color at the top, and the Gradient End Color
property defines the color at the bottom. The two colors are gradually blended in between these areas.
Center: A gradient is used. The Fill Color property defines the color at the center, and the Gradient End Color
property defines the color at the edges. The two colors are gradually blended in between these areas.
DiagonalLeft: A gradient is used. The Fill Color property defines the color at the top left, and the Gradient End
Color property defines the color at the bottom right. The two colors are gradually blended in between these areas.
DiagonalRight: A gradient is used. The Fill Color property defines the color at the top right, and the Gradient End
Color property defines the color at the bottom left. The two colors are gradually blended in between these areas.
HorizontalCenter: A gradient is used. The Gradient End Color property defines the horizontal band of color across
the center, and the Fill Color property defines the color at the top and bottom. The two colors are gradually
blended in between these areas.
VerticalCenter: A gradient is used. The Gradient End Color property defines the vertical band of color across the
center, and the Fill Color property defines the color at the left and right. The two colors are gradually blended in
between these areas.

Gradient End Color: When you choose any gradient style other than None, this property becomes available. Choose a
Web or Custom color.

ActiveReports 14 393

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Axis
Click the Axis X or Axis Y line of the chart to select AxisXLine or AxisYLine, then under the Properties Window, click
Property dialog. The Chart Axis dialogs let you set axis properties on the data region with the following pages.

Note: The X and Y Axis dialogs are disabled if your chart type is doughnut or pie.

Title

Axis X or Axis Y
X- or Y-Axis title: Enter text to display near the X or Y axis of the chart.

Text alignment: Choose Center, Near, or Far.

Text orientation: Set the text orientation of the label text to Auto, Horizontal, Rotated90, Rotated270, and Stacked.

Font
Family: Choose the font family name.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and Bolder.

Color: Select a Web or custom color for the font.

Decoration: Choose from None, Underline, Overline, and LineThrough.

The following are additional properties available for the Y-axis that allow you to plot two or more series along it.
Composite charts have two or more series plotted along the Y-axis.

Name: Enter a name for each Y axis that is unique within the chart. Note that you can add a maximum of six Y-axes.

Position: Choose Left or Right.

Margin: Enter the distance between two consecutive Y-axes.

Name Position Margin Description

Y1 Left 0 Displayed on the left. It is closest to the plot area.

Y2 Left 10 Displayed on the left of Y1. The distance between Y1 and Y2 is 10.

Y3 Right 0 Displayed on the right. It is closest to the plot area.

Y4 Right 20 Displayed on the right of Y3. The distance between Y3 and Y4 is 20.

Y5 Left 30 Displayed on the left of Y2. The distance between Y2 and Y5 is 30.

The image below depicts each of the Y-axes from the table above.

ActiveReports 14 394

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Line Style

Axis Line Appearance
Style: Choose from an enumerated style for the axis line.

Color: Select a Web or Custom color.

End Cap: Choose either None or Arrow as the End Cap style, or enter an expression using Expression Editor dialog.

Labels

Show x- or y-axis labels: Select this check box to show labels along the axis and to enable the rest of the properties on
this page.

Format code: Select a format code from the list or use a custom .NET formatting code to format dates or numbers. For
more information, see MSDN's Formatting Types topic.

Labels Text Orientation: Set the text orientation of the label text to Auto, Angled, Horizontal, Rotated90, Rotated270,
and Stacked.

Font
Family: Choose the font family name.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and Bolder.

Color: Select a Web or custom color for the font.

Decoration: Choose from None, Underline, Overline, and LineThrough.

Major Grid Lines

Show major grid lines: Select this check box to show grid lines for the axis.

Interval: Set the interval at which you want to show major grid lines or tick marks or both.

Border
Style: Choose one from the enumerated styles for the border.

ActiveReports 14 395

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

Width: Enter a width value between 0.25pt and 20pt.

Color: Select a color for the border.

Tick mark: Choose one of the following values to determine whether and where to display major tick marks. The style and
interval of the tick marks are set with the above properties.

None: No tick mark is displayed.
Inside: Tick marks are displayed inside the axis.
Outside: Tick marks are displayed outside the axis.
Cross: Tick marks are displayed crossing the axis.

Minor Grid Lines

Show minor grid lines: Select this check box to show minor grid lines for the axis.

Interval: Set the interval at which you want to show minor grid lines or tick marks or both.

Border
Style: Choose one from the enumerated styles for the border.

Width: Enter a width value between 0.25pt and 20pt.

Color: Select a color for the border.

Tick mark: Choose one of the following values to determine whether and where to display minor tick marks. The style and
interval of the tick marks are set with the above properties.

None: No tick mark is displayed.
Inside: Tick marks are displayed inside the axis.
Outside: Tick marks are displayed outside the axis.
Cross: Tick marks are displayed crossing the axis.

Scale

Minimum: Leave this value blank to allow the data to determine the minimum value to use.

Maximum: Leave this value blank to allow the data to determine the maximum value to use.

Logarithmic scale: Select this check box to display axis data as a percentage of change instead of as absolute arithmetic
values.

Numeric or time scale values: Select this check box to indicate that the data on the X axis is scalar so that the chart fills
in missing numbers or dates between data values. This property is only available on the X axis.

Other

Cross at: Leave this value blank to allow the chart type to determine where the axis should cross the other axis, or you can
enter a custom value.

Side margins: Select this check box to add padding between the data and the edges of the chart.

Interlaced strips: Select this check box to display alternating light and dark strips between major intervals specified on
the Major Grid Lines page. If none are specified, a default value of 1 is used.

Reversed: Select this check box to reverse the direction of the chart. This will have different effects depending on chart
type.

ActiveReports 14 396

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Reference Line (Y Axis only)
Value: Enter a value.

Line/Border

Style: Choose one from the enumerated styles.

Width: Set a width of the axis line.

Color: Select a color for the axis line.

Legend Label: Enter a label for the legend to display in the viewer.

Chart Data Dialog
When you first open the Chart Data dialog, you can select a Dataset name to associate with the chart. The list is
populated with all of the datasets in the report's dataset collection.

This dialog also gives you access to the following related pages.

General Page
Name: Enter a name for the chart that is unique within the report. This name is displayed in the Document Outline and in
XML exports.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Dataset Name: Select a dataset to associate with the chart. The combo box is populated with all of the datasets in the
report's dataset collection.

Series Values Page
Add at least one Value series to determine the size of the chart element. Click the plus sign button to enable the General
tab. Once you have one or more value series in place, you can use the arrow buttons to change the order or the X button
to delete them.

Another way to add Chart Series Values is to drag fields from the Report Explorer onto the tray along the top edge of the
chart that reads Drop data fields here.

If you have already added values, you can right-click any value displayed in the UI along the top of the chart and choose
Edit to open this dialog.

The Series Values page has the following tabs.

General

The General tab of the Series Values page allows you to control different items depending on the Chart Type you have
chosen.

For all Chart types

Series label: Enter an expression to use as a series label to display in the legend.

ActiveReports 14 397

Copyright © 2020 GrapeCity, Inc. All rights reserved.

For Scatter or Bubble Chart types

X: Enter an expression to use as an X value.

Y: Enter an expression to use as a Y value.

Size: If the chart type is bubble, enter an expression to use as the bubble size value.

For Stock Chart

High: Enter an expression to use as the high value.

Low: Enter an expression to use as the low value.

Open: Enter an expression to use as the open value.

Close: Enter an expression to use as the close value.

For Column, Bar, Line, Pie, Area, Doughnut, Funnel, Pyramid,
ThreeLineBreak, Kagi, Renko, PointAndFigure, or DotPlot Chart types

Value: Enter an expression to use as a series value.

For Column, Line, or Area Chart types

Chart Type: For Composite charts, select the chart type to use in combination with other chart types within the
same plot area. The available chart types are:

Column Plain
Column Stacked
Column Percent Stacked
Area Plain
Area Stacked
Area Percent Stacked
Line Plain
Smooth Line

Y-Axis: Select the Y-axis from the list of available Y-axes.

Styles

Line/Border
These properties control the appearance of the border of bars or columns, or the lines, depending on the type of
chart.

Style: Choose one of the enumerated styles for the lines.

Width: Choose a width value between 0.25pt and 20pt for the thickness of the lines.

Color: Choose a Web or Custom color to use for the lines.

ActiveReports 14 398

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Background Fill Color
These properties control the appearance of the background of the series values.

Fill Color: Choose a Web or Custom color to fill the background.

Gradient: Choose from one of the following gradient styles.

None: No gradient is used. A single color (defined by the Fill Color property above) is used to fill the area
and the Gradient End Color property remains disabled.
LeftRight: A gradient is used. The Fill Color property defines the color at the left, and the Gradient End
Color property defines the color at the right. The two colors are gradually blended in between these areas.
TopBottom: A gradient is used. The Fill Color property defines the color at the top, and the Gradient End
Color property defines the color at the bottom. The two colors are gradually blended in between these
areas.
Center: A gradient is used. The Fill Color property defines the color at the center, and the Gradient End
Color property defines the color at the edges. The two colors are gradually blended in between these areas.
DiagonalLeft: A gradient is used. The Fill Color property defines the color at the top left, and the Gradient
End Color property defines the color at the bottom right. The two colors are gradually blended in between
these areas.
DiagonalRight: A gradient is used. The Fill Color property defines the color at the top right, and the
Gradient End Color property defines the color at the bottom left. The two colors are gradually blended in
between these areas.
HorizontalCenter: A gradient is used. The Gradient End Color property defines the horizontal band of
color across the center, and the Fill Color property defines the color at the top and bottom. The two colors
are gradually blended in between these areas.
VerticalCenter: A gradient is used. The Gradient End Color property defines the vertical band of color
across the center, and the Fill Color property defines the color at the left and right. The two colors are
gradually blended in between these areas.

Gradient End Color: When you choose any gradient style other than None, this property becomes available.
Choose a Web or Custom color to blend with the Fill Color in the background of the series.

Markers

Marker type: Choose one of the following values to determine the shape of the marker or whether one is displayed.

None - Markers are not used. (Default)
Square - Markers are square.
Circle - Markers are circular.
Diamond - Markers are diamond shaped.
Triangle - Markers are triangular.
Cross - Markers are cross shaped.
Auto - A shape is chosen automatically.

Marker size: Enter a value between 2pt and 10pt to determine the size of the plotting area of the markers.

Plot data as secondary: If the chart type is Column, Bar, or DotPlot, you can select this check box and select whether to
use a Line or Points to show the data.

Labels

Show point labels: Select this check box to display a label for each chart value. Selecting this box enables the disabled
properties on this page.

ActiveReports 14 399

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Data label: Enter a value to use as the label, or select <Expression...> to open the Expression Editor.

Format code: Select one of the provided format codes or use a custom .NET formatting code to format dates or numbers.
For more information, see MSDN's Formatting Types topic.

Position: Leave Auto selected to use the default point label position for the chart type, or select an enumerated value to
position the labels.

Angle: Enter the value in tenths of degrees to use for the angle of the point label text. The default (0°) position denotes
no angle and renders regular horizontal text.

Font
Family: Choose the font family name.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and
Bolder.

Color: Select a Web or custom color for the font.

Decoration: Choose from None, Underline, Overline, and LineThrough.

Action

Choose from the following actions to perform when the user clicks on the chart element.

None: The default behavior is to do nothing when a user clicks the chart element at run time.

Jump to report: For drill-through reporting, select this option and provide the name of a local report, the relative path of
a report in another folder, or the full path of a report on another server.

Parameters

Name: Supply the exact names of any parameters required for the targeted report. Note that parameter names you
supply in this must match parameters in the target report.

Important: The Parameter Name must exactly match the name of the parameter in the detail report. If any
parameter is spelled differently, capitalized differently, or if an expected parameter is not supplied, the drill-
through report will fail.

Value: Enter a Parameter Value to pass to the detail report. This value must evaluate to a valid value for the
parameter.
Omit: Select this check box to omit this parameter from the report.

Jump to bookmark: Select this option and provide a valid Bookmark ID to allow the user to jump to the report control
with that Bookmark ID.

Jump to URL: Select this option and provide a valid URL to create a hyperlink to a Web page.

Data Output

Element name: Enter a name to be used in the XML output for this chart element.

Output: Choose Yes or No to decide whether to include this chart element in the XML output.

Category Groups Page

ActiveReports 14 400

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

Add Category Groups to group data and provide labels for the chart elements. Click the Add button to enable the General
tab. Once you have one or more category groups in place, you can use the arrow buttons to change the order or the X
button to delete them.

Another way to add Category Groups is to drag fields from the Report Explorer onto the tray along the bottom edge of
the chart that reads Drop category fields here.

If you have already added values, you can right-click the value displayed in the UI along the bottom of the chart and
choose Edit to open this dialog.

The Category Groups page has the following tabs.

General

Name: Enter a name for the group that is unique within the report. This name can be called in code.

Group on: Enter an expression to use for grouping the data.

Label: Enter an expression to use as a label for the group. You can select <Expression...> to open the Expression Editor.

Parent group: For use in recursive hierarchies. Enter an expression to use as the parent group.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right:

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

ActiveReports 14 401

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Sorting

The Sorting tab of Category Groups page allows you to enter new sort expressions and remove or change the order of
them using the X or arrow buttons. For each sort expression in this list, you can also choose the direction.

Expression: Enter an expression by which to sort the data in the group.

Direction: Select whether you want to sort the data in an Ascending or Descending direction.

Data Output

Element name: Enter a name to be used in the XML output for this group.

Collection: Enter a name to be used in the XML output for the collection of all instances of this group.

Output: Choose Yes or No to decide whether to include this group in the XML output.

Series Groups Page
Optionally add Series Groups for extra levels of data (for example, Orders by Country can be broken down by year as well).
Labels for the series are displayed in the chart legend. Click the Add button to open the General page. Once you have one
or more series groups in place, you can use the arrow buttons to change the order or the X button to delete them.

Another way to add Series Groups is to drag fields from the Report Explorer onto the tray along the right edge of the
chart that reads Optionally drop series fields here.

If you have already added values, you can right-click the value displayed in the UI along the right edge of the chart and
choose Edit to open this dialog.

The Series Groups page has the following tabs.

General

Name: Enter a name for the group that is unique within the report. This name can be called in code.

Group on: Enter an expression to use for grouping the data.

Label: Enter an expression to use as a label for the group. You can select <Expression...> to open the Expression Editor.

Parent group: For use in recursive hierarchies. Enter an expression to use as the parent group.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right:

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.

ActiveReports 14 402

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Sorting

The Sorting tab of Series Groups page allows you to enter new sort expressions and remove or change the order of them
using the X or arrow buttons. For each sort expression in this list, you can also choose the direction.

Expression: Enter an expression by which to sort the data in the group.

Direction: Select whether you want to sort the data in an Ascending or Descending direction.

Data Output

Element name: Enter a name to be used in the XML output for this group.

Collection: Enter a name to be used in the XML output for the collection of all instances of this group.

Output: Choose Yes or No to decide whether to include this group in the XML output.

Filters Page
Chart Data Filters Page

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the chart.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right:

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.

ActiveReports 14 403

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values (used
with the In and Between operators) separate values using commas.

Data Output Page
Chart Data Output Page

Element name: Enter a name to be used in the XML output for the chart.

Output: Choose one between Auto, Yes, No or Contents Only to decide whether to include this group in the XML output.

CheckBox (Page Report)
In ActiveReports, you can use the CheckBox control to represent a Boolean value in a report. By default, it appears as a
small box with text to the right. If the value evaluates to True, the small box appears with a check mark; if False, the box is
empty. By default, the checkbox is empty.

Checkbox Dialog
Properties for the CheckBox are available in the Checkbox dialog. To open it, with the CheckBox control selected on the
report, under the Properties Window, click the Property dialog link.

The Checkbox dialog lets you set properties on the report control with the following pages.

Note: You can select the <Expression...> option in many of these properties to create an expression to determine
the value. For properties with enumerated values, the values are listed under Constants in the Fields tree view on the
left side of the Expression Editor. You can also access the Expression Editor from the context menu of the CheckBox
control.

General

Name: Enter a name for the checkbox that is unique within the report. This name is displayed in the Document Outline
and in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such
as period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Value: Enter an expression or a static label, or choose a field expression from the drop-down list. You can access the
expression editor by selecting <Expression...> in the list. The value of this expression or text is displayed in the report to

ActiveReports 14 404

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the right of the checkbox.

Visibility

Initial visibility

Visible - The checkbox is visible when the report runs.
Hidden - The checkbox is hidden when the report runs.
Expression - Use an expression with a Boolean result to decide whether the checkbox is visible. For example, on a
"Free Shipping" checkbox, you could use the expression to see whether the ShippingCountry is international. A
value of true hides the checkbox, false shows it.

Visibility can be toggled by another report control: Select this checkbox to specify a report control to use as a toggle
to show or hide the checkbox. Then specify the TextBox control to display with a toggle image button. When the user
clicks the TextBox control, the checkbox changes between visible and hidden.

Appearance

Border
Style: Select a style for the border.

Width: Enter a value in points to set the width of the border.

Color: Select a color to use for the border, or select the <Expression...> option to open the Expression Editor and create
an expression that evaluates to a .NET color.

Background
Color: Select a color to use for the background of the checkbox.

Image: Enter an image to use for the background of the checkbox.

Font

Family: Select a font family name or a theme font.

Size: Choose the size in points for the font or use a theme.

Style: Choose Normal or Italic or select a theme.

Weight: Choose an enumerated weight value or select a theme.

Color: Choose a color to use for the text.

Decoration: Choose from None, Underline, Overline, or LineThrough.

Format

Format code: Select one of the common numeric formats provided or use a custom .NET formatting code to format dates
or numbers. For more information, see MSDN's Formatting Types topic.

Line Spacing: This property sets the space between lines of text.

Line height: This property sets the height of each line of text.

Note: This property only affects HTML output.

ActiveReports 14 405

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

Character Spacing: This property sets the space between characters of text.

Text direction and writing mode
Direction: Choose LTR for left to right, or RTL for right to left.

Mode: Choose lr-tb for left right top bottom (normal horizontal text) or tb-rl for top bottom right left (vertical text
on its side).

Alignment

Alignment
Vertical alignment: Choose Top, Middle, Bottom, or the <Expression...> option.

Horizontal alignment: Choose General, Left, Center, Right, Justify, or the <Expression...> option.

Justification method: Choose Auto, Distribute, DistributAllLines, or the <Expression...> option.

Wrap mode: Choose NoWrap, WordWrap, or CharWrap.

Note: You must select Justify in the Horizontal alignment property to enable the Justification method property
options.

Amount of space to leave around report control
Top padding: Set the top padding in points.
Left padding: Set the left padding in points.
Right padding: Set the right padding in points.
Bottom padding: Set the bottom padding in points.

Data Output

Element Name: Enter a name to be used in the XML output for this checkbox.

Output: Choose Auto, Yes, or No to decide whether to include this checkbox in the XML output. Auto exports the
contents of the checkbox only when the value is not a constant.

Render as: Choose Auto, Element, or Attribute to decide whether to render checkboxes as Attributes or Elements in the
exported XML file. Auto uses the report's setting for this property.

Attribute example: <table1 checkbox3="Report created on: 7/26/2005 1:13:00 PM">

Element example: <table1> <checkbox3>Report created on: 7/26/2005 1:13:28 PM</checkbox3>

Container
The Container report control is a container for other items. There are a number of ways in which you can use it to
enhance your reports.

Visual Groupings
You can place report controls within the Container to group them visually, and to make it easier at design time to move a
group of report controls.

ActiveReports 14 406

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: Drawing a container around existing items does not contain them. Instead you must drag the items into the
container.

You can use a container as a border for your report pages, and set border properties to create purely visual effects within
your report, and even display an image behind a group of report controls by setting the BackgroundImage property of
the Container.

Anchoring Items
Probably the best usage of the Container report control is to anchor report controls which may otherwise be pushed
down by a vertically expanding data region. For example, if you have a group of textboxes below a table with some of
them to the left or right, any of them directly below the table are pushed down below the expanded table at run time,
while the upper textboxes remain where you placed them at design time. To prevent this from happening, place the group
of textboxes within a container.

Container Dialog
Properties for the Container are available in the Container dialog. To open it, with the Container control selected on the
report, under the Properties Window, click the Property dialog link.

The Container dialog lets you set properties on the report control with the following pages.

Note: You can select the <Expression...> option in many of these properties to create an expression to determine
the value. For properties with enumerated values, the values are listed under Constants in the Fields tree view on the
left side of the Expression Editor.

General

Name: Enter a name for the container that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Page breaks:

Insert a page break before this container: Insert a page break before the container.
Insert a page break after this container: Insert a page break after the container.

Appearance

Background

Color: Select a color to use for the background of the container.

Image: Specify the background image of container using Expression or Data Visualizer, or directly open the image file on
your system.

Note: For Page/RDL reports, if the Hatch and Gradient background styles are set using Data Visualizers, these are not
displayed at design time.

Border

Style: Select a style for the border.

ActiveReports 14 407

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Width: Enter a value in points to set the width of the border.

Color: Select a color to use for the border, or select the <Expression...> option to open the Expression Editor and create
an expression that evaluates to a .NET color.

Rounded Rectangle: Specify the radius for each corner of the shape independently. Drag the handlers available at each
corner of the shape to set the value of the radius at each corner.

Note: To enable specific corners, check the CheckBox available near each corner of the Container control.

Visibility

Initial visibility

Visible: The container is visible when the report runs.
Hidden: The container is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the container is visible. True for hidden,
False for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the container. The user can click the toggle item to show or hide this container.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this container. You will then be able to provide a bookmark link
to this item from another report control using a Jump to bookmark action.

Data Output

The Data Output page of the Container dialog allows you to control the following properties when you export to XML:

Element name: Enter a name to be used in the XML output for this container.
Output: Choose Auto, Yes, No, or Contents only to decide whether to include the contents of this container in
the XML output. Choosing Auto exports the contents of the container only when the value is not a constant.

Formatted Text
The FormattedText report control can perform mail merge operations, plus it displays richly formatted text in HTML. To
format text in the FormattedText report control, enter HTML code into the Html property.

The design time editor displays the HTML text with the applied formatting, so you can view the text just as it will be
displayed at run time in the Designer tab.

ActiveReports 14 408

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Supported HTML Tags
If you use valid HTML tags that are not in this list, ActiveReports ignores them.

Important: All text used in the Html property must be enclosed in the <body></body> tags.

Tag Description

<%MergeFieldName%> Inserts a mail merge field.

<!-- -- > Defines a comment

<!DOCTYPE> Defines the document type

<a> Defines an anchor

<abbr> Defines an abbreviation

<acronym> Defines an acronym

<address> Defines an address element

 Defines bold text

<base /> Defines a base URL for all the links in a page

<bdo> Defines the direction of text display

<big> Defines big text

<blockquote> Defines a long quotation

<body> Defines the body element (Required)

 Inserts a single line break

<caption> Defines a table caption

<center> Defines centered text

<cite> Defines a citation

<code> Defines computer code text

<col> Defines attributes for table columns

<dd> Defines a definition description

ActiveReports 14 409

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Defines deleted text

<dir> Defines a directory list

<div> Defines a section in a document

<dfn> Defines a definition term

<dl> Defines a definition list

<dt> Defines a definition term

 Defines emphasized text

<h1> to <h6> Defines header 1 to header 6

<head> Defines information about the document

<hr /> Defines a horizontal rule

<html> Defines an html document

<i> Defines italic text

 Defines an image. Use src attribute to define path of the image, for example:

To refer an image embedded within the report, specify the image name:

<ins> Defines inserted text

<kbd> Defines keyboard text

 Defines a list item

<link> Defines a link

<map> Defines an image map

<menu> Defines a menu list

 Defines an ordered list

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<s> Defines strikethrough text

<samp> Defines sample computer code

<small> Defines small text

 Defines a section in a document

<strike> Defines strikethrough text

 Defines strong text

<style> Defines a style definition

ActiveReports 14 410

Copyright © 2020 GrapeCity, Inc. All rights reserved.

<sub> Defines subscripted text

<sup> Defines superscripted text

<table> Defines a table

<tbody> Defines a table body

<td> Defines a table cell

<tfoot> Defines a table footer

<th> Defines a table header

<thead> Defines a table header

<tr> Defines a table row

<tt> Defines teletype text

<u> Defines underlined text

 Defines an unordered list

Caution: To enter & in the HTML property, you need to use &.

Formatted Text Dialog
Properties for the FormattedText report control are available in the Formatted Text dialog. To open it, with the control
selected on the report, under the Properties Window, click the Property dialog link.

The Formatted Text dialog lets you set properties on the report control with the following page.

General

Name: Enter a name for the FormattedText that is unique within the report. This name can be called in code. You can only
use underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward
slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Visibility

Initial visibility

Visible: The FormattedText is visible when the report runs.
Hidden: The FormattedText is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the FormattedText is visible. True for
hidden, false for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the FormattedText. The user can click the toggle item to show or hide this FormattedText.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document

ActiveReports 14 411

Copyright © 2020 GrapeCity, Inc. All rights reserved.

map).

Bookmark ID: Enter an expression to use as a locator for this FormattedText. You will then be able to provide a bookmark
link to this item from another report control using a Jump to bookmark action.

Appearance

Background
Color: Select a color to use for the background of the FormattedText.

Image: Enter an image to use for the background of the FormattedText.

Border
Style: Select a style for the border.

Width: Enter a value in points to set the width of the border.

Color: Select a color to use for the border, or select the <Expression...> option to open the Expression Editor and create
an expression that evaluates to a .NET color.

Data Output

Element name: Enter a name to be used in the XML output for this FormattedText report control.

Output: Choose Auto, Yes, No, Contents Only to decide whether to include this FormattedText in the XML output.
Choosing Auto exports the contents of the FormattedText report control.

Mail Merge

Click the plus sign button to add a new mail merge field to the FormattedText, and delete them using the X button. Once
you add one or more fields, you can reorder them using the arrow buttons.

Field: Enter a name for the field that is unique within the report. This is used in the Html property inside <%FieldName%>
tags to display the field in the formatted text.

Value: Enter an expression to pull data into the control for mail merge operations.

Here is a very simple example of HTML code that you can use to add mail merge fields to formatted text. This example
assumes that you have added two mail merge fields named Field1 and Field2.

Paste this code in the Html property of the FormattedText control.

<body><p>This is <%Field1/%> and this is <%Field2/%>.</p></body>

Image
The Image report control displays an image that you embed in the report, add to the project, store in a database, or
access through a URL. You can choose the Image Source in the Properties Window after you place the Image report
control on the report.

Embedded Images

The benefit of using an embedded image is that there is no separate image file to locate or to keep track of when you
move the report between projects. The drawback is that the larger the file size of the image you embed, the more inflated

ActiveReports 14 412

Copyright © 2020 GrapeCity, Inc. All rights reserved.

your report file size becomes.

To embed an image in your report

1. In the Report menu, select Embedded Images.
2. Click under the Image column to reveal an ellipsis button (...) and select an image file from your local files. The

Name and MimeType columns are filled in automatically and the image file's data is stored in the report
definition.

3. Click to select the Image report control, and in the Properties grid, set the Source property to Embedded.

4. Drop down the Value property and select the image from the list of embedded images.

Data Visualizer Images

You can use a data visualizer to display data in small graphs that are easy to comprehend.

To add a data visualizer image to your report

1. Click to select the Image report control, and in the Properties grid, drop down the Value property and
select <Data Visualizer...>.

2. In the Data Visualizers dialog that appears, select the Visualizer Type that you want to use, Icon Set, Range Bar, or
Data Bar.

3. Use expressions related to your data to set the rest of the values in the dialog.

Project Images

You may have an image that you want to use in multiple reports, for example a logo. In such cases, you can store it as a
project image. This not only allows you to quickly locate the correct image for new reports in the project, but also makes it
easier when you update your logo, as you will not need to search through every report to replace embedded images.
Another benefit is that the images are distributed with your application.

To store an image in your Visual Studio project

1. Right-click the project in the Solution Explorer and select Add, then Add Existing Item and navigate to the image.
2. Click to select the Image report control, and in the Properties grid, set the Source property to External.

3. Drop down the Value property and select the image from the list of project images.

Database Images

Product catalogues are probably the most common scenario in which images stored in a database are used in reports.
Place the Image report control in a data region to use database images that repeat for every row of data.

Keep in mind that you cannot use database images in Page Headers and Page Footers because these sections cannot
have value expressions that refer to fields.

To use a database image in an Image report control

1. Click to select the Image report control, and in the Properties grid, set the Source property to Database.
2. Drop down the Value property and select the field containing the image.

Note: Microsoft Access database images are generally stored as OLE objects which the Image report control cannot
read.

Web Images

ActiveReports 14 413

Copyright © 2020 GrapeCity, Inc. All rights reserved.

You can also use any image to which you can navigate via a URL. The benefit of this is that images stored in this way add
nothing to the file size of the project or of the report, but the drawback is that if the web based image is moved, it will no
longer show up in your report.

To use a Web image

1. Click to select the Image report control, and in the Properties grid, set the Source property to External.
2. In the Value property, enter the URL for the image.

Image Dialog
Properties for the Image are available in the Image dialog. To open it, with the Image control selected on the report,
under the Properties Window, click the Property dialog link.

The Image dialog lets you set properties on the report control with the following pages.

Note: You can select <Expression...> within many of these properties to open the Expression Editor.

General

Name: Enter a name for the image that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Image Value: Enter the name of the image to display. Depending on the Image Source chosen below, you can give a path
to the image, select an image to embed, or pull images from a database. This property also allows you to choose the
<Data Visualizer...> option to launch a dialog that will let you build a data visualization expression.

Image Source: Select whether the image comes from a source that is External, Embedded, or Database.

MIME Type: Select the MIME type of the image chosen.

Visibility

Initial visibility

Visible: The image is visible when the report runs.
Hidden: The image is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the image is visible. True for hidden, False
for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the image. The user can click the toggle item to show or hide this image.

Navigation

Action

Select one of the following actions to perform when a user clicks on this image.

None: The default behavior is to do nothing when a user clicks the image at run time.

Jump to report: For drill-through reporting, select this option and provide the name of a local report, the relative

ActiveReports 14 414

Copyright © 2020 GrapeCity, Inc. All rights reserved.

path of a report in another folder, or the full path of a report on another server.

Parameters: Supply parameters to the targeted report by entering the Name of each parameter, the Value to send
to the targeted report, or whether to Omit the parameter. Note that parameter names you supply must exactly
match parameters in the target report.

Tip: You can remove or change the order of parameters using the X and arrow buttons.

Jump to bookmark: Select this option and provide a valid Bookmark ID to allow the user to jump to the report
control with that Bookmark ID.

Jump to URL: Select this option and provide a valid URL to create a hyperlink to a Web page.

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this image. You will then be able to provide a bookmark link to
this item from another report control using a Jump to bookmark action.

InputField
The InputField report control provides support for editable fields in an exported PDF report where the InputField’s value
can be modified.

Note: The InputField control is part of the Professional Edition. With the Standard license, the InputField control is
not displayed in an exported file.

You can choose one of the two report control types – Text and Checkbox, in the InputType property. Each selected type
has its own set of properties.

In case of the Text type, the InputField control gets the set of properties of the TextBox control. If the Checkbox type is
selected, then the control inherits the set of properties of the CheckBox control.

Limitations
(Preview limitation) Border drawing is displayed inside the control area.
(Preview limitation) A checkmark inside the InputField CheckBox is shown only if the field size allows as a
checkmark can't be displayed partly.
(Preview limitation) Some properties are not supported at preview, like Multiline (False), Password, Required.
With the PDF export filter, the InputField control is exported as a static, non-editable control.
(PDF limitation) Limited set of enum values for the BorderStyle property - None, Solid, Dashed, Inset.
(PDF limitation) Padding, VerticalAlign, Justify settings are not available.
(PDF limitation) Properties related to the Text/ Font settings are not available for the InputType control as
Checkbox.
(PDF limitation) Border properties can only be set for all sides at once (the option for each side is not available).

Line
The Line report control can be used to visually separate data regions in a report layout. You can set properties in the
Properties grid or the Line Dialog to control the appearance of the line, and to control when the line is rendered.

ActiveReports 14 415

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Important Properties

Property Description

LineColor Gets or sets the color of the line.

LineStyle Gets or sets the pen style used to draw the line. The line styles include Transparent, Solid, Dash, Dot,
DashDot, DashDotDot, or Double.

LineWidth Gets or sets the pen width of the line in points.

Visibility Indicates whether the line is visible or hidden.

LayerName Gets or sets the name of the containing layer.

EndPoint Set the vertical and horizontal end points of the line.

Location Gets or sets the position of the top-left corner of the report item in relation to its container.

Line Dialog
Properties for the Line are available in the Line dialog. To open it, with the Line control selected on the report, under the
Properties Window, click the Property dialog link.

The Line dialog lets you set properties on the report control with the following pages.

General

Name: Enter a name for the line that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Visibility

The Visibility page of the Line dialog allows you to control the following items:

Initial visibility

Visible: The line is visible when the report runs.
Hidden: The line is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the line is visible. True for hidden, False for
visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the line. The user can click the toggle item to show or hide this line.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this line. You will then be able to provide a bookmark link to this
item from another report control using a Jump to bookmark action.

ActiveReports 14 416

Copyright © 2020 GrapeCity, Inc. All rights reserved.

List
The List data region repeats any report controls it contains for every record in the dataset. Unlike other data regions, the
List is free-form, so you can arrange report controls in any configuration you like.

Grouping in the list is done on the details group.

List Dialog
Properties for the List are available in the List dialog. To open it, with the List control selected on the report, under the
Properties Window, click the Property dialog link.

The List dialog lets you set properties on the report control with the following pages.

Note: You can select <Expression...> within these properties to create an expression to determine the value.

General

Name: Enter a name for the list that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Dataset name: Select a dataset to associate with the list. The drop-down list is populated with all of the datasets in the
report's dataset collection.

Has own page numbering: Select to indicate whether this List is in its own section with regards to pagination.

Page Breaks: Select any of the following options to apply to each instance of the list.

Insert a page break before this list
Insert a page break after this list
Fit list on a single page if possible

Detail Grouping

Detail grouping is useful when you do not want to repeat values within the details. When a detail grouping is set, the
value repeats for each distinct result of the grouping expression instead of for each row of data. For example, if you use
the Customers table of the NorthWind database to create a list of countries without setting the details grouping, each
country is listed as many times as there are customers in that country. If you set the details grouping to
=Fields!Country.Value each country is listed only once.

Note: If the detail grouping expression you use results in a value that is distinct for every row of data, a customer
number for example, you will see no difference in the results.

The Detail Grouping page of the List dialog has the following tabs.

General

Name: Enter a name for the group that is unique within the report. This property cannot be set until after a Group on
expression is supplied. You can only use underscore (_) as a special character in the Name field. Other special characters
such as period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Group on: Enter an expression to use for grouping the data.

ActiveReports 14 417

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Parent group: For use in recursive hierarchies. Enter an expression to use as the parent group.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right.

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Sorting

Click the plus sign button to enter new sort expressions, and remove them using the X button.

In the Expression box, enter an expression by which to sort the data in the group, and under Direction, select Ascending
or Descending for the selected sort expression.

Data Output

Element name: Enter a name to be used in the XML output for this group.

Collection: Enter a name to be used in the XML output for the collection of all instances of this group.

Output: Choose Yes or No to decide whether to include this group in the XML output.

Layout

ActiveReports 14 418

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Page break at start: Inserts a page break before the group.

Page break at end: Inserts a page break after the group.

Has own page numbering: Used in conjunction with the "Page Number in Section" and "Total Pages in Section"
properties, tells the report that the group constitutes a new page numbering section.

Visibility

Initial visibility

Visible: The list is visible when the report runs.
Hidden: The list is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the list is visible. True for hidden, false for
visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the list. The user can click the toggle item to show or hide this list.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this list. You will then be able to provide a bookmark link to this
item from another report control using a Jump to bookmark action.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right.

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.

ActiveReports 14 419

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Sorting

Click the plus sign button to enter new sort expressions, and remove them using the X button.

In the Expression box, enter an expression by which to sort the data in the group, and under Direction, select Ascending
or Descending for the selected sort expression.

Data Output

Element name: Enter a name to be used in the XML output for this list.

Output: Choose Auto, Yes, or No to decide whether to include this List in the XML output. Choosing Auto exports the
contents of the list.

Instance element name: Enter a name to be used in the XML output for the data element for instances of the list. This
name is ignored if you have specified a detail grouping.

Instance element output: Choose Yes or No to decide whether to include the instances of the list in the XML output. This
is ignored if you have specified a detail grouping.

Map
The Map data region is a professional edition feature that shows your business data against a geographical background.
You can create different types of map, depending on the type of information you want to communicate in your report.

The Map data region consists of the following basic elements:

Title

Map Title describes the theme or subject of the map. The purpose of map title is to tell the viewer of what he is looking at.
You can add multiple titles to the Map using the MapTitleDesigner Collection Editor.

For more information, see Create a Map.

Viewport

ActiveReports 14 420

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Viewport refers to the area on the map where data is displayed against a geographical background. It specifies the
coordinates, projection system, parallels and meridians, center point, and scale of the map. In other words, it is a map
element that actually displays geographical data and occupies most area of the map control depending on the location
and dock position of other map elements. For more information, see Create a Map.

The Map Viewport dialog lets you set properties with the following pages.

General

Coordinate system: Specify the coordinate system of the viewport. Select from Planar, Geographic, or select the
<Expression...> option to open the Expression Editor and create an expression.

Projection: Specify the projection of the map. Tile layers must use the Mercator projection.

Minimum X: Specify the minimum X coordinate of the map in degrees.

Maximum X: Specify the maximum X coordinate of the map in degrees.

Minimum Y: Specify the minimum Y coordinate of the map in degrees.

Maximum Y: Specify the maximum Y coordinate of the map in degrees.

Projection Center X: Specify the X coordinate of the projection center in degrees.

Projection Center Y: Specify the Y coordinate of the projection center in degrees.

Minimum zoom: Specify the minimum zoom value.

Maximum zoom: Specify the maximum zoom value.

Map resolution: Enables the viewport to simplify vector data for polygon and line layers.

Show grid lines below the map: Specify whether to show the grid lines above or below the content of the map.

Meridians

Hide meridians: Specify whether to hide meridians.

Interval: Specify the spacing between the grid lines in degrees.

Line

Style: Choose from None, Dotted, Dashed, Solid, Double, Groove, Ridge, Inset, WindowInset, Outset, or select
the <Expression...> option to open the Expression Editor and create an expression.
Width: Specify the width of the line.
Color: Select a Web or custom color for the line.

Show labels: Specify whether to show labels for meridians on the map.

Format: Specify the format string to display numeric labels.

Position: Specify the position of the meridians on the map.

Font

Family: Choose the font family name.
Size: Choose the size in points for the font.
Style: Choose Normal or Italic.
Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and
Bolder.
Color: Select a Web or custom color for the font.
Decoration: Choose from None, Underline, Overline, LineThrough, or select the <Expression...> option to

ActiveReports 14 421

Copyright © 2020 GrapeCity, Inc. All rights reserved.

open the Expression Editor and create an expression.

Parallels

Hide parallels: Specify whether to hide parallels.

Interval: Specify the spacing between the grid lines in degrees.

Line

Style: Choose from None, Dotted, Dashed, Solid, Double, Groove, Ridge, Inset, WindowInset, Outset, or select
the <Expression...> option to open the Expression Editor and create an expression.
Width: Specify the width of the line.
Color: Select a Web or custom color for the line.

Show labels: Specify whether to show labels for parallels on the map.

Format: Specify the format string to display numeric labels.

Position: Specify the position of the parallels on the map.

Font

Family: Choose the font family name.
Size: Choose the size in points for the font.
Style: Choose Normal or Italic.
Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and
Bolder.
Color: Select a Web or custom color for the font.
Decoration: Choose from None, Underline, Overline, LineThrough, or select the <Expression...> option to
open the Expression Editor and create an expression.

View

Center and zoom: Specify how the map viewport zooms and centers during the report processing.

Custom
Center map to show a map element
Center map to show a map layer
Center map to show all map elements

View Center X: Specify the X coordinate of the current view center.

View Center Y: Specify the Y coordinate of the current view center.

Zoom level: Specify the zoom level of the map view.

Appearance

Border

Style: Choose an enumerated style for the border.
Width: Set a width value in points between 0.25pt and 20pt.
Color: Select a Web or custom color for the border.

Background

Color: Select a color to use for the background of the Viewport.

ActiveReports 14 422

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Gradient: Select a color to use for the border, or select the <Expression...> option to open the Expression
Editor and create an expression that evaluates to a .NET color.
Gradient End Color: Select a color to use for the end color of the background gradient.
Pattern: Select the hatching pattern of a report control.

Shadow offset: Specify the size of the shadow. Shadow offsets are drawn to the right and below an element.

Legend

A legend on a map provides valuable information to users for interpreting the map data visualization rules such as color,
size, and marker type differences for map elements on a layer. By default, a single Legend item already exists in the
legends collection which can be used by all layers to display items. You can also create additional legends to use them
individually with layers that have associated rules to display items in the legend.

Legends are added in the LegendDesigner Collection Editor. For more information, see Create a Map.

Distance Scale

A distance scale helps a user to understand the scale of the map. Distance on a map is not the same as the actual real-
world distance, so a distance scale shows that a certain distance on the map equals a certain distance in a real-world. In
distance scale, the distance is displayed in both miles and kilometers. The scale range and values are automatically
calculated using the viewport boundaries, projection type, and zoom level. For more information, see Create a Map.

The Map Distance Scale dialog lets you set properties with the following pages.

Note: You can select <Expression...> within these properties to create an expression to determine the value.

General

Location

Position: Specify the docking position of the distance scale panel. Choose from TopCenter, TopLeft, TopRight,
LeftTop, LeftCenter, LeftBottom, RightTop, RightCenter, RightBottom, BottomRight, or select the
<Expression...> option to open the Expression Editor and create an expression.
Show distance scale outside the viewport: Specify whether the panel is docked inside or outside of the
map viewport.

Scale

Color: Select the fill color for the distance scale bar.
Border color: Select the border color for the distance scale bar.

Appearance

Border

Style: Choose from None, Dotted, Dashed, Solid, Double, Groove, Ridge, Inset, WindowInset, or Outset.
Width: Choose the width of the border line.
Color: Select a color for the border.

Background

Color: Select a color to use for the background of the distance scale.
Gradient: Select a color to use for the border, or select the <Expression...> option to open the Expression
Editor and create an expression that evaluates to a .NET color.

ActiveReports 14 423

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Gradient End Color: Select a color to use for the end color of the background gradient.
Pattern: Select the hatching pattern of the distance scale panel from the list of patterns, or select the
<Expression...> option to open the Expression Editor and create an expression.

Shadow offset: Specify the size of the shadow of the distance scale panel. Shadow offsets are drawn to the right and
below an element.

Font

Family: Choose the font family name.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic, or select the <Expression...> option to open the Expression Editor and create an
expression.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and Bolder.

Color: Select a Web or custom color for the font.

Decoration: Choose from None, Underline, Overline and LineThrough, or select the <Expression...> option to open the
Expression Editor and create an expression.

Visibility

Initial visibility

Visible: The distance scale is visible when the report runs.
Hidden: The distance scale is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the distance scale is visible. True for
hidden, false for visible.

Navigation

Action

Select one of the following actions to perform when a user clicks on the distance scale element.

None: The default behavior is to do nothing when a user clicks the distance scale element at run time.
Jump to URL: Select this option and provide a valid URL to create a hyperlink to a Web page.
Jump to bookmark: Select this option and provide a valid Bookmark ID to allow the user to jump to the
report control with that Bookmark ID.
Jump to report: For drill-through reporting, select this option and provide the name of a local report, the
relative path of a report in another folder, or the full path of a report on another server.

Color Scale

A color scale helps a user to understand the range of colors that are used for data visualization on a layer. A map has just
one color scale and multiple layers can provide data for it. For more information, see Create a Map.

The Map Color Scale dialog lets you set properties with the following pages.

Note: You can select <Expression...> within these properties to create an expression to determine the value.

General

Location

ActiveReports 14 424

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Position: Specify the docking position of the color scale panel. Choose from TopCenter, TopLeft, TopRight,
LeftTop, LeftCenter, LeftBottom, RightTop, RightCenter, RightBottom, BottomRight, or select the <Expression...>
option to open the Expression Editor and create an expression.
Show color scale outside the viewport: Specify whether the panel is docked inside or outside of the map
viewport.

Color bar

Border color: Specify the outline color for color scale divisions.
Range gap color: Specify color to fill color divisions for undefined range values.

Labels

Display: Specify whether to display color scale labels on the color scale panel. Select from Auto, ShowMiddleValue,
ShowBorderValue, or select the <Expression...> option to open the Expression Editor and create an expression.

Hide end labels: Specify whether to display first and last labels on the color scale panel.

Format: Specify the format string to display numeric labels.

Placement: Speciy the position of the color scale labels on the color scale panel. Select from Alternate, Top, Bottom, or
select the <Expression...> option to open the Expression Editor and create an expression.

Interval: Specify the frequency of the labels on the color scale panel. A value of 0 means no labels are displayed.

Tick mark length: Specify the length of the tick marks on the color scale panel.

Title

Text: Specify the text of the color scale panel.

Font

Family: Choose the font family name.
Size: Choose the size in points for the font.
Style: Choose Normal, Italic or select the <Expression...> option to open the Expression Editor and create an
expression.
Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and
Bolder.
Color: Select a Web or custom color for the font.
Decoration: Choose from None, Underline, Overline, LineThrough, or select the <Expression...> option to
open the Expression Editor and create an expression.

Appearance

Border

Style: Choose from None, Dotted, Dashed, Solid, Double, Groove, Ridge, Inset, WindowInset, or Outset.
Width: Specify the width of the border.
Color: Specify a color for the border.

Background

Color: Select a color to use for the background of the distance scale.
Gradient: Specify whether and how to use color gradients in the color scale background. Select from None,
LeftRight, TopBottom, Center, DiagonalLeft, DiagonalRight, HorizontalCenter, VerticalCenter, or select the
<Expression...> option to open the Expression Editor and create an expression.

ActiveReports 14 425

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Gradient End Color: Select a color to use for the end color of the background gradient.
Pattern: Select the hatching pattern of the color scale panel from the list of patterns, or select the
<Expression...> option to open the Expression Editor and create an expression.

Shadow offset: Specify the size of the shadow of the color scale panel. Shadow offsets are drawn to the right and below
an element.

Font

Family: Choose the font family name.

Size: Choose the size in points for the font.

Style: Choose Normal, Italic or select the <Expression...> option to open the Expression Editor and create an expression.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and Bolder.

Color: Select a Web or custom color for the font.

Decoration: Choose from None, Underline, Overline, LineThrough, or select the <Expression...> option to open the
Expression Editor and create an expression.

Visibility

Initial visibility

Visible: The color scale is visible when the report runs.
Hidden: The color scale is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the color scale is visible. True for
hidden, false for visible.

Navigation

Action

Select one of the following actions to perform when a user clicks on the color scale element.

None: The default behavior is to do nothing when a user clicks the color scale element at run time.
Jump to URL: Select this option and provide a valid URL to create a hyperlink to a Web page.
Jump to bookmark: Select this option and provide a valid Bookmark ID to allow the user to jump to the
report control with that Bookmark ID.
Jump to report: For drill-through reporting, select this option and provide the name of a local report, the
relative path of a report in another folder, or the full path of a report on another server.

Map Dialog

ActiveReports 14 426

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Properties for the Map are available in the Map dialog. To open it, with the Map control selected on the report, under the
Properties Window, click the Property dialog link.

The Map dialog lets you set properties on the report control with the following pages.

Note: You can select <Expression...> within these properties to create an expression to determine the value.

General

Name: Enter a name for the map that is unique within the report. This name is called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Antialiasing: Select the smoothing mode to apply to all map control elements. Choose All, None, Text, Graphic, or select
the <Expression...> option to open the Expression Editor and create an expression.

Antialiasing quality: Select the quality for antialiasing. Choose High, Normal, SystemDefault, or select the
<Expression...> option to open the Expression Editor and create an expression.

Visibility

Initial visibility

Visible: The map is visible when the report runs.
Hidden: The map is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the map is visible. True for hidden,
false for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box below where you can specify the TextBox control that toggles the visibility
of the map. The user can click the toggle item to show or hide this map.

Appearance

Border

Style: Choose from None, Dotted, Dashed, Solid, Double, Groove, Ridge, Inset, WindowInset, or Outset.
Width: Specify the width of the border.
Color: Select a Web or custom color for the font.

Background

ActiveReports 14 427

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Color: Select a color to use for the background of the map.
Gradient: Specify whether and how to use color gradients in the color scale background. Select from None,
LeftRight, TopBottom, Center, DiagonalLeft, DiagonalRight, HorizontalCenter, VerticalCenter, or select the
<Expression...> option to open the Expression Editor and create an expression.
Gradient End Color: Select a color to use for the end color of the background gradient.
Pattern: Select the hatching pattern of a report control.

Data Output

Element name: Enter a name to be used in the XML output for this map.

Output: Choose Auto, Yes, or No to decide whether to include this map in the XML output. Choosing Auto exports the
contents of the map.

Layers
A map is a collection of layers that display data on the map control.

Polygon layer: Display outlines of areas or markers for the polygon center point. See, Use a Polygon Layer for
more information.
Point layer: Display markers for point locations. See, Use a Point Layer for more information.
Line layer: Display lines for paths or routes. See, Use a Line Layer for more information.
Tile layer: Adds a Bing map tiles background. See, Use a Tile Layer for more information.

A map can have one or more layers. You can load these layers on top of each other to create a more detailed map. For
example, a polygon layer can represent the borders of a country, a line can represent transportation routes, a point can
represent the locations and a tile can add a virtual earth background on the map. See, Use Layers for more information.

Map layer element appearance:

Properties that you set on a polygon layer, line layer and a point layer apply to all map elements on that layer,
whether or not the map elements are embedded in the report definition.
Properties that you set for rules apply to all map elements on a layer. All data visualization options apply only to
map elements that are associated with spatial data.

Map Layer Data Dialog

ActiveReports 14 428

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Map layer Data dialog is used to set up spatial and analytical data for the map control. For more information on
spatial and analytical data, see Add Data.

To access Map Layer Data Properties dialog

1. Click the map until the map panes appears.
2. Right click the layers pane and select Add <layerName> Layer. This adds a new layer to the map and opens the

Map Layer Data Properties dialog

Or, in case you already have a layer added to the map control, then follow these steps:

1. Click the map until the map panes appears.
2. In the layer pane, right-click the existing layer and select Layer Data to open Map Layer Data Properties dialog.

General

Spatial data source: Select one of the spatial data source connection types:

Embedded: The map layer data is loaded from the .shp data source that you embed into the map layer by
indicating the .shp file in the Import spatial data from file: field. This field appears below when you select
this option.

Spatial fields: Use the plus sign button to add a field, and the X button to delete a field. For each newly added
spatial field, you must specify the name and type in the corresponding fields below.

Field name: Enter a name of a spatial field.

Field type: Select the type of a spatial field from the list.

Linked: The map layer data is linked to the .shp file and is uploaded at report rendering. You select this type of
data source by indicating the .shp file in the File Name field that appears.
Dataset: The map layer data is loaded from the data source of the report. In the Dataset field and in the Field
name field that appear below, select a dataset from the bound data source and a dataset field.

Caution: In Field name, simply type the name of the dataset field that contains spatial data. For example,
enter the dataset field name as StateName, not as =[StateName].

Analytical data: The map layer data is loaded from the the analytical dataset of the bound report data source.
In the Field name field that appears below, you must set the name of the data field that contains spatial data
in the Analytical dataset.

Caution: In Field name, enter the data field name as =[StateName], not as StateName.

Analytical Data

Dataset: Select the dataset for the analytical data to be displayed on the map layer.

Match: Use the plus sign button to add a relationship between a spatial data field and an analytical data field.

Spatial field: A field with spatial data that specifies an element on the map surface, for example, boundaries of a country.

Analytical field: A field with analytical data that displays information on the related map element, for example, the
country population.

Filters

The Filters page of the Map Layer Data Properties dialog allows you to filter the data that is included in the map. Use

ActiveReports 14 429

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the plus sign button to add a filter, and the arrow and X buttons to move or delete filters. You need to provide three
values to add a new filter to the collection.

Expression: Enter the expression to use for evaluating whether data should be included in the map.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right:

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on
the right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the
right.
TopN Only choose items from the value on the left which are the top number specified in the value on the
right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on
the right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on
the right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the
value on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values (used
with the In and Between operators) separate values using commas.

Overflow Place Holder
In a Page report, the OverflowPlaceHolder control is a rectangular placeholder for data that does not fit inside the fixed
size of a List, BandedList, Tablix or Table data region. When you link a data region to an OverflowPlaceHolder, this
control gets its Size property values from the FixedSize of the data region it is linked with.

You can also place multiple OverflowPlaceHolder controls in a report to create different looks for your data output. Link a
data region to an OverflowPlaceHolder control and then link that OverflowPlaceHolder control to another
OverflowPlaceHolder control. Two common layouts that you can create through this process are:

Multiple Page Layout: Place the data region on the first page of the report and OverflowPlaceHolder controls on
subsequent pages to create a layout with overflow data on multiple pages.

ActiveReports 14 430

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Note: If a page contains only an OverflowPlaceHolder with no data to display, the empty page does not
render. However, if the page also contains any control with static data, the page renders. To skip rendering the
page, set GrapeCity.ActiveReports.PageReportModel.Page.ThrowIfPlaceHoldersEmpty property to True.

Columnar Report Layout: Place the data region and the OverflowPlaceHolder on the same page of the report to
create a layout that displays data in a columnar format like the one in the following image.

Data overflow to an OverflowPlaceHolder
You can bind overflow data from a data region to an OverflowPlaceHolder control or from an OverflowPlaceHolder
control to another OverflowPlaceHolder control in a report. The following steps take you through the process:

These steps assume that you have already added a Page Report template to your project, connected it to a data source
and added a DataSet. See Connect to a Data Source and Add a Dataset for more information.

To link a data region to an OverflowPlaceHolder control

When your data goes beyond the fixed size of a data region, you can create a link from the data region to enable flow of
data into the OverflowPlaceHolder.

1. From the Visual Studio toolbox, on the Page1 tab of the report, drag and drop a data region like List onto the
design surface and set its FixedSize property.

2. If the data goes beyond the fixed size of the data region, from the Visual Studio toolbox, on Page2 tab of the
report, drag and drop an OverflowPlaceHolder control (OverflowPlaceHolder1 by default) onto the design surface.

3. On the Page1 design surface, select the data region placed above and go to the Properties Window.
4. In the Properties Window, go to the GrapeCity.ActiveReports.PageReportModel.DataRegion.OverflowName

property and from the dropdown list, select the name of the OverflowPlaceHolder control you added earlier.

The following image shows the Properties Window of a List data region (List1) where OverflowPlaceHolder1 is set
in the OverflowName property.

ActiveReports 14 431

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tip: Depending on your layout requirements, you can place the OverflowPlaceHolder control on the same
page tab as the data region or a different page tab.

To link an OverflowPlaceHolder control to another OverflowPlaceHolder control

You can place additional OverflowPlaceHolder controls, to display data that flows beyond the first OverflowPlaceHolder
control.

1. From the Visual Studio toolbox, drag and drop another OverflowPlaceHolder control like OverflowPlaceHolder2
onto the design surface.

2. In the Designer, select the OverflowPlaceHolder1 control that contains overflow data and go to the properties
window.

3. In the Properties Window, go to OverflowName property and select the name of the new OverflowPlaceHolder
control you placed above. For e.g., in OverflowPlaceHolder1, set the OverflowName property to
OverflowPlaceHolder2.

The following image shows the Properties Window of OverflowPlaceHolder1 where the OverflowPlaceHolder2 is
set in the OverflowName property.

Caution: In a report with multiple OverflowPlaceHolder controls, link the OverflowPlaceHolder controls to their
respective data regions and other OverflowPlaceHolder controls such that the overflow chain does not break.

Shape
The Shape report control is used to display one of the available shape types on a report. You can add a shape report
control to a report by dragging it from the toolbox and dropping it onto the report design surface.

ActiveReports 14 432

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In the ShapeStyle property of the Shape report control, you can select Rectangle, RoundRect or Ellipse, or you can use
an expression to assign fields, datasets, parameters, constants, operations or common values to it. You can highlight
different sections or parts of a report using a shape report control. For example, you can use a Rectangle as
border around different report controls or the entire page or you can use an Ellipse to highlight a note on your report.

Shape Dialog
Properties for the Shape are available in the Shape dialog. To open it, with the Shape control selected on the report, under
the Properties Window, click the Property dialog link.

The Shape dialog lets you set properties on the report control with the following pages.

Note: You can select <Expression...> within many of these properties to open the Expression Editor.

General

Name: Enter a name for the image that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Shape Style: Choose Rectangle, RoundRect or Ellipse from the dropdown list.

Rounded Rectangle: When the Shape type is set to RoundRect, you can specify the radius for each corner of the shape
independently. Drag the handlers available at each corner of the shape to set the value of the radius at each corner.

Note: To enable specific corners, check the CheckBox available near each corner of the Shape control.

Appearance

Background
Color: Select a color to use for the background of the Shape.

Image: Specify the background image of shape using Expression or Data Visualizer, or directly open the image file on
your system.

Note: For Page/RDL reports, if the Hatch and Gradient background styles are set using Data Visualizers, these are not
displayed at design time.

Border
Style: Select a style for the border.

Width: Enter a value in points to set the width of the border.

Color: Select a color to use for the border, or select the <Expression...> option to open the Expression Editor and create
an expression that evaluates to a .NET color.

Visibility

Initial visibility

ActiveReports 14 433

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visible: The shape is visible when the report runs.
Hidden: The shape is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the shape is visible. True for hidden, false
for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle shape next to another
report control. This enables the drop-down box where you can specify the TextBox control which, if clicked, toggles the
visibility of the shape.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this shape. You will then be able to provide a bookmark link to
this item from another report control using a Jump to bookmark action.

Data Output

Element name: Enter a name to be used in the XML output for this shape report control.

Output: Choose Auto, Yes, No, Contents Only to decide whether to include this Shape in the XML output. Choosing
Auto exports the contents of the Shape report control.

Sparkline
You can use the Sparkline report control as a simple means of displaying the trend of data in a small graph. The
Sparkline displays the most recent value as the rightmost data point and compares it with earlier values on a scale,
allowing you to view general changes in data over time. With the height similar to the surrounding text and the width not
more than 14 letters wide, the sparkline fits well in dashboards, reports, and other documents.

Customize the Sparkline control with the following types.

Type Description

Line The Line sparkline is widely used in financial and economic data analysis and is based on a continuous flow
of data. The currency exchange rates, changes in price are the examples of application of this type of
sparklines.

Columns The Column sparkline is used for sports scores, cash register receipts, and other cases where previous
values and the current value do not closely influence one another. In this case you are dealing with discrete
data points, and not a continuous flow of data as in the Line sparkline.

Whiskers The Whisker sparkline is typically used in win/loss/tie or true/false scenarios. This type is similar to the
Column sparkline, but it renders a tie (0 value) in a different manner. The bars in a whisker sparkline render
below the baseline for a negative value, above the baseline for a positive value, and on the baseline for a
zero value.

Area The Area sparkline is similar to the Line sparkline but visually you see the space under the line as shaded.

StackedBar The Stacked Bar sparkline is presented as a horizontal bar with different segment lengths marked by
distinct color hues. The Stacked bar illustrates how the various segments of a part-to-whole relationship
correspond to one another - the largest segment represents the highest value and the change in brightness

ActiveReports 14 434

Copyright © 2020 GrapeCity, Inc. All rights reserved.

indicates a new value on a scale.

Sparkline Dialog
Properties for the Sparkline are available in the Sparkline dialog. To open it, with the Sparkline control selected on the
report, under the Properties Window, click the Property dialog link.

The Sparkline dialog lets you set properties on the report control with the following pages.

General

Name: Enter a name for the sparkline that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Data

Value: Enter an expression to use as the sparkline value.

Name: Enter a name for the sparkline that is unique within the report. This name can be called in code. A name is created
automatically if you do not enter one.

Group on: Enter an expression to use for grouping the data. If you open the expression editor, you can select a field from
the dataset.

Detail Grouping: Enter an expression to use if you do not want to repeat values within the details. If you open the
expression editor, you can select a field from the dataset.

Parent Group: For use in recursive hierarchies. Enter an expression to use as the parent group.

Appearance

Sparkline Type: Choose Line, Columns, Whiskers, Area or StackedBar. Each of these types has its own set of
Appearance properties that appears when you select the type.

Line Type Appearance Properties

Last point marker is visible: Select to display a marker at the last point on the sparkline.

Marker Color: Select a color to use for the last point marker, or select the <Expression...> option to open the Expression
Editor and create an expression that evaluates to a .NET color.

Line Style
Color: Select a color to use for the line, or select the <Expression...> option to open the Expression Editor and create an
expression that evaluates to a .NET color.

Width: Enter a value in points to set the width of the line.

Enable Wall Range: Select this check box to display a wall range for the sparkline. Selecting this box enables the rest of
the properties in this section.

Lower Bound: Select a value or enter an expression that defines the lower bound of the wall range.

Upper Bound: Select a value or enter an expression that defines the upper bound of the wall range.

Wall Range Backdrop

ActiveReports 14 435

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Fill Color: Select a color to use for the wall range, or select the <Expression...> option to open the Expression Editor and
create an expression that evaluates to a .NET color.

Gradient: Choose the type of gradient to use for the backdrop: None, LeftRight, TopBottom, Center, DiagonalLeft,
DiagonalRight, HorizontalCenter or VerticalCenter.

Gradient End Color: Select a color to use for the end of the wall range gradient, or select the <Expression...> option to
open the Expression Editor and create an expression that evaluates to a .NET color.

Columns Type Appearance Properties

Fill Color: Select a color to use for the fill of the sparkline, or select the <Expression...> option to open the Expression
Editor and create an expression that evaluates to a .NET color.

Maximum Column Width: Select the maximum width of columns in the sparkline. If blank, all columns are sized to fit.

Enable Wall Range: Select this check box to display a wall range for the sparkline. Selecting this box enables the rest of
the properties in this section.

Lower Bound: Select a value or enter an expression that defines the lower bound of the wall range.

Upper Bound: Select a value or enter an expression that defines the upper bound of the wall range.

Wall Range Backdrop
Fill Color: Select a color to use for the wall range, or select the <Expression...> option to open the Expression Editor and
create an expression that evaluates to a .NET color.

Gradient: Choose the type of gradient from these choices: None, LeftRight, TopBottom, Center, DiagonalLeft,
DiagonalRight, HorizontalCenter or VerticalCenter.

Gradient End Color: Select a color to use for the end of the wall range gradient, or select the <Expression...> option to
open the Expression Editor and create an expression that evaluates to a .NET color.

Whiskers Type Appearance Properties

Fill Color: Select a color to use for the fill of the sparkline, or select the <Expression...> option to open the Expression
Editor and create an expression that evaluates to a .NET color.

Maximum Column Width: Select the maximum width of columns in the sparkline. If blank, all columns are sized to fit.

Enable Wall Range: Select this check box to display a wall range for the sparkline. Selecting this box enables the rest of
the properties in this section.

Lower Bound: Select a value or enter an expression that defines the lower bound of the wall range.

Upper Bound: Select a value or enter an expression that defines the upper bound of the wall range.

Wall Range Backdrop
Fill Color: Select a color to use for the wall range, or select the <Expression...> option to open the Expression Editor and
create an expression that evaluates to a .NET color.

Gradient: Choose the type of gradient from these choices: None, LeftRight, TopBottom, Center, DiagonalLeft,
DiagonalRight, HorizontalCenter or VerticalCenter.

Gradient End Color: Select a color to use for the end of the wall range gradient, or select the <Expression...> option to
open the Expression Editor and create an expression that evaluates to a .NET color.

ActiveReports 14 436

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Area Type Appearance Properties

Fill Color: Select a color to use for the fill of the sparkline, or select the <Expression...> option to open the Expression
Editor and create an expression that evaluates to a .NET color.

Enable Wall Range: Select this check box to display a wall range for the sparkline. Selecting this box enables the rest of
the properties in this section.

Lower Bound: Select a value or enter an expression that defines the lower bound of the wall range.

Upper Bound: Select a value or enter an expression that defines the upper bound of the wall range.

Wall Range Backdrop
Fill Color: Select a color to use for the wall range, or select the <Expression...> option to open the Expression Editor and
create an expression that evaluates to a .NET color.

Gradient: Choose the type of gradient from these choices: None, LeftRight, TopBottom, Center, DiagonalLeft,
DiagonalRight, HorizontalCenter or VerticalCenter.

Gradient End Color: Select a color to use for the end of the wall range gradient, or select the <Expression...> option to
open the Expression Editor and create an expression that evaluates to a .NET color.

StackedBar Type Appearance Properties

Fill Color: Select a color to use for the base color of the stacked bars, or select the <Expression...> option to open the
Expression Editor and create an expression that evaluates to a .NET color. The other colors of the stacked bars are
calculated using this based color.

Visibility

Initial visibility

Visible: The sparkline is visible when the report runs.
Hidden: The sparkline is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the sparkline is visible. True for hidden,
False for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report item. This enables the drop-down box below where you can specify the TextBox control which, if clicked, toggles
the visibility of the sparkline in the Viewer.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this sparkline. You will then be able to provide a bookmark link
to this item from another report item using a Jump to bookmark action.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right.

ActiveReports 14 437

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Sorting

Click the plus sign button to enter new sort expressions, and remove them using the X button.

In the Expression box, enter an expression by which to sort the data in the group, and under Direction,
select Ascending or Descending for the selected sort expression.

Data Output

Element name: Enter a name to be used in the XML output for this sparkline report control.

Output: Choose Auto, Yes, No, Contents Only to decide whether to include this Sparkline in the XML output. Choosing
Auto exports the contents of the Sparkline report control.

Subreport
The Subreport control is a placeholder for data from a separate report. In ActiveReports, for better performance, we
recommend using data regions instead of Subreport controls wherever possible. The reason is that the report server must
process every instance of each subreport, which can become burdensome in very large reports with a large number of
subreports processed many times per report. Using data regions to display separate groups of data can be much more
efficient in such reports. For more information, see Report Controls.

Note:

ActiveReports 14 438

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

A Page report can use an RDL report as the target subreport.
You cannot use a Section report as the target of a Subreport in a Page/RDL report, and vice versa.

Subreports make sense when you need to nest groups of data from different data sources within a single data region, or
when you can reuse a subreport in a number of reports. Here are some things to keep in mind while designing subreports.

If you make changes to the subreport without changing the main report, click Refresh to re-run the subreport in
the Preview tab.
If you design the parent report in a stand-alone Report Designer application, save the parent report to the same
directory as the subreport to render it in the Preview tab.
If you set borders on the Subreport control and the body of the report hosted in it, ActiveReports does not merge
the two borders.
If the report hosted in the Subreport control cannot be found or contains no rows, only the border of the
Subreport control is rendered.
If the hosted report is found and does contain rows, the border of the hosted report body is rendered.

Parameters
You can use parameters supplied by the parent report to filter data displayed in a subreport. You can also pass
parameters to a repeating subreport nested in a data region to filter each instance.

Subreport Dialog
Properties for the Subreport are available in the Subreport dialog. To open it, with the Subreport control selected on the
report, under the Properties Window, click the Property dialog link.

The Subreport dialog lets you set properties on the report control with the following pages.

Note: You can select <Expression...> within any of these properties to open the Expression Editor.

General

Name: Enter a name for the subreport that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Subreport:
Select the <From File...> option to open the Open dialog, and then select a report to display within the Subreport
control.

Use this report’s theme when rendering subreport: Select this check box to have the subreport automatically use the
same theme as the hosting report.

Visibility

Initial visibility

Visible: The subreport is visible when the report runs.
Hidden: The subreport is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the subreport is visible. True for hidden,
false for visible.

ActiveReports 14 439

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box where you can specify the TextBox control which, if clicked, toggles the
visibility of the subreport.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this subreport. You will then be able to provide a bookmark link
to this item from another report control using a Jump to bookmark action.

Parameters

The Parameters page of the Subreport dialog allows you to enter new parameters and remove or change the order of
parameters using the X and arrow buttons. For each parameter in this list, there is a Parameter Name and a Parameter
Value.

Each Parameter Name must exactly match the name of a parameter in the target report.

For the Parameter Value, enter an expression to use to send information from the summary or main report to the
subreport target.

Note: The following metods are not supported in the Parameter Value expression for a parameter that passes a
value from the main report to subreport. However, this restriction does not apply to parameter default values.

RowNumber
RunningValue
Lookup/LookupSet
Previous
CountRows
CumulativeTotal

Data Output

Element name: Enter a name to be used in the XML output for this subreport.

Output: Choose Auto, Yes, or No to decide whether to include this subreport in the XML output. Choosing Auto exports
the contents of the subreport.

Table
The Table data region consists of columns and rows that organize data. A Table has three columns and three rows by
default, a total of nine cells, each of which is filled with a text box. At design time, you can add or remove columns, rows
and groupings to suit your needs. In Page and RDL reports, you can embed other data regions in table cells.

You can also choose to set the height of multiple rows or width of multiple columns using Distribute Rows Evenly and
Distribute Columns Evenly options from the context menu of the Table data region. Multiple rows or columns can be
selected using Ctrl key and mouse click combination or by simply dragging the mouse over rows and columns.

You can merge cells in both of horizontal and vertical direction in the Header, Group Header, Footer, Group Footer, and
Detail sections when creating a report in ActiveReports Designer and ActiveReports Web Designer. You can merge cells
inside one section by using Merge Cells in the context menu of selected cells. Cells of different sections cannot be
merged with each other.

ActiveReports 14 440

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding Data

Once you place the Table data region on a report, you can add data to its cells. As with any data region, you can drag
fields from your Fields list onto cells in the table. Although the default report control within each cell of the table is a text
box, you can replace it with any other report control, and on RDL reports, you can even add a data region. When you drag
a field into a cell in the detail row, ActiveReports automatically provides a label in the table header. As with all report
controls, you can use expressions to further manipulate the data within the cells of the table. For more information, see
Expressions.

Grouping

One of the types of rows you can add to the table is the group header or group footer. For example, if you have a report
that displays Customer details – CustomerID, Address, and Country Name fields, you can add a group header, and in the
Group On expression, choose the Country Name field to group the details based on country name.

You can also group the data in your detail section, and you can add multiple rows to any group in the table. You can use
aggregate functions in group footer rows to provide subtotals. For more information, see Group Data.

Appearance

There are many ways in which you can control the appearance of the table data region. You can merge cells, control
visibility, text color, and background color. You can use graphical elements within the cells and borders on the cells
themselves. For more information on freezing row and column headers in RDL reports, see Freeze Rows and Columns.

Table Dialog

Properties for the Table are available in the Table dialog. To open it, with the Table data region selected on the report,
under the Properties Window, click the Property dialog link.

The Table dialog lets you set properties on the report control with the following pages.

Note: You can select <Expression...> within these properties to create an expression to determine the value.

General

Name: Enter a name for the table that is unique within the report. This name can be called in code. You can only use
underscore (_) as a special character in the Name field. Other special characters such as period (.), space (), forward slash
(/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Dataset name: Select a dataset to associate with the table. The combo box is populated with all of the datasets in the
report's dataset collection.

Header and Footer: Select any of the following options.

Repeat header row on each page

ActiveReports 14 441

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Repeat footer row on each page
Prevent orphaned footer on next page

Visibility

Initial visibility

Visible: The table is visible when the report runs.
Hidden: The table is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the table is visible. True for hidden, false for
visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. This enables the drop-down box where you can specify the report control which, if clicked, toggles the
visibility of the table.

Navigation

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this table. You will then be able to provide a bookmark link to
this item from another report control using a Jump to bookmark action.

Sorting

Click the plus sign button to enter new sort expressions, and remove them using the X button.

In the Expression box, enter an expression by which to sort the data in the group, and under Direction, select Ascending
or Descending for the selected sort expression.

Groups

The Groups page of the Table dialog allows you to remove or change the order of items in the Group list using the X and
arrow buttons. Click the Add button to add a new group to the table and set up information for each group on the
following tabs.

General

Name: Enter a name for the group that is unique within the report. This property cannot be set until after a Group on
expression is supplied.

Group on: Enter an expression to use for grouping the data.

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Parent group: For use in recursive hierarchies. Enter an expression to use as the parent group.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right.

ActiveReports 14 442

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Sorting

Click the plus sign button to enter new sort expressions, and remove them using the X button.

In the Expression box, enter an expression by which to sort the data in the group, and under Direction, select Ascending
or Descending for the selected sort expression.

Visibility

Initial visibility

Visible: The group is visible when the report runs.
Hidden: The group is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the group is visible. True for hidden, False
for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. The user can click the toggle item to show or hide this band group. This enables the drop-down list where
you can select the TextBox control that users can click to show or hide this group.

Data Output

Element name: Enter a name to be used in the XML output for this group.

Collection: Enter a name to be used in the XML output for the collection of all instances of this group.

Output: Choose Yes or No to decide whether to include this group in the XML output.

Layout

ActiveReports 14 443

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Page break at start: Inserts a page break before the group.

Page break at end: Inserts a page break after the group.

Include group header: Adds a group header band (selected by default).

Include group footer: Adds a group footer band (selected by default).

Repeat group header: Repeats the group header band on each page.

Repeat group footer: Repeats the group footer band on each page.

Prevent orphaned footer:　Prints the last detailed row with the footer in order to prevent orphaned footer on the next
page.

Detail Grouping

Detail grouping is useful when you do not want to repeat values within the details. When a detail grouping is set, the
value repeats for each distinct result of the grouping expression instead of for each row of data. For example, if you use
the Customers table of the NorthWind database to create a list of countries without setting the details grouping, each
country is listed as many times as there are customers in that country. If you set the details grouping to
=Fields!Country.Value each country is listed only once.

Note: If the detail grouping expression you use results in a value that is distinct for every row of data, a customer
number for example, you will see no difference in the results.

Go to the Detail Grouping page has the following tabs.

General

Name: Enter a name for the group that is unique within the report. This property cannot be set until after a Group on
expression is supplied.

Group on: Enter an expression to use for grouping the data.

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Parent group: For use in recursive hierarchies. Enter an expression to use as the parent group.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the group.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right.

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.
For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.

ActiveReports 14 444

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Visibility

Initial visibility

Visible: The group is visible when the report runs.
Hidden: The group is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the group is visible. True for hidden, False
for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle image next to another
report control. The user can click the toggle item to show or hide this band group. This enables the drop-down list where
you can select the report control that users can click to show or hide this group.

Data Output

Element name: Enter a name to be used in the XML output for this group.

Collection: Enter a name to be used in the XML output for the collection of all instances of this group.

Output: Choose Yes or No to decide whether to include this group in the XML output.

Layout

Page break at start: Inserts a page break before the group.

Page break at end: Inserts a page break after the group.

Has own page numbering: Used in conjunction with the "Page Number in Section" and "Total Pages in Section"
properties, tells the report that the group constitutes a new page numbering section.

Filters

You need to provide three values to add a new filter to the collection: Expression, Operator, and Value.

Expression: Enter the expression to use for evaluating whether data should be included in the table.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right:

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right.

ActiveReports 14 445

Copyright © 2020 GrapeCity, Inc. All rights reserved.

For more information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Data Output

Element name: Enter a name to be used in the XML output for this table.

Output: Choose Auto, Yes, or No to decide whether to include this table in the XML output. Choosing Auto exports the
contents of the table.

Detail element name: Enter a name to be used in the XML output for the data element for instances of the table. This
name is ignored if you have specified a details grouping.

Detail collection name: Enter a name to be used in the XML output for the data element for the collection of all instances
of the detail grouping.

Data element output: Choose Yes or No to decide whether to include the details in the XML output.

Table Layout Actions

The Table data region provides context menu options to perform basic layout actions. You can access layout options for
Table rows from the context menu by right-clicking on a selected row.

Insert Row Above: Add a row above the selected row. The inserted row type is similar to the type of selected row,
that is, if the selected row type is a header row, a new header row is added.
Insert Row Below: Add a row below the selected row. The inserted row type is similar to the type of selected row,
that is, if the selected row type is a header row, a new header row is added.
Delete Rows: Delete the selected rows.
Distribute Rows Evenly: Set the same height for multiple selected rows.
Table Header: Show or hide table header rows.
Table Details: Show or hide table detail rows.
Table Footer: Show or hide table footer rows.
Insert Group: Insert groups in a table.

ActiveReports 14 446

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Edit Group: Edit a group in a table.
Delete Groups: Delete groups in a table.

You can access layout options for Table columns from the context menu by right-clicking on a selected column.

Insert Column to the Left: Add a column to the left of the selected column.
Insert Column to the Right: Add a column to the right of the selected column.
Distribute Columns Evenly: Set the same width for multiple selected columns.
Add Columns: Add one or more column(s) to the right of the selected column.
Delete Columns: Delete the selected columns.

Table of Contents
The TableOfContents report control is used to display the document map, an organized hierarchy of the report heading
levels and labels along with their page numbers, in the body of a report. The TableOfContents control allows you to
quickly understand and navigate the data inside a report in all viewers that are supported in ActiveReports. Unlike the
Document Map that is only available in the Viewers and cannot be rendered or printed, you can use the TableOfContents
control to embed the TableOfContents structure in the report body for printing and rendering purposes. You can add
a TableOfContents report control to a report by dragging it from the toolbox and dropping it onto the report design
surface.

In the Properties Window, there are a number of properties that you can use to control the appearance and behavior
of the TableOfContents report control. For example, you can use the OverflowName property to specify the
OverflowPlaceHolder control name to link it with the TableOfContents control. The FixedHeight property allows you to
set the maximum height of the TableOfContents control on each page, similar to the FixedSize property that is
available with other report controls. The StyleName property allows you to apply the selected styles from a style sheet.
These styles can be applied to the TableOfContents report control using the StyleName property or to Table Of Contents
levels using the LevelDesigner Collection Editor dialog. For more information on how to set styles, see Add
TableofContents.

The Levels property contains the collection of TableOfContents levels and allows you to access the LevelDesigner
Collection Editor dialog, where you can set up the report TableOfContents levels and their properties. The MaxLevel
property restricts the maximum number of levels in the document map.

Any customization made to the Document Map like setting Numbering Style for document map levels using the Report
dialog or using the DocumentMap property gets directly applied to the TableOfContents control. For more information,
see Add Items to the Document Map.

Table Of Contents properties Dialog
Properties for the TableOfContents are available in the Table Of Contents dialog. To open it, with the TableOfContents
control selected on the report, under the Properties Window, click the Property dialog link.

The Table Of Contents Properties dialog lets you set properties on the report control with the following pages.

Note: You can click <Expression...> in many of these properties to open the Expression Editor where you can create
an expression to determine the value.

General

Name: Enter a name for the table of contents that is unique within the report. This name can be called in code. You can
only use underscore (_) as a special character in the Name field. Other special characters such as period (.), space (),

ActiveReports 14 447

Copyright © 2020 GrapeCity, Inc. All rights reserved.

forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Visibility

By default, the TableOfContents is visible when the report runs, but you can hide it, hide it only when certain conditions
are met, or toggle its visibility with another report control.

Initial visibility

Visible: The TableOfContents is visible when the report runs.

Hidden: The TableOfContents is hidden when the report runs.

Expression: Use an expression with a Boolean result to decide whether the TableOfContents is visible. True for
hidden, false for visible.

Visibility can be toggled by another report control: Select this check box to display a toggle TableOfContents next to
another report control. This enables the drop-down box where you can specify the TextBox control which, if clicked,
toggles the visibility of the TableOfContents.

Appearance

Border

Style: Select a style for the border.

Width: Enter a value in points to set the width of the border.

Color: Select a color to use for the border, or select the <Expression...> option to open the Expression Editor and
create an expression that evaluates to a .NET color.

Background

Color: Select a color to use for the background.

Data Output

Element name: Enter a name to be used in the XML output for the TableOfContents report control.

Output: Choose Auto, Yes, No to decide whether to include this TableOfContents in the XML output. Choosing Auto
exports the contents of the TableOfContents report control.

LevelDesigner Collection Editor

The LevelDesigner Collection Editor is used to set up the report TableOfContents levels and their properties. To access the
LevelDesigner Collection Editor dialog, go to the Properties Window and in the Levels property, click (Collection).

ActiveReports 14 448

Copyright © 2020 GrapeCity, Inc. All rights reserved.

You can set the TableOfContents level properties from the following locations:

The Properties grid of the LevelDesigner Collection Editor.
The Level properties dialog that gets displayed if you click the Property Pages button above the LevelDesigner
Collection Editor Properties grid.

The LevelDesigner Collection Editor lets you set the properties of a TableOfContents level as follows.

Appearance

BackgoundColor: Select a color to use for the background of the TableOfContents level.

Color: Select the color of the text.

Font: Select the font to render the TableOfContents level text.

Style: Choose Normal, Italic or select the <Expression...> option to open the Expression Editor and create an
expression.

Family: Choose the font family name.

Size: Choose the size in points for the font.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, and
Bolder, or select the <Expression...> option to open the Expression Editor and create an expression.

Padding: Specify left, right, top and bottom values for the padding to apply to a TableOfContents level.

StyleName: Select a style to apply to the TableOfContents level.

TextAlign: Specify the horizontal alignment of the text.

TextDecoration: Choose from None, Underline, Overline, and LineThrough, or select the <Expression...> option to open
the Expression Editor and create an expression.

Data

DataElementName: Enter a name to be used in the XML output for this TableOfContents level.

General

DisplayFillCharacters: Specifies whether to display a leading character. The Default value is True.

DisplayPageNumber: Specifies whether to display a page number. The Default value is True.

FillCharacter: Use the expression to specify a fill character for a leading character.

Layout

TextIndent: Specify the text indent.

Misc

Name: Specify a name for the TableOfContents level.

TextBox
The Textbox is the most commonly used report control that displays data. By default, the TextBox appears in each cell of a
Table or Tablix data region. Also, the TextBox is what is created when you drag a field from the Data Explorer onto the

ActiveReports 14 449

Copyright © 2020 GrapeCity, Inc. All rights reserved.

report.

In the Value property of the TextBox, you can enter static text or an expression. An expression can display fields from a
database, calculate a value, or visually display data.

Tip: You can enter text directly into the TextBox on the design surface of the report by double-clicking inside it.

In the Properties Window are a number of properties that you can use to control the appearance and behavior of the
TextBox. For example, you can set the Action property to have the viewer jump to a bookmark within the report, another
report, or a URL when a user clicks the TextBox at run time. The DataElement properties allow you to control how and
whether the TextBox displays in XML exports.

By default, in RDL Reports, the TextBox can grow vertically to accommodate the data it displays, and it cannot shrink
smaller than it appears at design time. To change this behavior, set the CanShrink and CanGrow properties in the
Properties grid. (These properties are not available in Page Reports.)

Data Fields
When you drag a field from a dataset in the Data Explorer and drop it onto the report surface, a TextBox report control
with an expression is automatically created. The type of expression that is created depends upon the context where you
drop the field. The following table describes the various contexts and expressions created if you drag a field
named SalesAmount onto the report.

Expressions created for fields in different contexts

Note: The expression created is different for a field with a string or unknown data type. In these cases, the First
aggregate is used in place of the Sum aggregate in the expressions below. At run time, the first value found within
the scope is displayed instead of a summary.

Context Expression Run-Time Behavior

Directly on the report surface =Sum(Fields!SalesAmount.Value) Displays a summary of the sales amount for the
entire dataset.

List data region =Fields!SalesAmount.Value Displays a value for each row of data, in a list
running down the page.

BandedList data region, header or
footer band

=Sum(Fields!SalesAmount.Value) Displays a summary of the sales amount for the
dataset associated with the BandedList.

BandedList data region, detail
band

=Fields!SalesAmount.Value Displays a value for each row of data, in a list
running down the page.

BandedList data region, group
header or footer band

=Sum(Fields!SalesAmount.Value) Displays a summary of the sales amount for the
grouping.

Table data region, header or
footer row

=Sum(Fields!SalesAmount.Value) Displays a summary of the sales amount for the
dataset associated with the Table.

Table data region, detail row =Fields!SalesAmount.Value Displays a value for each row of data, in a list
running down the page.

Table data region, group header
or footer row

=Sum(Fields!SalesAmount.Value) Displays a summary of the sales amount for the
grouping.

ActiveReports 14 450

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tablix data region, corner cell none Displays a blank cell. You can add a label or even
use this area to embed other report control.

Tablix data
region, column group cell

=Fields!SalesAmount.Value Displays the value at the top of a new column for
each row of data running to the right.

Tablix data region, row group cell =Fields!SalesAmount.Value Displays the value to the left of a new row for
each row of data running down the page.

Tablix data region, body cell =Sum(Fields!SalesAmount.Value) Displays a summary of the sales amount for the
intersection of the column and row.

Textbox Dialog
Properties for the Textbox are available in the Textbox dialog. To open it, with the Textbox control selected on the report,
under the Properties Window, click the Property dialog link.

The Textbox dialog lets you set properties on the report control with the following pages.

Note: You can select <Expression...> within many of these properties to open the Expression Editor. You can also
access the Expression Editor from the context menu of the TextBox control.

General

Name: Enter a name for the textbox that is unique within the report. This name is displayed in the Document Outline and
in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tooltip: A textual label for the report item used to include TITLE or ALT attributes in HTML reports.

Note: When the group or dataset breaks to a new page, the first instance of the repeated value is printed.

Visibility

Initial visibility allows you to select from the following options:

Visible: The textbox is visible when the report runs.
Hidden: The textbox is hidden when the report runs.
Expression: Use an expression with a Boolean result to decide whether the textbox is visible. For example, on a
"Free Shipping" textbox, you could use the expression to see whether the ShippingCountry is international. A value
of True hides the textbox, False shows it.

Visibility can be toggled by another report control: If you select this check box, it enables the drop-down box where
you can specify the TextBox control that users can click to toggle the visibility of the textbox.

Initial appearance of the toggle image: allows you to select from the following options:

Expanded: The toggle image shows as a minus sign, and all instances of this textbox are visible.
Collapsed: The toggle image shows as a plus sign, and all instances of this textbox are hidden.
Expression: Use an expression with a Boolean result to decide whether the toggle image is expanded. A value of
True expands the toggle image, False collapses it.

Navigation

ActiveReports 14 451

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Action
Select one of the following actions to perform when a user clicks on the textbox.

None: The default behavior is to do nothing when a user clicks the textbox at run time.

Jump to report: For drill-through reporting, select this option and provide the name of a local report, the relative
path of a report in another folder, or the full path of a report on another server. You can also use expressions to
create drill-through links.

Parameters: Supply parameters to the targeted report by entering the Name of each parameter, the Value
to send to the targeted report, or whether to Omit the parameter. Note that parameter names you supply
must exactly match parameters in the target report. You can remove or change the order of parameters
using the X and arrow buttons.

Jump to bookmark: Select this option and provide a valid Bookmark ID to allow the user to jump to the report
control with that Bookmark ID.

Jump to URL: Select this option and provide a valid URL to create a hyperlink to a Web page.

Document map label: Enter an expression to use as a label to represent this item in the table of contents (document
map).

Bookmark ID: Enter an expression to use as a locator for this textbox. You will then be able to provide a bookmark link to
this item from another report control using a Jump to bookmark action.

Appearance

Border
Style: Select a style for the border.

Width: Enter a value in points to set the width of the border.

Color: Select a color to use for the border, or select the <Expression...> option to open the Expression Editor and create
an expression that evaluates to a .NET color.

Background
Color: Select a color to use for the background of the textbox.

Image: Enter an image to use for the background of the textbox.

Note: The Background Color and Background Image properties allow you to choose the <Data Visualizer...> option
as well to launch the dialog that let you build a data visualization expression.

Font

Family: Select a font family name or a theme font.

Size: Choose the size in points for the font or use a theme.

Style: Choose Normal or Italic or select a theme.

Weight: Choose from Lighter, Thin, ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold, Heavy, or Bolder.

Color: Choose a color to use for the text.

ActiveReports 14 452

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Decoration: Choose from None, Underline, Overline, or LineThrough.

Format

Format code: Select one of the common numeric formats provided or use a custom .NET formatting code to format dates
or numbers. For more information, see MSDN's Formatting Types topic.

Line Spacing: This property sets the space between lines of text.

Character Spacing: This property sets the space between characters.

Minimal rate of text horizontal shrinking (in %): Specify the percentage to which the text should be shrunk
horizontally.

Textbox height
Can increase to accommodate contents: Select this check box to set CanGrow to True.

Can decrease to accommodate contents: Select this check box to set CanShrink to True.

Can shrink text to fit fixed size control: Select this check box to set ShrinkToFit to True.

Text direction and writing mode
Direction: Choose LTR for left to right, or RTL for right to left.

Mode: Choose lr-tb for left right top bottom (normal horizontal text) or tb-rl for top bottom right left (vertical text on its
side).

Angle: Enter the number of degrees to rotate the text in a counter-clockwise direction. Enter a negative number to rotate
the text in a clockwise direction.

Alignment

Vertical alignment: Choose Top, Middle, Bottom, or the <Expression...> option.

Horizontal alignment: Choose General, Left, Center, Right, Justify, or the <Expression...> option.

Justify method: Set Horizontal alignment to Justify to enable this property. Choose Auto, Distribute,
DistributeAllLines, or the <Expression...> option.

Wrap mode: Choose NoWrap, WordWrap, or CharWrap.

Amount of space to leave around report control

Top padding: Set the top padding in points.
Left padding: Set the left padding in points.
Right padding: Set the right padding in points.
Bottom padding: Set the bottom padding in points.

Interactive Sort

Select the checkbox next to Add an interactive sort action to this textbox to enable the following controls which allow
end users to sort the report data in the viewer.

Sort expression: Enter an expression to use for determining the data to sort.

Data region or group to sort: Select the grouping level or data region within the report to sort. The default value is
Current scope, but you may also elect to choose an alternate data region or grouping.

ActiveReports 14 453

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

Evaluate sort expression in this scope: Select the grouping level within the report on which to evaluate an aggregate
sorting expression. The default value is Current scope, but you may also elect to choose an alternate data region or
grouping.

Data Output

Element Name: Enter a name to be used in the XML output for this textbox.

Output: Choose Auto, Yes, or No to decide whether to include this textbox in the XML output. Auto exports the contents
of the textbox only when the value is not a constant.

Render as: Choose Auto, Element, or Attribute to decide whether to render textboxes as Attributes or Elements in the
exported XML file. Auto uses the report's setting for this property.

Attribute example: <table1 textbox3="Report created on: 7/26/2005 1:13:00 PM">

Element example: <table1> <textbox3>Report created on: 7/26/2005 1:13:28 PM</textbox3>

Tablix
A Tablix data region displays data in cells that are arranged in rows and columns. It provides enhanced layout capabilities
ranging from creation of simple tables to advanced matrices. Tablix is essentially a combination of two data regions, the
table and the matrix. Therefore, it provides all the features of a table and a matrix along with added
capabilities including support for multiple adjacent groups on rows or columns and improved layout flexibility with
stepped group layouts.

You can also choose to set the height of multiple rows or width of multiple columns using Distribute Rows Evenly and
Distribute Columns Evenly options from the context menu of the Tablix data region. You can select multiple rows or
columns using the Ctrl key and mouse click together or by simply dragging the mouse over rows and columns. For more
information on freezing row and column headers in RDL reports, see Freeze Rows and Columns.

This topic describes how the elements of the Tablix data region work together and explains its basic operations.

Areas of Tablix Data Region
Row Column Handles
Tablix Layout Actions

Areas of the Tablix Data Region

The Tablix data region is composed of four areas denoted by dotted lines on the design surface: the corner, the row
group area, the column group area, and the body. By default, each tablix cell contains a TextBox control and the function
for each cell is determined by its location. You can change the layout of the Tablix data region using the
GrapeCity.ActiveReports.PageReportModel.Tablix.LayoutDirection property.

ActiveReports includes a Group Editor window that is specifically designed to manage the tablix structure. In the Visual
Studio integrated designer as well as in applications using the Designer control, the Group Editor window is located below
the report design surface. Developers can use it in custom designer applications as well.

Note: In case the Group Editor window does not appear automatically in your application, select View > Other
Windows > Group Editor 13 in your Visual Studio project.

The image below demonstrates the areas of a Tablix data region, where column groups are set to TheoryScore and
PracticalScore, and the row group is set to SubjectName.

ActiveReports 14 454

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Group Editor window contains the following groups:

Row Groups: The Row Groups section in the Group Editor displays all the groups that are applied in the row group
area of the Tablix data region.

Subject
The left center cell of the Tablix data region =[SubjectName] represents the Subject group in the Group Editor
window. This group displays the subject names for the current semester.

Column Groups : The Column Groups section in the Group Editor window displays all the groups that are applied
in the column group area of the Tablix data region.

Theory
The center left cell of the Tablix data region =[TheoryScore] represents the Theory group in the Group Editor
window. This group displays theory scores for the student in each subject.

Practical
The center right cell of the Tablix data region =[PracticalScore] represents the Practical group in the Group Editor
window. This group displays practical scores for the student in each subject.

Static Cells: Static cells in the Row Groups and Column Groups are not represented in the Group Editor window

ActiveReports 14 455

Copyright © 2020 GrapeCity, Inc. All rights reserved.

because these cells are not associated with any grouped data. Static row and column cells are used to display
labels and totals in a Tablix data region.

The static column cell displays the label ASSESSMENT and TOTAL ASSESSMENT in the Tablix data region. The
static row cell displays the label Total in the Tablix data region.

The image below displays the subjects in a row group. Nested column groups display practical and theory scores for the
students. The total row displays the total scores for all of the subjects.

To perform basic operations in the Tablix data region, we need to first understand the concept of static and dynamic rows
and columns.

Rows or columns in the Tablix data region can be static or dynamic. The Tablix data region contains multiple rows and
columns that provide a grid type layout, where you can add or remove static or dynamic rows and columns in order to
display your data efficiently.

Static Rows and Columns - A static row or column is not associated with any group data. When the report runs, a
static row or column is rendered only once. Labels and totals are displayed using static rows or columns in Tablix
data region.
Dynamic Rows and Columns - A dynamic row or column is associated with one or more groups, and renders once
for every unique value in the group. You can also create dynamic group rows or columns by adding a row group or
a column group.

ActiveReports 14 456

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Row and Column Handles

When you select a Tablix data region, the row and column handles appear. These handles help you to work with the data
region and visually specify the type of data added in your tablix layout.

The following table shows the different types of handles that appear in a Tablix data region.

Handle
Icon

Description

Row or column with one outer group.

One outer group and one inner group.

One outer group with an extra row for totals and one inner group.

Tablix Layout Actions

The Tablix data region provides context menu options to perform basic layout actions. You can access layout options for
Tablix rows from the context menu by right-clicking on a selected row.

Insert Row: Select from the following options to insert a row inside or outside of the selected group cell.

ActiveReports 14 457

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Inside Group: If a row group contains groups having distinct values, then as many rows are inserted as
there are groups.

Above: Inserts a row above for each unique value of the row group.
Below: Inserts a row below for each unique value of the row group.

Outside Group: If a row group contains nested groups consisting of child and parent groups, then as many
rows are inserted as there are parent groups.

Above: Inserts a row above for each unique value of the parent row group.
Below: Inserts a row below for each unique value of the parent row group.

Delete Row: Delete the selected rows.
Distribute Rows Evenly: Set the same height for multiple selected rows.
Add Row Group: Select from the following options to insert row groups in a tablix.

Parent Group: To insert a parent row group.
Child Group: To insert a child row group.
Adjacent Above: To insert an adjacent row group above the selected row group.
Adjacent Below: To insert an adjacent row group below the selected row group.

Row Group: Select the Delete Group option to delete a row group.

You can access layout options for Tablix columns from the context menu by right-clicking on a selected column.

Insert Column: Select from the following options to insert a column inside or outside of the selected group cell.
Inside Group: If a column group contains groups having distinct values, then as many columns are inserted
as there are groups.

Left: Inserts a column to the left for each unique value of the column group.
Right: Inserts a column to the right for each unique value of the column group.

Outside Group: If a column group contains nested groups consisting of child and parent groups, then as
many columns are inserted as there are parent groups.

Left: Inserts a column to the left for each unique value of the parent column group.
Right: Inserts a column to the right for each unique value of the parent column group.

Delete Column: Delete the selected columns.
Distribute Columns Evenly: Set the same width for multiple selected columns.
Add Column Group: Select from the following options to insert column groups in a tablix.

Parent Group: To insert a parent column group.
Child Group: To insert a child column group.
Adjacent Left: To insert an adjacent column group to the left of the selected column group.
Adjacent Right: To insert an adjacent column group to the right of the selected column group.

Column Group: Select the Delete Group option to delete a column group.

Tablix Reports
Tablix data region can be used to display complex data using row groups and column groups. Let us look at a few
scenarios to understand how Tablix data region works.

Using Multiple Adjacent Groups

In Tablix data region, unlike Matrix and Table data regions, it is possible to create multiple adjacent groups. Let us take an
example of a Sales report to understand how grouping works in a Tablix data region.

Scenario

An organization wants to create a Sales report that displays sales data by year and media type. To design such a report

ActiveReports 14 458

Copyright © 2020 GrapeCity, Inc. All rights reserved.

using Tablix data region, you need to create multiple adjacent groups in column group area, a single group in row group
area, and display aggregated data in the body area.

Let us see how each area of Tablix data region works to create the desired output given below.

Column group area
The column group area contains two adjacent groups, namely Year and Media Type. The Year group displays the
grouped data according to the year 2004 and 2005 and the Media Type group displays the grouped data values according
to DVD, VHS, LaserDisc, HD-DVD media types stored in the database.

Row group area
The row group area contains a single group that is StoreName. Cells in the row group area display row group values and
represent members of the row group hierarchy.

Body area
This area displays the aggregate sum of the TotalAmount in the Tablix. Cells in the tablix body area display detail data
when the cells are in detail row or column and aggregated group data when the cell are in a group row or column.

ActiveReports 14 459

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Refer to Grouping in Tablix Walkthrough for detailed steps on how to create the above report using Tablix data region.

Using Cell Merging

In Tablix data region, it is possible to merge cells having duplicate values. Let us take an example of a Store Mangers
report to understand how cell merging works in a Tablix data region.

Scenario

An organization wants to create a report to display names of all the store managers, using the concept of cell merging
where cells with same value are merged automatically to avoid clutter.

To design such a report, you need to create nested groups in Tablix data region to display the name of managers
according to the Region, District and StoreName.

Let us see how each area of Tablix data region works to create the desired output given below.

Column group area
The column group area contains no groups, however there are static labels for each column. There are four column labels,
namely Region, District, Store, and Manager that are added as headers to describe information about the data.

Row group area
The row group area contains three groups that are nested in a parent/child relationship to display the row group data.
The Region (parent) and District group (child) values are merged automatically to remove duplicate data values.

Body area
This area displays the full name of store managers. The body area displays the managers full name by concatenating two
fields FirstName and LastName using the & operator in the expression.

ActiveReports 14 460

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Refer to Cell Merging in Tablix Walkthrough for detailed steps on how to create the above report using Tablix data region.

Data Sources and Datasets
Setting up a connection to the data source is the first step in binding data to the report. Once a connection is established,
a data set is required to get the data you want to show on the report.

Data Sources
In ActiveReports, you can set the data source information in the Report Data Source Dialog.

The Report Data Source dialog is where you select the type of data to use, provide a connection string, and choose other
options for your data source. You can also decide to use a shared data source, use a single transaction, and select a
method for handling credentials. Once you add a data source, it appears in the Report Explorer under the Data Sources
node. You can also add multiple data sources in a single report.

Datasets
A dataset fetches data from the data source to display in a report. The DataSet Dialog is where you provide a command
type and query string and choose other options for your dataset.

You can also control the timeout period and other data options, and add fields, parameters, and filters to fetch the data
you need. With the XML data type, you have to add fields manually with XPath expressions. Once you have added a
dataset, its fields appear under the Data Source node in the Report Explorer. You can add multiple datasets for a data
source.

Note: In both Page and RDL reports, you can also use multiple data sets, see Nested Data Regions Bound to Different
Data for more information.

ActiveReports 14 461

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Report Data Source Dialog
You can access the Report Data Source dialog from the Report Explorer by doing one of the following:

Click the Add icon on the top left and select Data Source.
Right-click the Data Sources node and select Add Data Source.

The Report Data Source dialog provides the following pages where you can set data source properties:

General

The General page of the Report Data Source dialog is where you can set the Name, Type, and Connection string of a new
data source, or choose to use a shared data source reference.

In the Name field, you can enter a name for the data source. This name must be unique within the report. By
default, the name is set to DataSource1.
In the Shared Reference checkbox, you can select a shared data source reference. See Connect to a Data Source
for further information. Once you have chosen the Shared Reference option, the Reference field to select a
Shared Data Source becomes available. In the Reference field, select From File and select a shared data source
file on your machine.
If the Shared Reference checkbox is clear, you can select a data source type from the Type dropdown field.
ActiveReports supports the following providers:

Microsoft SQL Client Provider
Csv Provider
DataSet Provider
JSON Provider
Microsoft ODBC Provider
Microsoft OleDb Provider
XML Provider

You can also select to execute datasets that use this data source in a single transaction by checking the Use Single
Transaction checkbox.
If you select SQL, or OleDb as the data source Type value, the Connection Properties, Connection String and
Advanced Settings pages appear under the Connection section. For XML data source, Connection Properties
and Connection String pages appear. For JSON data source, Schema, Content, and Connection String pages
appear. In other data source types, only the Connection String page appears.

ActiveReports 14 462

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Credentials

The Credentials page gives you the following four options for the level of security you need for the data in your report.

Use Windows Authentication

Select this option when you know that any users with a valid Windows account are cleared for access to the data, and you
do not want to prompt them for a user name and password.

Use a specific user name and password

Select this option when you want to allow only a single user name and password to access the data in the report.

Prompt for credentials

Select this option when there is a subset of users who can access the data. The Prompt string textbox allows you to
customize the text requesting a user name and password from users.

No credentials

Select this option only if the data in the report is for general public consumption.

Microsoft SQL Client Provider
The Microsoft SQL Client Data Provider supports following options under the Connection section in Report Data Source
dialog.

Connection Properties

The Connection Properties tab gives access to properties specific to the following data types.

Server name: This field requires you to enter a server name.
Log on to server: Through this field, you can select whether to use Windows authentication or server
authentication which requires a user name and password. Below this field you can also check the Save my
password option for future reference.
Connect to a database: Through this field, you can select whether to enter a database name or attach a database
file.

Connection String

Sample Connection string

data source=in-data-sql\sql_2012;initial catalog=ADventurewORKS2012;user
id=user1;password=password@123

Advanced Settings

The Advanced Settings tab gives access to properties specific to each data type.

With the SQL data type, the Advanced Settings tab gives access to the following properties:

Application Name: Indicates the client application name.
Auto Translate: Indicates whether the OEM/ANSI characters are converted. You can set this property to True or
False. By default, the value is set to True. If True then SQLOLEDB performs the OEM/ANSI character conversion
when multi-byte character strings are retrieved from, or sent to, the SQL Server.
Current Language: Indicates the SQL Server language name. It also identifies the language used for system

ActiveReports 14 463

Copyright © 2020 GrapeCity, Inc. All rights reserved.

message selection and formatting. The language must be installed on the SQL Server, otherwise opening the
connection will fail.
Network Address: Indicates the network address of the SQL Server, specified by the Location property.
Network Library: Indicates the name of the network library (DLL) used to communicate with the SQL Server. The
name should not contain the path or the .dll file name extension. The default name is provided by the SQL Server
client configuration.
Packet Size: Indicates a network packet size in bytes. The Packet Size property value must be between 512 and
32767. By default, the SQLOLEDB network packet size is 4096.
Trusted Connection: Indicates the user authentication mode. You can set this property to Yes or No. By default,
the property value is set to No. If Yes, the SQLOLEDB uses the Microsoft Windows NT Authentication Mode to
authorize user access to the SQL Server database, specified by the Location and Datasource property values. If this
property is set to No, then the SQLOLEDB uses the Mixed mode to authorize user access to the SQL Server
database. The SQL Server login and password are specified in the User Id and Password properties.
Use Procedure for Prepare: Determines whether the SQL Server creates temporary stored procedures when
Commands are prepared by the Prepared property.
Workstation ID: Denotes a string that identifies the workstation.

CSV Provider
The CSV Data Provider supports following option under the Connection section in Report Data Source dialog.

Connection String

The CSV connection string is generated on the basis of options selected in the Configure CSV Data Source wizard.

Options in the
Configure CSV
Data Source
wizard

Description Example

Path Path to the CSV file - both local and relative; or a URL for
centrally located CSV data sources.

C:\Categories.csv

Encoding Encoding of the CSV file. Unicode (UTF-7)

File Type The type of CSV file. You can choose from Fixed and Delimited
options.

Delimited

Text Qualifiers Symbol to specify where the text begins and ends. You can
choose from Quotes and Single quotes options.

Quotes

Column
Separator

Symbol to separate the columns. You can choose from Comma,
Semicolon, Tab, and Space options.

Semicolon

Treat
consecutive as
one

Specify whether to join the column separators or row
separators as one.

Checked for Column separator
Unchecked for Row Separator

Locale Specify the locale. English (United States)

Starting Row Row number to start fetching data. 0

Columns have Specify whether the CSV file has columns with headers or not. Checked

ActiveReports 14 464

Copyright © 2020 GrapeCity, Inc. All rights reserved.

headers

Row Separator Symbol to separate the rows. You can choose from CRLF
(carriage return and line feed), CR (carriage return), and LF (line
feed) new line formats.

New line (CRLF)

Get from
preview

Fills the Columns area with names and data types (string by
default) for columns present in csv file. This allows you to
modify the name and data type (as String, Boolean, Date Time,
Integer, or Float) for the columns.

ClaimAmt(Float), SvcDate(DateTime)

Note: Text Qualifiers, Column Separator, Row Separator, and Treat Consecutive as one options are not available for
Fixed file type.

For example, the following connection string is generated based on the options selected in the Example column above.

Path=C:\\Categories.csv;Encoding=utf-7;Locale=en-
US;TextQualifier=";ColumnsSeparator=\;;RowsSeparator=\r\n;
Columns=EmployeeID,LastName,FirstName,Role,City;JoinColumnsSeparators=True;HasHeaders=True

Reports with CSV Data
This topic explains the steps involved in connecting a page report to a CSV data source.

Note:

This topic uses the Products_header_tab.csv sample database. The Products_header_tab.csv file can be
downloaded from GitHub: ..\Samples14\Data\ Products_header_tab.csv.
Although this topic uses Page reports, you can also implement this using RDL reports.

When you complete these steps, the layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

Add an ActiveReport to the Visual Studio project

ActiveReports 14 465

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as ProductsStock.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.

See Quick Start for information on adding different report layouts.

Connect the report to a CSV data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source dialog that appears, select the General page and enter the name of the data source. By
default, the data source name is set to DataSource1. This name appears as a child node to the Data Sources node
in the Report Explorer.

3. Under the Type field, select CSV Provider.
4. In the Connection String tab, click the Build icon to open the Configure CSV Data Source wizard.
5. To specify the Path of the file, click the Open button and navigate to [User

folder]\Samples14\Data\Products_header_tab.csv file, which can be downloaded from GitHub.
6. Select the Column Separator as Tab from the drop-down menu. See the Sample CSV Connection String in the

topic CSV Provider for further details.
7. Click OK to save the changes and close the Configure CSV Data Source wizard. The Connection String tab

displays the generated connection string as shown below:
Path=C:\\[User folder]\\Samples14\\Data
\\Products_header_tab.csv;Locale=en-US;
TextQualifier=";ColumnsSeparator= ;RowsSeparator=\r\n;HasHeaders=True

You can validate the connection string by clicking the Validate DataSource icon.
8. Click OK to close the Report Data Source dialog. You have successfully connected the report to the CSV data

source.

Note: The dataset for a CSV data source is automatically added. The default name of the data set is name of the CSV
file selected.

Add controls to the report

1. From the toolbox, drag a Table data region onto the design surface of the report.
2. Select the last column of the table, right-click, and select Insert Column to the Right option to add a fourth

column.
3. Go to the Properties window and set the properties for the Table data region as described in the following section:

Property Name Property Value

Location 0.375in, 0.5in

DataSetName Products_header_tab

Size 5.5in, 0.75in

FixedSize 5.5in, 2in

4. From the Report Explorer, drag the fields into the Table Details row as described in the following section:

Field Name TextBox

ActiveReports 14 466

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

ProductName TextBox4

QuantityPerUnit TextBox5

UnitPrice TextBox6

UnitsInStock TextBox11

5. Select the Table Header row and set FontWeight to Bold.
6. From the toolbox, drag a TextBox onto the design surface of the report, go to the Properties window to set the

properties as described in the following section:

Property Name Property Value

Location 2.5in, 0in

Size 1.375in, 0.25in

Value Products Stock

FontSize 12pt

FontWeight Bold

View the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

DataSet and Object Providers
The data source and data set for DataSet Provider and Object Provider data types can be set at run time. For more
information, see Bind a Page Report to a Data Source at Run Time.

JSON Provider
The JSON Data Provider supports following options under the Connection section in Report Data Source dialog.

Content

In the Content tab, specify the type of JSON data source. The options available for specifying the JSON data are as follows:

External file or URL: Enter the path or URL of an external JSON data file or select the file from the drop-down
which displays the JSON files available in the same folder as the report. The connection string generated using this
option starts with the keyword jsondoc.
Embedded: Enter the path of the JSON data file to embed in the report. You can enter the data manually or edit
the data in selected JSON file. The connection string generated using this option starts with the keyword jsondata.
Expression: Enter an expression to bind to the JSON data at runtime. For more information on Expressions,
see Use Dynamically Built JSON Data Source topic.

Schema

ActiveReports 14 467

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The JSON schema describes the structure of a JSON data. In ActiveReports, the JSON data provider uses the JSON schema
to obtain fields. For more information on JSON schema, please see http://json-schema.org/draft/2019-09/json-schema-
core.html.
The keywords of JSON schema that are supported in the JSON data provider are:

type: Indicates the type of the JSON schema element. See here for more information on type keyword.

properties: Indicates the properties collection for JSON schema elements with the object type. See here for more
information on properties keyword.

items: Indicates the definition of items for JSON schema elements with array type. Only single values are
supported.
For example, "items" : [{...}, {...}, {...}] is not supported because it contains multiple values.
See here for more information on items keyword.

definitions: Indicates the independent definitions which can be used by other JSON schema elements using $ref
keyword. See here for more information on definitions keyword.

$ref: Indicates the reference to a definition for JSON schema elements with object type. Only "definitions" ({ $ref
: #/definitions/... }) references are supported.

Note: Schema is the only required option to create a connection string.

In the Schema tab, the options available for specifying the JSON schema are:

Auto: This is the default option that auto generates the schema.
External file or URL: Enter the path or URL of an external JSON schema file or select the file from the drop-down
which displays the JSON files available in the same folder as the report is located. The connection string generated
using this option starts with the keyword schemadoc.
Embedded: Enter the path of the JSON schema file to embed in the report. You can enter the schema manually or
edit the schema in the selected JSON file. The connection string generated using this option starts with the
keyword schemadata.

For generating JSON schema, use the JSON schema generator available at http://jsonschema.net/.

Connection String

JSON connection string has two parts - jsondoc or jsondata and schemadoc or schemadata.

jsondoc or jsondata: Refers to a specific JSON data file located on either the file system or at a web-accessible
location.
schemadoc or schemadata: Refers to JSON schema file corresponding to the existing JSON data.

For example,
jsondoc=C:\Data\customers.json;schemadata={
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "address": {

ActiveReports 14 468

Copyright © 2020 GrapeCity, Inc. All rights reserved.

http://json-schema.org/draft/2019-09/json-schema-core.html
http://json-schema.org/draft/2019-09/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html#anchor8
http://json-schema.org/latest/json-schema-core.html#anchor64
http://json-schema.org/latest/json-schema-core.html#anchor37
http://json-schema.org/latest/json-schema-core.html#anchor94
https://jsonschema.net/login

 "type": "object",
 "properties": {
 "streetAddress": {
 "type": "string"
 },
 "city": {
 "type": "string"
 }
 },
 "required": [
 "streetAddress",
 "city"
]
 },
 "phoneNumber": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string"
 },
 "code": {
 "type": "integer"
 }
 },
 "required": [
 "location",
 "code"
]
 }
 }
 },
 "required": [
 "address",
 "phoneNumber"
]
}

Note: If you are using an expression in the connection string, you should use single quotes (') instead of double
quotes (") in jsondoc or jsondata and schemadoc or schemadata.

For example, the following connnection string is invalid:

="jsondata={ "Name": "Name"};schemadata={ "$schema": "http://json-
schema.org/draft-04/schema#",
 "definitions": {}, "id": "http://example.com/example.json",
 "properties": { "Name": { "id": "/properties/Name",

ActiveReports 14 469

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 "type": "string" } }, "type": "object"}"

Use the following instead:

="jsondata={ 'Name': 'Name'};schemadata={ '$schema': 'http://json-
schema.org/draft-04/schema#',
 'definitions': {}, 'id': 'http://example.com/example.json',
 'properties': { 'Name': { 'id': '/properties/Name',
 'type': 'string' } }, 'type': 'object'}"

Reports with JSON Data
This topic explains the steps involved in connecting a page report to a JSON data source at run time and using a web service
to fetch the data with the authorized access.

Note:

You must have the IIS Express installed on your machine.
This topic uses the Customers sample data file. The customers.json file can be downloaded from GitHub:
..\Samples14\Data\customers.json.

When you complete these steps, you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

Add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as CustomerDetails.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.
4. Right-click the solution and select Restore Nuget Package.

See Quick Start for information on adding different report layouts.

ActiveReports 14 470

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and enter the name of the data source.
3. Under the Type field, select Json Provider.
4. On the same page, select Embedded under Schema and enter the following schema to be embedded.

JSON schema

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "Customers": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Id": {
 "type": "string"
 },
 "CompanyName": {
 "type": "string"
 },
 "ContactName": {
 "type": "string"
 },
 "ContactTitle": {
 "type": "string"
 },
 "Address": {
 "type": "string"
 },
 "City": {
 "type": "string"
 },
 "PostalCode": {
 "type": "string"
 },
 "Country": {
 "type": "string"
 },
 "Phone": {

ActiveReports 14 471

Copyright © 2020 GrapeCity, Inc. All rights reserved.

http://json-schema.org/draft-04/schema

 "type": "string"
 },
 "Fax": {
 "type": "string"
 }
 },
 "required": [
 "Id",
 "CompanyName",
 "ContactName",
 "ContactTitle",
 "Address",
 "City",
 "PostalCode",
 "Country",
 "Phone",
 "Fax"
]
 }
 },
 "ResponseStatus": {
 "type": "object",
 "properties": {}
 }
 },
 "required": [
 "Customers",
 "ResponseStatus"
]
}

Note: The schema shown above has been generated for customers.json data, using the JSON schema generator
available at http://jsonschema.net.

5. Click OK to save the data source connection.

Add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set from
the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Customers.
3. On the Query page, click Edit with JSON Query Designer button and choose the JSONPath upto [*] to obtain the

following query in the Query text box: $.Customers[*]
4. Click OK to close the dialog. Your dataset and queried fields appear as nodes in the Report Explorer.

Add controls to the report

1. From the Report Explorer, drag the Id field onto the design surface of the report and go to the Properties window to
set the properties as follows.

Property Name Property Value

ActiveReports 14 472

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://jsonschema.net/login

Location 0.375in, 0.25in

FontSize 14pt

FontStyle Italic

Size 4in, 0.375in

2. From the Report Explorer, drag the Table data region onto the design area and go to the Properties window to set
the properties as follows.

Property Name Property Value

Location 0.375in, 1in

Size 4.5in, 1.125in

FixedSize 4.5in, 0.75in

3. Right-click any row handle to the left of the table and click Table Footer to remove the table footer row.
4. Hover over TextBox5 to reveal the field selection adorner, click it to display a list of available fields, and select the

CompanyName field. This automatically adds a static label in the table header row.
5. Hover over TextBox6 to reveal the field selection adorner, click it to display a list of available fields, and select the

ContactName field. This automatically adds static label in the table header row.
6. Hover over TextBox7 to reveal the field selection adorner, click it to display a list of available fields, and select the

Address field. This automatically adds static label in the table header row.

Display a report in the Viewer

1. From Solution Explorer, open Form1.
2. From the Visual Studio toolbox, drag the Viewer control onto the Form1.
3. Set the viewer's Dock property to Fill to show the complete Viewer control on the Form1 and set the viewer's Name

property to reportPreview.
4. Double-click the title bar of the Form1 to create an event-handling method for the Form1_Load event.
5. In Form1.cs, paste the following code after InitializeComponent method to load data in the report and display the

report in the viewer.

Form1.cs

// The handler of <see cref="PageDocument.LocateDataSource"/> that returns
appropriate data for a report.
 private void OnLocateDataSource(object sender,
GrapeCity.ActiveReports.LocateDataSourceEventArgs args)
 {
 object data = null;
 var dataSourceName = args.DataSourceName;
 var source = new DataLayer();
 if (dataSourceName == "DataSource1")
 {
 data = source.CreateData();
 }
 args.Data = data;
 }
// Loads and shows the report.
 private void Form1_Load(object sender, EventArgs e)
 {

ActiveReports 14 473

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 var rptPath = new System.IO.FileInfo(@"..\..\Customers.rdlx");
 var definition = new GrapeCity.ActiveReports.PageReport(rptPath);
 definition.Document.LocateDataSource += OnLocateDataSource;
 reportPreview.ReportViewer.LoadDocument(definition.Document);
 }

Add a Web service project

The web service added to the project authenticates access to the JSON data.

1. From the File menu, go to Add, and then select New Project.
2. In the New Project dialog that appears, select ASP.NET Web Application and in the Name field, rename the file as

WebService.
3. Click OK to add the new project.
4. In the New ASP.NET Project dialog, select Empty template and click OK.
5. In the Solution Explorer, right-click the WebService node, go to Add, and select Add Class.
6. In the Add New Item dialog that appears, select Class and in the Name field, rename the file as

BasicAuthHttpModule.cs.
7. Click the Add button to add the new class to the project.
8. In the BasicAuthHttpModule class file that opens, add the following code inside the WebService namespace.

BasicAuthHttpModule.cs

namespace WebService
{
 public class BasicAuthHttpModule : IHttpModule
 {
 private const string Realm = "My Realm";
 public void Init(HttpApplication context)
 {
 // Register event handlers
 context.AuthenticateRequest += OnApplicationAuthenticateRequest;
 context.EndRequest += OnApplicationEndRequest;
 }
 private static void SetPrincipal(System.Security.Principal.IPrincipal
principal)
 {
 System.Threading.Thread.CurrentPrincipal = principal;
 if (HttpContext.Current != null)
 {
 HttpContext.Current.User = principal;
 }
 }
 // Validate the username and password.
 private static bool CheckPassword(string username, string password)
 {
 return username == "admin" && password == "1";
 }
 private static void AuthenticateUser(string credentials)
 {
 try

ActiveReports 14 474

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 {
 var encoding = System.Text.Encoding.GetEncoding("iso-8859-1");
 credentials =
encoding.GetString(Convert.FromBase64String(credentials));
 int separator = credentials.IndexOf(':');
 string name = credentials.Substring(0, separator);
 string password = credentials.Substring(separator + 1);
 if (CheckPassword(name, password))
 {
 var identity = new
System.Security.Principal.GenericIdentity(name);
 SetPrincipal(new
System.Security.Principal.GenericPrincipal(identity, null));
 }
 else
 {
 // Invalid username or password.
 HttpContext.Current.Response.StatusCode = 403;
 }
 }
 catch (FormatException)
 {
 // Credentials were not formatted correctly.
 HttpContext.Current.Response.StatusCode = 401;
 }
 }
 private static void OnApplicationAuthenticateRequest(object sender, EventArgs
e)
 {
 var request = HttpContext.Current.Request;
 System.IO.FileInfo info = new
System.IO.FileInfo(request.Url.AbsolutePath);
 if (!info.Name.Equals("GetJson")) return;
 var authHeader = request.Headers["Authorization"];
 if (authHeader != null)
 {
 var authHeaderVal =
System.Net.Http.Headers.AuthenticationHeaderValue.Parse(authHeader);
 // RFC 2617 sec 1.2, "scheme" name is case-insensitive
 if (authHeaderVal.Scheme.Equals("basic",
 StringComparison.OrdinalIgnoreCase) &&
 authHeaderVal.Parameter != null)
 {
 AuthenticateUser(authHeaderVal.Parameter);
 }
 }
 else
 {
 HttpContext.Current.Response.StatusCode = 401;

ActiveReports 14 475

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 }
 }
 // If the request was unauthorized, add the WWW-Authenticate header
 // to the response.
 private static void OnApplicationEndRequest(object sender, EventArgs e)
 {
 var response = HttpContext.Current.Response;
 if (response.StatusCode == 401)
 {
 response.Headers.Add("WWW-Authenticate",
 string.Format("Basic realm=\"{0}\"", Realm));
 }
 }
 public void Dispose()
 {
 }
 }
}

9. Add reference to System.Net.Http.dll in the WebService project.
10. In the Solution Explorer, right-click the WebService node, go to Add, and select New Item.
11. In the Add New Item dialog that appears, select Web Service and in the Name field, rename the file as Service.asmx.
12. Click the Add button to add the new service to the project.
13. In the Service file that opens, uncomment [System.Web.Script.Services.ScriptService] line of code and

add the following code below the WebMethod.

Service.asmx.cs

[System.Web.Script.Services.ScriptMethod(UseHttpGet = true, ResponseFormat =
System.Web.Script.Services.ResponseFormat.Json)]
 public string GetJson()
 {
 string result;
 try
 {
 using (System.IO.StreamReader streamReader = new
System.IO.StreamReader(Properties.Resource.JsonFilePath, System.Text.Encoding.UTF8))
 {
 result = streamReader.ReadToEnd();
 }
 }
 catch (System.IO.FileNotFoundException e)
 {
 var errorMessage =
String.Format(Properties.Resource.FormatErrorMessage, e.Message, e.StackTrace);
 result = "{'error': '" + errorMessage + "'}";
 }
 return result;
 }

14. In the Solution Explorer, right-click the WebService node, go to Add, and select New Item.
15. In the Add New Item dialog that appears, select Web Form and in the Name field, rename the file as default.aspx.

ActiveReports 14 476

Copyright © 2020 GrapeCity, Inc. All rights reserved.

16. Click the Add button to add a new file to the project.
17. In the default.aspx code file that opens, replace <div> tags with <form> tags as shown.

default.aspx

<form id="form1" runat="server">
 <asp:Label ID="messageLabel" runat="server" Text=""></asp:Label>
</form>

18. In Solution Explorer, right-click default.aspx and select View Code.
19. In the default.aspx code file that opens, add the following code to the Page_Load event.

default.aspx.cs

messageLabel.Text = Properties.Resource.bodyOfMessage;

20. In the Solution Explorer, right-click the WebService node, go to Add, and select New Item.
21. In the Add New Item dialog that appears, select Resources File and in the Name field, rename the file

as Resource.resx.
22. Click the Add button to add a new file to the project. Make sure that the Resources file is located in

the WebService>Properties node.
23. Add the following data to the Resource file.

Name Value

bodyOfMessage Json Data Source Sample WebService
was started successfully

FormatErrorMessage Message : {0}, StackTrace: {1}

JsonFilePath [User
folder]\Samples14\Data\customers.json

24. In the Solution Explorer, right-click the solution node and select Properties.
25. In the Solution Property Pages dialog that appears, select Multiple startup projects and then the Start action for

each of the two projects.
26. Click Apply and then OK to apply the changes to the solution.

Add the DataLayer class

The DataLayer class provides the data used in the walkthrough.

1. Right-click WebService project, go to Add and select Class.
2. In the Add New Item dialog that appears, select Class and in the Name field, rename the file as DataLayer.cs.
3. Click the Add button to add the new class to the project.
4. In the DataLayer class file that opens, add the following code inside the project namespace.

Caution: It is required to change the URL port number set in “source_url” (the part after http://localhost:) to the port
number that the IIS Express is actually using. The port number used by IIS Express can be confirmed or changed on
the property page of the WebService project.

DataLayer.cs

// Provides the data used in the sample.
 internal sealed class DataLayer

ActiveReports 14 477

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 {
 public String CreateData()
 {
 string source_url = @"http://localhost:6719/Service.asmx/GetJson";
 string responseText = null;
 using (var webClient = new System.Net.WebClient())
 {
 webClient.Headers[System.Net.HttpRequestHeader.Authorization] =
"Basic " + Convert.ToBase64String(System.Text.Encoding.Default.GetBytes("admin:1"));
// username:password
 webClient.Headers[System.Net.HttpRequestHeader.ContentType] =
"application/json;";
 webClient.Encoding = System.Text.Encoding.UTF8;
 var responseJson = webClient.DownloadString(source_url);
 Dictionary<string, string> values = new
System.Web.Script.Serialization.JavaScriptSerializer().Deserialize<Dictionary<string,
string>>(responseJson);
 if (values.ContainsKey("d"))
 {
 responseText = values["d"];
 }
 }
 return responseText;
 }
 }

Modify the Web.config file

1. From the Solution Explorer, open the Web.config file inside the WebService project.
2. Replace the <configuration> tags with following code.

Web.config

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.6.2"/>
 <httpRuntime targetFramework="4.6.2"/>
 <httpModules>
 <add name="ApplicationInsightsWebTracking"
type="Microsoft.ApplicationInsights.Web.ApplicationInsightsHttpModule,
Microsoft.AI.Web"/>
 </httpModules>
 <webServices>
 <protocols>
 <add name="HttpGet"/>
 <add name="HttpPost"/>
 <add name="HttpSoap"/>
 </protocols>
</webServices>

ActiveReports 14 478

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 </system.web>
 <system.codedom>
 <compilers>
 <compiler language="c#;cs;csharp" extension=".cs"
 type="Microsoft.CodeDom.Providers.DotNetCompilerPlatform.CSharpCodeProvider,
Microsoft.CodeDom.Providers.DotNetCompilerPlatform, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"
 warningLevel="4" compilerOptions="/langversion:6 /nowarn:1659;1699;1701"/>
 <compiler language="vb;vbs;visualbasic;vbscript" extension=".vb"
 type="Microsoft.CodeDom.Providers.DotNetCompilerPlatform.VBCodeProvider,
Microsoft.CodeDom.Providers.DotNetCompilerPlatform, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"
 warningLevel="4" compilerOptions="/langversion:14 /nowarn:41008
/define:_MYTYPE=\"Web\" /optionInfer+"/>
 </compilers>
 </system.codedom>
 <system.webServer>
 <validation validateIntegratedModeConfiguration="false"/>
 <modules>
 <add name="BasicAuthHttpModule" type="WebService.BasicAuthHttpModule,
WebService"/>
 <remove name="ApplicationInsightsWebTracking"/>
 <add name="ApplicationInsightsWebTracking"
type="Microsoft.ApplicationInsights.Web.ApplicationInsightsHttpModule,
Microsoft.AI.Web"
 preCondition="managedHandler"/>
 </modules>
 </system.webServer>
</configuration>.

View the report

1. From the Build menu option, select Build Solution.
2. Press F5 to run the project.

Microsoft ODBC Provider
The Microsoft ODBC Data Provider supports following option under the Connection section in Report Data Source dialog.

Connection String

Sample Odbc Connection String

Driver=Microsoft Access Driver (*.mdb);Dbq=C:\nwind.mdb;

Microsoft OLeDb Provider
The Microsoft OleDb Data Provider supports following options under the Connection section in Report Data Source

ActiveReports 14 479

Copyright © 2020 GrapeCity, Inc. All rights reserved.

dialog.

Connection Properties

The Connection Properties tab gives access to properties specific to the following data types.

OLE DB Provider: This field requires you to select one among the list of OLE DB Providers provided in the drop
down list. You need to be selective in the choice of the provider. For example, Microsoft.Jet.OLEDB.4.0 is not
supported in 64 bit OS while Microsoft.ACE.OLEDB.12.0 is supported. See Troubleshooting article if an exception
occurs on previewing reports connecting Microsoft Access OLE DB provider in a 64-bit system.
Enter a server or file name: This field requires you to enter a server or a file name along with its location.
Log on to server: Through this field you can select whether to use Windows NT integrated security or use a
specific user name and password.

Connection String

Sample OleDb Connection String

provider=Microsoft.Jet.OLEDB.4.0;data source=c:\nwind.mdb;

Advanced Settings

With the OleDb data type, the Advanced Settings tab gives access to the Microsoft Jet OLEDB provider-specific
connection parameters.

Jet OLEDB: Compact Reclaimed Space Amount: Indicates an estimate of the amount of space, in bytes, that can
be reclaimed by compacting the database. This value is only valid after a database connection has been
established.
Jet OLEDB: Connection Control: Indicates whether users can connect to the database.
Jet OLEDB: Create System Database: Indicates whether to create a system database when creating a new data
source.
Jet OLEDB: Database Locking Mode: Indicates the locking mode for this database. The first user to open the
database determines what mode to use when the database is open.
Jet OLEDB: Database Password: Indicates the database password.
Jet OLEDB: Don't Copy Locale on Compact: Indicates whether the Jet should copy locale information when
compacting a database.
Jet OLEDB: Encrypt Database: Indicates whether a compacted database should be encrypted. If this property is
not set, the compacted database will be encrypted if the original database was encrypted.
Jet OLEDB: Engine Type: Indicates the storage engine to access the current data store.
Jet OLEDB: Exclusive Async Delay: Indicates the maximum length of time, in milliseconds, that the Jet can delay
asynchronous writes to disk when the database is opened exclusively. This property is ignored unless Jet OLEDB:
Flush Transaction Timeout is set to 0.
Jet OLEDB: Flush Transaction Timeout: Indicates the amount of time before data stored in a cache for
asynchronous writing is actually written to disk. This setting overrides the values for Jet OLEDB:Shared Async Delay
and jet OLEDB: Exclusive Async Delay.
Jet OLEDB: Global Bulk Transactions: Indicates whether the SQL bulk transactions are transacted.
Jet OLEDB: Global Partial Bulk Ops: Indicates the password to open the database.
Jet OLEDB: Implicit Commit Sync: Indicates whether the changes made in internal implicit transactions are
written in synchronous or asynchronous mode.
Jet OLEDB: Lock Delay: Indicates the number of milliseconds before attempting to acquire a lock after a previous
attempt has failed.

ActiveReports 14 480

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Jet OLEDB: Lock Retry: Indicates the frequency of attempts to access a locked page.
Jet OLEDB: Max Buffer Size: Indicates the maximum amount memory, in kilobytes, the Jet can use before it starts
flushing changes to disk.
Jet OLEDB: MaxLocksPerFile: Indicates the maximum number of locks the Jet can place on a database. The
default value is 9500.
Jet OLEDB: New Database Password: Indicates the new password for this database. The old password is stored in
Jet OLEDB: Database Password.
Jet OLEDB: ODBC Command Time Out: Indicates the number of milliseconds before a remote ODBC query from
the Jet will timeout.
Jet OLEDB: Page Locks to Table Lock: Indicates how many pages to lock within a transaction before the Jet
attempts to promote the lock to a table lock. If this value is 0, then the lock is never promoted.
Jet OLEDB: Page Timeout: Indicates the number of milliseconds before the Jet will check if its cache is out of date
with the database file.
Jet OLEDB: Recycle Long-Valued Pages: Indicates whether the Jet should aggressively try to reclaim BLOB pages
when they are freed.
Jet OLEDB: Registry Path: Indicates the Windows registry key that contains values for the Jet database engine.
Jet OLEDB: Reset ISAM Stats: Indicates whether the schema Recordset DBSCHEMA_JETOLEDB_ISAMSTATS should
reset its performance counters after returning performance information.
Jet OLEDB: Shared Async Delay: Indicates the maximum amount of time, in milliseconds, the Jet can delay
asynchronous writes to disk when the database is opened in the multi-user mode.
Jet OLEDB: System Database: Indicates the path and file name for the workgroup information file (system
database).
Jet OLEDB: Transaction Commit Mode: Indicates whether the Jet writes data to disk synchronously or
asynchronously when a transaction is committed.
Jet OLEDB: User Commit Sync: Indicates whether changes made in transactions are written in the synchronous or
the asynchronous mode.

XML Provider
The XML Data Provider supports following options under the Connection section in Report Data Source dialog.

Connection Properties

External file or URL: This field requires you to enter the path of an external XML source such as a local file or the
http location of a file.
Embedded: This field requires you to enter the path of the XML file to embed in the report. You can also enter the
data manually or edit the data in selected XML file.
Expression: This field requires you to enter the path expression. User can also enter the path expression in
the Connection String.

Connection String

xmldoc: Refers to a specific XML file located on either the file system or at a web-accessible location. For example,
xmldoc=C:\MyXmlFile.xml;
xmldata: Provides specific XML data in the Connection String itself. For example,
xmldata=<people>
 <person>
 <name>
 <given>John</given>

ActiveReports 14 481

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 <family>Doe</family>
 </name>
 </person>
 <person>
 <name>
 <given>Jane</given>
 <family>Smith</family>
 </name>
 </person>
</people>;
TransformationDoc: Refers to a specific XSLT file to apply to the XML data.

Note that elements in the Connection String must be terminated with a semicolon (;) character.

Reports with XML Data
This topic explains the steps involved in connecting a page report to an XML data source and creating a dataset. It also
demonstrates the use of the List control.

Note:

This topic uses the Factbook sample database. The Factbook.xml file can be downloaded from GitHub:
..\Samples14\Data\Factbook.xml.
Although this topic uses Page reports, you can also implement this using RDL reports.

When you complete these steps you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

Add an ActiveReport to the Visual Studio project

ActiveReports 14 482

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as ExchangeRates.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.

See Quick Start for information on adding different report layouts.

Connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name
like Factbook.

3. Under the Type field, select XML Provider.
4. In the Connection Properties tab, select the type of XML data as External file or URL.
5. Click the dropdown in Select or type the file name or URL field.
6. Select <Browse...> navigate to Factbook.xml. See Connect to a Data Source for information on connecting to a

data source.
7. Click the Connection String tab. The connection string that gets generated is xmldoc=[User

Folder]\Samples14\Data\Factbook.xml. You can validate the connection string by clicking the Validate

DataSource icon .
8. Click OK.

Add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as ExchangeRates.

3. On the Query page of this dialog, click the Edit with XML Query Designer icon to open XML DataSet Query
Builder dialog.

4. Choose the XPath upto Country from the tree nodes. The following XML query is generated:
countries/country

5. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
You can see all the fields available in the dataset on the Fields page.

6. Click OK to close the dialog. Your data set and queried fields appear as nodes to the data source in the Report
Explorer.

Add controls to the report

1. From the toolbox, drag a List data region onto the design surface of the report and go to the Properties window to
set the DataSetName property to ExchangeRates.

2. From the Report Explorer, drag the @name field onto the list, center it at the top, and go to the Properties window

ActiveReports 14 483

Copyright © 2020 GrapeCity, Inc. All rights reserved.

to set the FontSize property to 14pt.
3. From the Report Explorer, drag the following fields onto the list with properties set as described in the table below.

Field Name Property Name

Currency Location: 1.125in, 0.5in
Size: 2.25in, 0.25in

VsUSD2004 Location: 4.5in, 0.875in
Size: 1in, 0.25in

VsUSD2003 Location: 4.5in, 1.25in
Size: 1in, 0.25in

VsUSD2002 Location: 4.5in, 1.625in
Size: 1in, 0.25in

VsUSD2001 Location: 4.5in, 2in
Size: 1in, 0.25in

VsUSD2000 Location: 4.5in, 2.375in
Size: 1in, 0.25in

Note: You will notice that the expressions created for these fields are different than usual. Because Visual Basic
syntax does not allow an identifier that begins with a number, any numeric field names must be treated as
strings in expressions.

4. From the toolbox, drag a TextBox onto the list and go to the Properties window to set the properties as described
in the table below to combine static text with a field value.

Property
Name

Property Value

Location 0.145in, 0.875in

Size 3in, 0.25in

Value ="Value of " & Fields!Currency.Value & " versus
US$ for year:"

5. From the toolbox, drag TextBox controls onto the list and go to the Properties window to set the properties as
described in the table below to create static labels.

TextBox1

Property Name Property Value

Location 0.125in, 0.5in

Size 0.75in, 0.25in

FontWeight Bold

Value Currency:

TextBox2

Property Name Property Value

ActiveReports 14 484

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Location 3.375in, 0.875in

Size 1in, 0.25in

TextAlign Right

Value 2004:

TextBox3

Property Name Property Value

Location 3.375in, 1.25in

Size 1in, 0.25in

TextAlign Right

Value 2003:

TextBox4

Property Name Property Value

Location 3.375in, 1.625in

Size 1in, 0.25in

TextAlign Right

Value 2002:

TextBox5

Property Name Property Value

Location 3.375in, 2in

Size 1in, 0.25in

TextAlign Right

Value 2001:

TextBox6

Property Name Property Value

Location 3.375in, 2.375in

Size 1in, 0.25in

TextAlign Right

Value 2000:

View the report

ActiveReports 14 485

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

DataSet Dialog
You can access the DataSet dialog from the Report Explorer by doing one of the following:

With the Data Source node (like DataSource1) selected, click the Add icon on the top left and select Data Set.
Right-click an existing data source and select Add Data Set.

The DataSet dialog provides the following pages where you can set dataset properties:

General

The General page of the DataSet dialog is where you can set the Name of the dataset.

Name: In the Name field, you can enter a name for the dataset. By default, the name is set to DataSet1. The name of the
dataset appears in the tree view of the Report Explorer. It is also used to call the dataset in code so it should be unique
within the report.

Query

The Query page of the DataSet dialog is where you set the SQL query, stored procedure or table to define the data you
want to fetch in the dataset of your report.

Command type: You can choose from the three enumerated command types.

Type Description

Text Choose Text if you want to write a SQL query to retrieve data.

StoredProcedure Choose StoredProcedure if you want to use a stored procedure.

TableDirect Choose TableDirect if you want to return all rows and columns from one or more tables.

Query: Based on the command type you select above, you can set the query string in this field.

Note:

ActiveReports 14 486

Copyright © 2020 GrapeCity, Inc. All rights reserved.

If you select the TableDirect command type, you may need to use escape characters or qualifying characters in
case any of the table names include special characters.

Specify the calculated index for arrays in a JSONPath expression in the following ways:

To obtain the last entry in an array, use -1: in square brackets. For example, use $..book[-1:].
To obtain evaluated expressions correctly, the field names in square brackets should be in single
quotes. For example, use $..book[0]['category','author'].

To create multiple datasets based on the JSON data provider, check Select multiple nodes option in the JSON Query
Builder.

Timeout: You can set the number of seconds that you want the report server to wait for the query to return the data
before it stops trying.

Options

The Options page is where you select one of the various options available to the dataset.

CaseSensitivity: Set this value to Auto, True, or False to indicate whether to make distinctions between upper and lower
case letters. Auto, the default value, causes the report server to get the value from the data provider. If the data provider
does not set the value, the report runs without case sensitivity.

Collation: Choose from Default or a country from the list to indicate which collation sequence to use to sort data. The
Default value causes the report server to get the value from the data provider. If the data provider does not set the value,
the report uses the server locale. This is important with international data, as the sort order for different languages can be
different from the machine sort.

KanaTypeSensitivity: Set this value to Auto, True, or False with Japanese data to indicate whether distinctions are made
between Hiragana and Katakana kana types. Auto, the default value, causes the report server to get the value from the
data provider. If the data provider does not set the value, the report runs without kana type sensitivity.

WidthSensitivity: Set this value to Auto, True, or False with Japanese data to indicate whether distinctions are made
between single-byte (half-width) characters and double-byte (full-width) characters. Auto, the default value, causes the
report server to get the value from the data provider. If the data provider does not set the value, the report runs without
width sensitivity.

AccentSensitivity: Set this value to Auto, True, or False to indicate whether distinctions are made between accented and
unaccented letters. Auto, the default value, causes the report server to get the value from the data provider. If the data
provider does not set the value, the report runs without accent sensitivity.

Fields

The Fields page of the DataSet dialog populates automatically for OleDb, ODBC, SQL, JSON, and XML data providers. To
see a list of fields in the Name and Value columns of the Fields page, enter a valid query, table name, or stored procedure
on the Query page.

Note: The dataset for a CSV data source is automatically created on adding the data source. You can edit the name
of the data set on the General page and modify the fields on the Fields page.

You can edit the populated fields, delete them by using the Remove (X) icon, or add new ones by using the Add (+) icon
above the Fields list. Any fields you add in this list show up in the Report Explorer tree view and you can drag and drop
them onto the design surface. The field name must be unique within the dataset.

When working with Fields, the meaning of the value varies depending on the data source type. In most cases this is simply

ActiveReports 14 487

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the name of the field. The following table describes the meaning of the field value and gives some examples of how to use
the value.

Data
Provider

Description Example

SQL,
OleDb

The field value is the name
of a field returned by the
query.

Query:
OrderQuantity
FirstName

Dataset The field value can be the
name of a field in the
DataTable specified by the
query. You can also use
DataRelations in a DataSet,
specify the name of the
relation followed by a
period and then the name
of a field in the related
DataTable.

Query:
Quantity
OrdersToOrderDetails.CustomerID

XML The field value is an XPath
expression that returns a
value when evaluated with
the query.

Query:
Statistics/Game/TeamName

JSON The field value is a
JSONPath expression that
returns a value when
evaluated with the query.

Query:
$.Statistics.Game[*].TeamName

Object The field value can be the
name of a property of the
object contained in the
collection returned by the
data provider. You may
also use properties
available for the object
returned from a property.

Query:
Quantity
Order.Customer.FirstName

CSV The field value is the name
of a field returned by each
column specified in the
connection string.

Connection string:
Path=C:\\Data\\FixedWidth.csv;Locale=en-
US;TextQualifier=";ColumnsSeparator=,;RowsSeparator=\r\n;HasHeaders=True

Parameters

The Parameters page of the Dataset dialog is where you can pass a Report Parameter into the parameter you enter in the
Query page. Enter a Name that matches the name of the Report Parameter and a Value for each parameter in this page.

ActiveReports 14 488

Copyright © 2020 GrapeCity, Inc. All rights reserved.

You can edit the parameters by selecting a parameter in the list and editing its Name and Value.
You can delete the parameters by using the Remove (X) icon above the Parameters list.
You can add new parameters by using the Add (+) icon above the Parameters list. The parameter name must be
unique within the dataset.

The Value of a parameter can be a static value or an expression referring to an object within the report. The Value cannot
refer to a report control or field.

Filters

The Filters page of the Dataset dialog allows you to filter data after it is returned from the data source. This is useful when
you have a data source (such as XML) that does not support query parameters.

A filter is composed of three fields:

Expression: Type or use the expression editor to provide the expression on which to filter data.

Operator: Select from the following operators to decide how to compare the expression to the left with the value to the
right:

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right. For more information on
using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value on the
right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the right.
TopN Only choose items from the value on the left which are the top number specified in the value on the right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value on the
right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value on the
right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the value
on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on the
right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values used
with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Nested Data Regions Bound to Different Data
In Page and RDL reports, you can use nested data regions that are bound to different datasets. To display data, you can
either use a filter for a nested data region or a parameter that is set in the
new GrapeCity.ActiveReports.PageReportModel.DataRegion.DataSetParameters property.

Binding data regions to different data is available for all data regions that you can use in Page and RDL Reports, that
is Tablix, List, Chart, BandedList, Table, and Sparkline.

ActiveReports 14 489

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

The report below shows the customer's contact name and phone information for products that are still in stock. The report
layout consists of three (3) nested Table data regions, each data region bound to a different dataset - Products (Table1),
Invoices (Table2), and Customers (Table3).

Using a filter

To display data in nested data regions that are bound to different data, you can set a filter in the Table - Filters dialog. This
filter will contain the value from a nested data region in the left side and the value from a parent data region in the right side
of it.

In the sample report above, two (2) filters are created. For the Table2 data region bound to the Invoices dataset, we create
the filter with the expression [ProductID]=[ProductID]. For the Table3 data region bound to the Customers dataset, we
create the filter with the expression [CustomerID]=[CustomerID].

As a result, the report shows the Product Name and Units In Stock information from the Products dataset. For each Product
Name, the report shows the Customer Name information from the Invoices dataset and the Contact Name and Phone
information from the Customers dataset.

Using a parameter

Setting a parameter in the DataSetParameters property also allows displaying data in nested data regions that are bound to
different datasets. The basic steps are as follows.

1. In the DataSetParameters property of a data region, add a new parameter, for example, productID.

ActiveReports 14 490

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the data region’s dataset, add a new parameter - productID.
3. In the data region’s dataset, add a substring with the parameter to the existing dataset query, for example: WHERE

productID = @productID

For the sample report layout above, two parameters are created. For the Table2 data region, bound to the Invoices
dataset, we create the parameter productID and modify the dataset query as select * from Invoices where productID =
@productID. For the Table3 data region, bound to the Customers dataset, we create the parameter customerID and modify
the dataset query as select * from Invoices where customerID = @customerID.

As a result, the report shows the Product Name and Units In Stock information from the Products dataset. For each Product
Name, the report shows the Customer Name information from the Invoices dataset and the Contact Name and Phone
information from the Customers dataset.

Expressions
In ActiveReports, you can use an expression to set the value of a control in the report, or set conditions under which
certain styles apply. You can set Microsoft Visual Basic® .NET in expressions through,

ActiveReports 14 491

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Properties in the properties window
Expression Editor dialog

All expressions begin with an equal sign (=). Even the expression for a field value for a TextBox is set as follows:
=Fields!LastName.Value

Expression Editor Dialog
You can build expressions quickly using the Expression Editor dialog. This dialog allows you to choose from a number of
fields available to the report as well as to a particular property. You can access the Expression Editor by selecting nearly
any property of a control and choosing <Expression...> from the drop-down list.

There are the following types of fields available in the Expression Editor:

Constants
Constants available for properties which have enumerated values such as TextDecoration or BorderStyle.
Common Values
Run time values available to every property in every report. There are two variables in this list which come from the
User collection: User ID and User Language. See Common Values for further information.
Parameters
Parameters fields available in reports which contain report parameters. If available, you can choose a parameter
from this field to retrieve the current value of the parameter.
Fields (DataSet name)
All fields from a dataset which is linked to the report control.
Datasets
All fields in each dataset associated with the report. However, the report retrieves only the sum or the first value of
any field that is not within the current dataset scope.
Operations
Arithmetic, comparison, concatenation, logical/bitwise, bit shift operators for creating custom expressions.
Common Functions
Predefined Visual Basic .NET functions for which ActiveReports provides intrinsic support. See Common
Functions for more information.
Document Map
The DocumentMap.Path expression defines labels for the report's TableOfContents members. The example of such
expression is =DocumentMap.Path & " General Information". If this expression is defined in the Label property of
the report's control associated with the report's TableOfContents, General Information will be displayed as the
label of the corresponding report's TableOfContents member.

To create an Expression in the Expression Editor

The Expression Editor dialog is composed of two panes, Fields and Expression.

From the Fields pane, select a field you want to use in your expression.
Click the Replace, Insert or Append button to add the field to the Expression pane. The expression pane shows the
fields in a valid expression format.

ActiveReports 14 492

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Click OK to close the dialog.

The expression appears as the property value in the properties grid.

Tip: While building an expression, you can directly add the entire expression or part of it in the Expression pane of
the Expression Editor. Then use the Insert or Append buttons to create a complete expression.

Using Expressions in Reports
In the raw form, your data may not be ideally suited for display in a report. You can customize it and bring it into shape
using expressions. Following are some examples of how expressions are set in different scenarios.

Concatenating Fields and Strings

You can concatenate fields with strings and with other fields. For e.g., use the following expression to get a result like
Customer Name: Bossert, Lewis.

="Customer Name: " & Fields!LastName.Value & "," & Fields!FirstName.Value

Conditional Formatting

You can use expressions in properties like Color, Font, Border etc. on specific field values based on a condition, to
highlight a part of data. The formula for conditional formatting is:
=iif(Fields!YourFieldName.Value operator "Value to compare", "If condition is met, use this value.", "If not, use this one."

For e.g., if you enter the following expression in the Font > FontWeight property of a textbox that displays names of
people, you get the name "Denise" in bold.

=iif(Fields!FirstName.Value = "Denise", "Bold", "Normal")

Functions

You can use a number of aggregate and other functions in your expressions. ActiveReports includes a range of functions,
including running value, population standard variance, standard deviation, count, minimum and maximum. For e.g., use
the following expression to get a count of employees.

=Count(Fields!EmployeeID.Value, Nothing)

Displaying Expressions at Design Time
As you design the report, the full text of an expression can get very long. ActiveReports makes expressions easier to read
by shortening them.

When an expression is in the form:
=Fields!<FieldName>.Value

On the design surface, you see this text inside that TextBox:
=[<FieldName>]

Double-click the TextBox to view the full expression in edit mode.

For aggregates too, when the Expression value is:
=<Aggregate>(Fields!<FieldName>.Value)

On the design surface, you see this text inside the TextBox:
=<Aggregate>([<FieldName>])

ActiveReports 14 493

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This shortened expression value is only a visual change to allow you to see the field name easily. It shows up in both the
TextBox on the design surface as well as any dropdown boxes inside the dialogs.

Note: You can type the format as listed above for either field name values or aggregates on field names. This
evaluates the full expression when the report is viewed.

Besides the shorthand for field names, you can also type shorthand like [@Param] for parameters and [&Value] for Globals
such as [&PageNumber] on the design surface. Please note that you cannot use shorthand in the Expression Editor.

Common Values
Common Values are run time values available to every property in every report. You can directly drag and drop these
common values from the Report Explorer onto the design surface or add and modify the values from the Expression
Editor. Following is a list of the values that you can see under the Common Values node in the Report Explorer and the
Expression Editor.

Value Description Expression

Page N of M Gets both the current page
and the total number of
pages in the report.

="Page " & Globals!PageNumber & "
of" & Globals!TotalPages

Page N of M (Section) Gets both the current page
and the total number of
pages in the report section.

="Page " &
Globals!PageNumberInSection & " of "
& Globals!TotalPagesInSection

Page N of M
(Cumulative)

Gets both the current page
and the total number of
cumulative pages in a
report.

="Page " &
Globals!CumulativePageNumber & "
of " & Globals!CumulativeTotalPages

Current Date and Time Gets the date and time
when the report began to
run.

=Globals!ExecutionTime

User ID Gets the machine
name/user name of the
current user.

=User!UserID

Page Number Gets the current page
number in the report.

=Globals!PageNumber

Page Number (Section) Gets the current page
number in the report
section.

=Globals!PageNumberInSection

Total Pages Gets the total number of
pages in the report.

=Globals!TotalPages

Total Pages (Section) Gets the total number of
pages in the report section.

=Globals!TotalPagesInSection

ActiveReports 14 494

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Cumulative Page
Number

Gets the current cumulative
page number.

=Globals!CumulativePageNumber

Cumulative Total Pages Gets the total number of
cumulative pages in the
report.

=Globals!CumulativeTotalPages

Report Folder Gets the name of the folder
containing the report.

=Globals!ReportFolder

Report Name Gets the name of the
report.

=Globals!ReportName

User Language Gets the language settings
of the current user.

=User!Language

Note: Page N of M (Section), Page Number (Section) or Total Pages (Section) is applied to page numbering when you
set grouping in a report. Each section represents a group, not to be confused with sections in a section report.

Note: Page N of M (Cumulative), Page Number (Cumulative) or Total Pages (Cumulative) is applied to page
numbering when you use collation in a report.

Common Functions
You can use a function in an expression to perform actions on data in data regions, groups and datasets. You can access these functions in the Expression Editor dialog.
In any property that accepts expressions, you can drop down the property and select <Expression...> to open the dialog.

Within the Expression Editor dialog, there is a tree view of Fields. Expand the Common Functions node to view the available functions. The following tables contain
details about each of the functions included in ActiveReports for use in property expressions.

Date & Time

These are all methods from the DateAndTime class in Visual Basic. Please see the msdn DateAndTime Class topic for information on overloads for each method.

These are all the available aggregate functions:

Function Description Syntax and Example

DateAdd Returns a date
and time value
that is the result
of adding the
interval to the
date and time
field of the
specified unit.

DateAdd(<DateInterval>,<Number>,<DateTime>)

=DateAdd("d", 5, Fields!SaleDate.Value); =DateAdd(DateInterval.Day, 5, Fields!SaleDate.Value)

DateDiff Returns the
difference
between the start
date and time
and end date and
time of the
specified unit.

DateDiff(<DateInterval>,<DateTime1>,<DateTime2>[,<DayOfWeek>[,WeekOfYear]]))

=DateDiff("yyyy"),

Fields!SaleDate.Value,"1/1/2015");=DateDiff(DateInterval.Year,Fields!SaleDate.Value,"1/1/2015")

DatePart Returns the
Integer value that
represents the
specified part of
the given date.

DatePart(<DateInterval>,<DateTime1>[,<FirstDayOfWeek>[,FirstWeekOfYear]]))

=DatePart("m", Fields!SaleDate.Value)

DateSerial Returns a Date DateSerial(<Year Number>,<Month Number>,<Day Number>)

ActiveReports 14 495

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.dateandtime?view=netframework-4.8

value that
represents a
specified year,
month, and a day,
with the time
information set to
midnight
(00:00:00).

=DateSerial(DatePart("yyyy", Fields!SaleDate.Value)-10, DatePart("m", Fields!SaleDate.Value)+5,

DatePart("d", Fields!SaleDate.Value)-1)

DateString Returns the String
value that
represents the
current date in
your system.

DateString()

=DateString()

DateValue Returns a Date
value that
contains the
information on
date represented
by a string, with
the time set to
midnight
(00:00:00).

DateValue(<StringDate>)

=DateValue("December 12, 2015")

Now Returns the
current date and
time in your
system.

Now()

=Now()

Today Returns a Date
value that
contains the
current date in
your system.

Today()

=Today()

Day Returns an
Integer value
from 1 through
31 that represents
the day of the
month.

Day(<DateTime>)

=Day(Fields!SaleDate.Value)

Hour Returns an
Integer value
from 0 through
23 that represents
the hour of the
day.

Hour(<DateTime>)

=Hour(Fields!SaleDate.Value)

Minute Returns an
Integer value
from 0 through
59 that represents
the minute of the
hour.

Minute(<DateTime>)

=Minute(Fields!SaleDate.Value)

Month Returns an
Integer value
from 0 through
12 that represents
the month of the
year.

Month(<DateTime>)

=Month(Fields!SaleDate.Value)

MonthName Returns the name
of the month
specified in the
date as a String.

MonthName(<Month Number>[,<Abbreviate>])

=MonthName(Fields!SaleDate.Value)

Second Returns an Second(<DateTime>)

ActiveReports 14 496

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Integer value
from 0 through
59 that represents
the second of the
minute.

=Second(Fields!SaleDate.Value)

TimeSerial Returns a Date
value that
represents a
specified hour,
minute, and
second, with the
date information
set relative to
January 1 of the
year 0001.

TimeSerial(<Hour Number>, <Minute Number>, <Second Number>)

=TimeSerial(DatePart("h", Fields!SaleDate.Value), DatePart("n", Fields!SaleDate.Value),

DatePart("s", Fields!SalesDate.Value))

TimeValue Returns a Date
value that
contains the
information on
time represented
by a string, with
the date set to
January 1 of the
year 0001.

TimeValue(<StringTime>)

=TimeValue("15:25:45"); TimeValue(Fields!SaleDate.Value)

TimeOfDay Returns a Date
value containing
the current time
of day in your
system.

TimeOfDay()

=TimeOfDay()

Timer Returns a Double
value that
represents the
number of
seconds elapsed
since midnight.

Timer()

=Timer()

TimeString Returns the String
value that
represents the
current time of
day in your
system.

TimeString()

=TimeString()

Weekday Returns an
Integer value that
contains a
number
representing the
day of the week.

Weekday(<DateTime[,<DayOfWeek>])

=Weekday(Fields!SaleDate.Value,0)

WeekdayName Returns a String
value that
contains the
name of the
specified
weekday.

WeekdayName(<WeekDay>[,<Abbreviate[, <FirstDayOfWeek>]])

=WeekdayName(3, True, 0); =WeekDayName("w", Fields!SaleDate.Value), True, 0)

Year Returns an
Integer value
from 1 through
9999
representing the
year.

Year(<DateTime>)

=Year(Fields!SaleDate.Value)

Quarter Returns an Quarter(<DateTime>)

ActiveReports 14 497

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Integer value
from 1 through 4
representing the
quarter number.

=Quarter(Fields!SaleDate.Value)

QuarterName Returns a string
value
representing the
quarter name.

QuarterName(<DateTime>)

=QuarterName(Fields!SaleDate.Value)

Math

These are all methods and fields from the System.Math class. Please see the msdn Math Class topic for information on overloads for each method.

Function Description Syntax and Example

Abs Returns the absolute or positive value of a single-precision
floating-point number.

Abs(<Number>)

=Abs(-5.5);=Abs(Fields!YearlyIncome.Value-80000)

Acos Returns the angle whose cosine is the specified number. Acos(<Number>)

=Acos(.5); =Acos(Fields!Angle.Value)

Asin Returns the angle whose sine is the specified number Asin(<Number>)

=Asin(.5); =Asin(Fields!Angle.Value)

Atan Returns the angle whose tangent is the specified number. Atan(<Number>)

=Atan(.5); =Atan(Fields!Angle.Value)

Atan2 Returns the angle whose tangent is the quotient of two
specifed numbers.

Atan2(<Number1>,<Number2>)

=Atan2(3,7);

=Atan2(Fields!CoordinateY.Value,Fields!CoordinateX.Value)

BigMul Returns the multiplication of two 32-bit numbers. BigMul(<Number1>,<Number2>)

=BigMul(4294967295,-2147483647);

=BigMul(Fields!Int32Value.Value, Fields!Int32Value.Value)

Ceiling Returns the smallest integer greater than or equal to the
specified double-precision floating-point number.

Ceiling(<Number>)

=Ceiling(98.4331); =Ceiling(Fields!AnnualSales.Value /6)

Cos Returns the smallest integer greater than or equal to the
specifed double-precision floating-point number.

Cos(<Number>)

=Cos(60)

Cosh Returns the hyperbolic cosine of the specified angle. Cosh(<Number>)

=Cosh(60)

E Returns the value of E, which is 2.71828182845905. E

=E*2

Exp Returns e raised to the specified ^, where is Euler s number.
It is the inverse of the Log function.

Exp(<Number>)

=Exp(3); =Exp(Fields!IntegerCounter.Value)

Fix Returns the integer portion of a number. Fix(<Number>)

=Fix(-7.15); =Fix(Fields!AnnualSales.Value /-5)

Floor Returns the longest integer less than or equal to the
specified double-precision floating-point number.

Floor(<Number>)

=Floor(4.67); =Floor(Fields!AnnualSales.Value/ 12)

IEEERemainder Returns the remainder after division of one number by
another according to IEEE satndards.

IEEERemainder(<Number1>,<Number2>)

=IEEERemainder(9,8)

Log Returns the logarithm of the specified number. Log(<Number>)

=Log(20.5); =Log(Fields!NunberValue.Value)

Log10 Returns the logarithm of the specified number to the base Log10(<Number>)

ActiveReports 14 498

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.math?view=netframework-4.8

10.
=Log10(20.5); =Log10(Fields!NumberValue.Value)

Max Returns the maximum non-null value from the specified
expression.

Max(<Value>)

=Max(Fields!OrderTotal.Value)

Min Returns the minimum non-null value from the specified
expression.

Min(<Value>)

=Min(Fields!OrderTotal.Value)

PI Returns the value of PI, which is 3.14159265358979. PI

=2 * PI * Fields!Radius.Value

Pow Returns one number raised to the ^ of another number. Pow(<Number1,<Number2>)

=Pow(Fields!Quantity.Value, 2)

Round Returns the round-off of a decimal number to the nearest
integer or to the nearest decimal number up to the specified
digits.

Round(<Number>)

=Round(12.456); =Round(Fields!AnnualSales.Value / 12.3)

Sign Returns a value indicating the sign of an 8-bit signed
integer.

Sign(<Number>)

=Sign(Fields!AnnualSales.Value-60000)

Sin Returns the sine of the specified number. Sin(<Number>)

=Sin(60)

Sinh Returns the hyperbolic sine of the specified angle. Sinh(<Number>)

=Sinh(60)

Sqrt Returns the square root of the specified number. Sqrt(<Number>)

=Sqrt(121)

Tan Returns the tangent of the specified number. Tan(<Number>)

=Tan(60)

Tanh Returns the hyperbolic tangent of the specified angle. Tanh(<Number>)

=Tanh(60)

Inspection

These are all methods from the DateAndTime class in Visual Basic. Please see the msdn DateAndTime Class topic for information on overloads for each method.

Function Description Syntax and Example

IsArray Returns True if the expression can be evaluated as an
array.

IsArray(<Expression>)

=IsArray(Parameters!Initials.Value)

IsDate Returns True if the expression represents a valid Date
value.

IsDate(<Expression>)

=IsDate(Fields!BirthDate.Value); =IsDate("31/12/2010")

IsDBNull Returns True if the expression evaluates to a null. IsDBNull(<Expression>)

=IsDBNull(Fields!MonthlySales.Value)

IsError Returns True if the expression evaluates to an error. IsError(<Expression>)

=IsError(Fields!AnnualSales.Value = 80000)

Isnothing Returns True if the expression evaluates to nothing. IsNothing(<Expression>)

=IsNothing(Fields!MiddleInitial.Value)

IsNumeric Returns True if the expression can be evaluated as a
number.

IsNumeric(<Expression>)

=IsNumeric(Fields!AnnualSales.Value)

ProgramFlow

These are all methods from the Interaction class in Visual Basic. Please see the msdn Interaction Class topic for more information.

ActiveReports 14 499

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.dateandtime?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.interaction?redirectedfrom=MSDN&view=netframework-4.8

Function Description Syntax and Example

Choose Returns a value from a list of arguments. Choose(<Index>,<Value>[, <Value2>,...[, <Value N>]])

=Choose(3, "10", "15", "20", "25")

IIF Returns the value if the expression evaluates to True, and the second
value if the expression evaluates to False.

IIF(<Condition>, <TruePart>, <FalsePart>)

=IIF(Fields!AnnualSales.Value >= 80000, "Above Average",

"Below Average")

Partition Returns a string (in the form x : y) that represents the calculated
range based on the specified interval containing the specified
number.

Partition(<Value>, <Start>, <End>, <Interval>)

=Partition(1999, 1980, 2000, 10)

Switch Returns the value of the first expression that evaluates to True
among a list of expressions.

Switch(<Condition1>, <Value1>[, <Condition2>, <Value2>,...[,

<ConditionN>, <ValueN>]])

=Switch(Fields!FirstName.Value = "Abraham", "Adria",

Fields!FirstName.Value = "Charelotte", "Cherrie")

Aggregate

You can use aggregate functions within report control value expressions to accrue data. ActiveReports supports aggregate functions from RDL 2005, plus some
proprietary extended set of functions. For all of the functions, you can add an optional <Scope> parameter.

These are all the available aggregate functions:

Function Description Syntax and Example

AggregateIf Decides whether to calculate a custom aggregate from the
data provider of the values returned by the expression
based on a Boolean expression.

AggregateIf(<Condition>, <AggregateFunction>,

<AggregateArguments>)

=AggregateIf(Fields!Discontinued.Value=True, Sum,

Fields!InStock.Value)

Avg Calculates the average of the non-null values returned by
the expression.

Avg(<Values>)

=Avg(Fields!Cost.Value, Nothing)

Count Calculates the number of non-null values returned by the
expression.

Count(<Values>)

=Count(Fields!EmployeeID.Value, Nothing)

CountDistinct Calculates the number of non-repeated values returned by
the expression.

CountDistinct(<Values>)

=CountDistinct(Fields!ManagerID.Value, "Department")

CountRows Calculates the number of rows in the scope returned by the
expression.

CountRows()

=CountRows("Department")

CumulativeTotal Calculates the sum of page-level aggregates returned by
the expression for current and previous pages.

CumulativeTotal(<Expression>, <Aggregate>)

=CumulativeTotal(Fields!OrderID.Value, Count)

DistinctSum Calculates the sum of the values returned by an expression
using only the rows when the value of another expression
is not repeated.

DistinctSum(<Values>, <Value>)

=DistinctSum(Fields!OrderID.Value,

Fields!OrderFreight.Value, "Order")

First Shows the first value returned by the expression. First(<Values>)

=First(Fields!ProductNumber.Value, "Category")

Last Shows the last value returned by the expression. Last(<Values>)

=Last(Fields!ProductNumber.Value, "Category")

Max Shows the largest non-null value returned by the
expression.

Max(<Values>)

=Max(Fields!OrderTotal.Value, "Year")

Median Shows the value that is the mid-point of the values
returned by the expression. Half of the values returned will
be above this value and half will be below it.

Median(<Values>)

=Median(Fields!OrderTotal.Value)

ActiveReports 14 500

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Min Shows the smallest non-null value returned by the
expression

Min(<Values>)

=Min(Fields!OrderTotal.Value)

Mode Shows the value that appears most frequently in the values
returned by the expression.

Mode(<Values>)

=Mode(Fields!OrderTotal.Value)

RunningValue Shows a running aggregate of values returned by the
expression (Takes one of the other aggregate functions as
a parameter),

RunningValue(<Values>, <AggregateFunction>)

=RunningValue(Fields!Cost.Value, Sum, Nothing)

StDev Calculates the dispersion (standard deviation) of all non-
null values returned by the expression.

StDev(<Values>)

=StDev(Fields!LineTotal.Value, "Order")

StDevP Calculates the population dispersion (population standard
deviation) of all non-null values returned by the expression.

StDevP(<Values>)

=StDevP(Fields!LineTotal.Value, "Order")

Sum Calculates the sum of the values returned by the
expression.

Sum(<Values>)

=Sum(Fields!LineTotal.Value, "Order")

Var Calculates the variance (standard deviation squared) of all
non-null values returned by the expression.

Var(<Values>)

=Var(Fields!LineTotal.Value, "Order")

VarP Calculates the population variance (population standard
deviation squared) of all non-null values returned by the
expression.

VarP(<Values>)

=VarP(Fields!LineTotal.Value, "Order")

Conversion

These are all methods from the Convert class in the .NET Framework. Please see the msdn Convert Class topic for more information.

Function Description Syntax and Example

ToBoolean Converts the specified value to Boolean. ToBoolean(<Value>)

=ToBoolean(Fields!HouseOwnerFlag.Value)

ToByte Converts the specified value to Byte. ToByte(<Value>)

=ToByte(Fields!ProductNumber.Value)

ToDateTime Converts the specified value to a Date and Time value. ToDateTime(<Value>)

=ToDateTime(Fields!SaleDate.Value); =ToDateTime("1 January,

2017")

ToDouble Converts the specified value to Double. ToDouble(<Value>)

=ToDouble(Fields!AnnualSales.Value); =ToDouble(535.85 *

.2691 * 67483)

ToInt16 Converts the specified value to a 16-bit signed Integer. ToInt16(<Value>)

=ToInt16(Fields!AnnualSales.Value); =ToInt16(535.85)

ToInt32 Converts the specified value to a 32-bit signed Integer. ToInt32(<Value>)

=ToInt32(Fields!AnnualSales.Value)

ToInt64 Converts the specified value to a 64-bit signed Integer. ToInt64(<Value>)

=ToInt64(Fields!AnnualSales.Value)

ToSingle Converts the specified value to a single-precision floating-
point number.

ToSingle(<Value>)

=ToSingle(Fields!AnnualSales.Value); =ToSingle(15.857692134)

ToUInt16 Converts the specified value to a 16-bit unsigned Integer. ToUInt16(<Value>)

=ToUInt16(Fields!AnnualSales.Value)

ToUInt32 Converts the specified value to a 32-bit unsigned Integer. ToUInt32(<Value>)

=ToUInt32(Fields!AnnualSales.Value)

ToUInt64 Converts the specified value to a 64-bit unsigned Integer. ToUInt64(<Value>)

ActiveReports 14 501

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.convert?redirectedfrom=MSDN&view=netframework-4.8

=ToUInt64(Fields!AnnualSales.Value)

Miscelleneous

ActiveReports also offers several functions which do not aggregate data, but which you can use with an IIf function to help determine which data to display or how to
display it.

The first four are miscellaneous functions from the RDL 2005 specifications. GetFields is a proprietary function to extend RDL specifications.

Function Description Syntax and Example

InScope Determines whether the current value is in the
indicated scope.

InScope(<Scope>)

=InScope("Order")

Level Returns the level of the current value in a recursive
hierarchy.

Level()

=Level()

Previous Returns the previous value within the indicated
scope.

Previous(<Value>)

=Previous(Fields!OrderID.Value)

RowNumber Shows a running count of all the rows in the scope
returned by the expression.

RowNumber()

=RowNumber()

GetFields Returns an IDictionary<string,Field> object that
contains the current contents of the Fields
collection. Only valid when used within a data
region. This function makes it easier to write code
that deals with complex conditionals. To write the
equivalent function without GetFields() would
require passing each of the queried field values
into the method which could be prohibitive when
dealing with many fields.

GetFields()

=Code.DisplayAccountID(GetFields())

Custom function. Paste in the Code tab.

'Within the Code tab, add this function.

Public Function DisplayAccountID(flds as Object) as Object

 If flds("FieldType").Value = "ParentAccount" Then

 Return flds("AccountID").Value

 Else

 Return flds("ParentAccountID").Value

 End If

End Function

Lookup Returns the first matching value for the specified
name from the dataset with pairs of name and
value. For more information, see
Report Builder Functions - Lookup Function.

Lookup(<SourceExpression>, <DestinationExpression>,

<ResultExpression>, <LookupDataset>)

=Lookup(Fields!ProductID.Value, Fields!ProductID.Value,

Fields!Quantity.Value, "DataSet2")

LookupSet Returns multiple row values from a specified
dataset and can be used for the 1-to-many
relationship. For more information, see
Report Builder Functions - LookupSet Function.

LookupSet(source_expression, destination_expression,

result_expression, dataset)

=LookupSet(Fields!CategoryID.Value, Fields!CategoryID.Value,

Fields!UnitsInStock.Value, "Products")

MapPoint Allows displaying simple data directly on the Map
as a map Point Layer.

MapPoint(<Latitude>, <Longitude>)

=MapPoint(Fields!Latitude.Value, Fields!Longitude.Value)

Scope

All functions have a Scope parameter which determines the grouping, data region, or dataset to be considered when calculating the aggregate or other function. Within
a data region, the Scope parameter's default value is the innermost grouping to which the report control belongs. Alternately, you can specify the name of another
grouping, dataset, or data region, or you can specify Nothing, which sets it to the outermost data region to which the report control belongs.

The Scope parameter must be a data region, grouping, or dataset that directly or indirectly contains the report control using the function in its expression. If the report
control is outside of a data region, the Scope parameter refers to a dataset. If there is only one dataset in the report, you can omit the Scope parameter. If there are
multiple datasets, you must specify which one to use to avoid ambiguity.

Note: You cannot set the Scope parameter to Nothing outside of a data region.

ActiveReports 14 502

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/sql/reporting-services/report-design/report-builder-functions-lookup-function?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/report-design/report-builder-functions-lookupset-function?view=sql-server-2017

Expressions in Reports
You can use expressions in the control's properties to calculate values. You can also use expressions to concatenate fields,
to concatenate strings with fields, to aggregate data, to set formatting based on field values, to show or hide other
controls based on field values and even to display a graphical representation of the data. This topic illustrates the how to
use expressions to achieve different effects.

Note:

This topic uses the MovieProduct table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this topic uses Page reports, you can also implement this using RDL reports.

When you complete these steps, you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

Add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as rptExpressions.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

Connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like

ActiveReports 14 503

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

ReportData.
3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on

connecting to a data source.

Add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as DVDStock. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * FROM DVDStock

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

Create a layout for the report

1. From the toolbox, drag a Table data region onto the design surface and go to the Properties Window to set the
DataSetName property to DVDStock.

2. Right-click in the column handle at the top of the third column and choose Insert Column to the Right to add a
fourth column of the same width.

3. Click inside the table to display the row and column handles along the left and top edges of the table and set the
column width as follows:

Table Column Width

TableColumn1 3.5in

TableColumn2 1in

TableColumn3 1in

TableColumn4 1in

4. In the Report Explorer from the DVDStock dataset, drag the following fields into the detail row and set their
properties as follows.

Data Field Column Name

TableColumn1 Title

TableColumn2 StorePrice

TableColumn3 InStock

5. Select detail row cell containing the StorePrice values in the TableColumn2 and in the Properties Window, set the
Format property to Currency.

6. Select the header row using the row handle to the left and in the Properties Window, set the FontWeight property
to Bold.

7. For an Page report, in the Report Explorer select the Table control and in the Properties window, set the FixedSize
property to 6.5in, 7in.

Add a field expression to a text box to multiply two field values

ActiveReports 14 504

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the detail row of the fourth column, enter the following expression: = Fields!InStock.Value*
Fields!StorePrice.Value

2. Go to the Properties Window to set the Format property of the textbox to Currency formatting.
3. In the header row immediately above this Textbox, enter Stock Value for the static label.

Add an Immediate If expression to show or hide a report control

1. Select the cell in which we multiplied two field values (in the detail row of the fourth column) and in the Properties
window, expand the Visibility property.

2. In the Hidden property, enter the following immediate if expression to hide the textbox if there is no stock for the
item. =iif(Fields!InStock.Value=0, True, False)

Add a Data Visualization expression to display data graphically

The ColorScale3 visualizer function displays a range of colors to indicate minimum, average, and maximum values in the
data. See the Data Visualizers topic for further information.

Select the cell in the detail row under the In Stock label and in the Properties window, set the BackgroundColor property
to the following expression: =ColorScale3(Fields!InStock.Value, 0, Avg(Fields!InStock.Value),
Max(Fields!InStock.Value),
"Red", "Yellow", "Green")

Note: The parameters of the ColorScale3 function evaluate to Value, Minimum, Average, Maximum, StartColor,
MiddleColor and EndColor. Note that aggregate functions (Avg and Max) are used within the ColorScale3 function.
See Functions for details on these and other aggregate functions.

View the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

LookupSet Function in Data Regions
The LookupSet function returns multiple row values from a specified dataset, so you will use this function for the 1-to-
many relationship. The fields of the dataset returned by the LookupSet function behave as regular dataset fields that you
can use in functions/aggregates within the scope of the data region.

The following data regions can use the LookupSet function in the Value property - Tablix, Table, Classic
Chart, BandedList, List, and Sparkline.

The basic syntax of the Lookup expression is as follows.

LookupSet(<SourceExpression>, <DestinationExpression>, <ResultExpression>,
<LookupSetDataset>)

• SourceExpression: An expression that is evaluated in the current scope and that specifies the name or key to look up.
• DestinationField: An expression that is evaluated for each row in a dataset and that specifies the name or key to
match on.
• ResultExpression: An expression that is evaluated for the row in the dataset where source_expression =

ActiveReports 14 505

Copyright © 2020 GrapeCity, Inc. All rights reserved.

destination_expression, and that specifies the value to retrieve.
• LookupSetDataset: A constant that specifies the name of a dataset in the report. For example, "ContactInformation".

 The report below shows information on addresses for each employee and displays the addresses as string separated by
commas. To display all addresses for each employee in a string separated by commas, we need to use the Join function in
the expression with the LookupSet function.

For example:

=LookupSet(Fields!CategoryID.Value, Fields!CategoryID.Value, Fields!UnitsInStock.Value,
"Products")
=Join(LookupSet(Fields!CategoryID.Value, Fields!CategoryID.Value,
Fields!UnitsInStock.Value, "Products"), ",")

Layers
What are Layers?
Why Use Layers?
Other Advantages

What are Layers?
Layers can be understood as a named group of controls. You can lock or unlock, add or remove, show or hide these
groups of controls. When you create a new report, a Default Layer is automatically added to it.

Layers are supported in the following types of reports:

Page Report
Rdl Report

ActiveReports 14 506

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Why Use Layers?
You can trace the layout of a pre-printed form accurately using Layers. This feature is useful where you use the scanned
copy of the form to trace that you can place on one Layer and you want use it to print.

Let us understand this concept with an example of a school diploma certificate. The requirement is to print the name of
graduating students on a pre-printed school diploma certificates. We already have a set format for this certificate and a
list of names in our data base that need to be printed at the correct location on the certification in the correct style.

Step1: Scan a copy of the school diploma certificate.

The scanned image is placed on a Layer and acts as the base image to identify the location where the name is to be
placed.

As a best practice, avoid placing images of pre-printed forms on the Default Layer because this Layer cannot be
deleted. Instead, create a new Layer to place the scanned image so that you can delete the Layer if you want to remove
the scanned image from the background.

The Layer with the image of a pre-printed form is now ready for tracing.

ActiveReports 14 507

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Step 2: Trace a field that contains the names of graduating students.

On the Default Layer, place a TextBox control that is bound to a list of graduating students on the report designer. Placing
the StudentName field at the accurate location becomes easy with the scanned image Layer displayed in the
background.

ActiveReports 14 508

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Step 3: Printing the names of graduating students on the school diploma certificate.

Now, that the field has been placed at the correct location and bound to a list of student names, the last step is to print
the names on the actual certificates.

Assuming that pre-printed certificates are already placed in the printer, the image Layer that contains the scanned
certificate image need not be printed. This can be done using the TargetDevice property in Layers.

The TargetDevice property applies to each layer separately and you can choose from screen, paper, export, all or none
options. See View, Export or Print Layers for further details. For this example, set the TargetDevice property of Default
Layer to Paper for printing the name field on pre-printed certificates.

ActiveReports 14 509

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In this scenario, Layers are used to trace the layout of a field on a pre-printed certificate.

However, Layers are useful in some other scenarios as well.

Other Advantages
Creating Template Reports

Leverage the advantage of Layers in scenarios where you do not want to make changes to an existing report but want to
perform minor modifications to the layout.

With Layers, it is possible to make modifications to the same report without changing the original report layout. Let's take
an example of a sales receipt to see how Layers can help in this scenario.

Illustrative Example

The requirement is that a hard copy of the report is printed with a Customer Copy watermark and the soft copy of the
same report is exported in a PDF format with a Merchant Copy watermark.

ActiveReports 14 510

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Lock the Default Layer to use the original sales receipt report as a template. This step is necessary to make sure that the
existing layout of the template report is not modified while making changes or adding controls to the layout. Please
see Working with Layers for details on how to lock a Layer.

Add two Layers on the existing report template, one for the Customer Copy watermark image and the other for the
Merchant Copy watermark image. Set the TargetDevice property of Customer Layer to Paper for printing a hard copy of
the sales receipt and Merchant Layer to Export for exporting it to a PDF format. Please see View, Export or Print Layers for
details on how to export Layers.

In this scenario an existing report is used as a template to output two different versions of the same report without having
to create and save two copies separately.

ActiveReports 14 511

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Replicating a Layout

Layers can be used to replicate the layout of a pre-printed form. This is particularly useful when you want to replicate a
layout of a pre-printed form which is either uneditable or unavailable in soft copy.

Let us take an example of an order summary letter sent to the customers to see how Layers can help replicate the Layout
of the scanned image easily.

Illustrative Example

Place the scanned image of the letter that needs to be replicated on Layer1 and set the DesignerLock property of this
Layer to True to make sure the image being traced is not modified or changed by mistake. Please see Working with
Layers for details on how to lock a Layer.

While designing any report, it is advisable to separate the layout, data and logic of your report. In this example, we have
placed all the static labels like the logo, header, footer on Layer2 and data bound fields on the Default Layer. This is
particularly useful when designing complex report layouts such as tax forms, regulatory notices or bill of lading
forms. Working on different Layers makes report designing easier as you can modify one aspect of the report, such as
static labels or bound data fields without modifying the entire report layout.

ActiveReports 14 512

Copyright © 2020 GrapeCity, Inc. All rights reserved.

On the Default Layer, place the data bound fields like Order ID, Order Date and Amount. Notice the
DesignerTransparency of Layer2 above and the Default Layer below is set to 0.5 to display the scanned image placed
on Layer1 in the background.

ActiveReports 14 513

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Once the layout being used to copy the layout (scanned image in Layer1) is no longer required, set the DesignerVisible
property of Layer1 to False to hide the Layer or you can also delete this Layer. DesignerVisible property helps in checking
the accuracy of the layout by quickly showing or hiding the controls on the selected layer. In this case we have hidden the
visibility of Layer1 to verify the layout of the final output.

ActiveReports 14 514

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In this scenario, Layers are used to replicate the layout of a scanned image and also separate the layout and the data to
help organize our report better.

Working with Layers
When you begin working with Layers, access the Layers List window to handle basic functions like adding or removing
a Layer from a report at design time. You may also change the settings for each Layer at design time through a set of in-
built properties.

Using the Layers List
The Layers List window displays a list of Layers in the report along with their visibility and lock options. You can also add
or remove Layers and even send the Layer back or bring it to the front in the Layers List.

In the Layers List window,

A Default Layer is automatically added when you create a new page report. This Layer cannot be deleted
or renamed.
Any Layer can be set as an Active Layer in the report by selecting it in the Layers List 14 window. There is only one
Active Layer at any given time in a report.

ActiveReports 14 515

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: Modifications can only be made to the Active Layer in the report. No modifications are possible on the
inactive Layers.

Show or Hide the Layers List

When ActiveReports is installed on your system, a Layers List button is automatically added to the Visual Studio toolbar
and it appears every time you create a new application.

1. Right-click the Visual Studio toolbar and select ActiveReports 14 to display the report designer toolbar. See
Toolbar for further details.

2. On the report designer toolbar, click the View Layers List button. The Layers List 14 window appears.
3. Click the View Layers List button again to hide the Layers List 14 window.

Note:

In case the Layers List window does not appear automatically in your application, select View > Other
Windows > Layers List 14 in Visual Studio.
A LayerList control is also available in the Visual Studio toolbar and can be used to add the Layers feature in
the End User Designer application. See how to add the Layer List control in the walkthrough on Creating a
Basic End User Report Designer (Pro Edition).
The stand-alone designer application (GrapeCity.ActiveReports.Designer.exe) also contains a Layers List
window. See Stand-alone Designer and Viewer for more information.

Add a Layer

Once a report is created, a Default Layer is automatically added in the Layers List.

1. In the report, select the page on which the Layer is to be added.
2. On the Layers List toolbar, click the New button.
3. A new Layer with the name 'Layer1' gets added to the report and the Layers List.

Remove a Layer

All Layers, except the Default Layer, can be removed.

ActiveReports 14 516

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the Layers List, select the Layer to be removed.
2. On the Layers List toolbar, click the Remove button to remove the selected Layer.

This removes the selected Layer along with the controls placed on it from the report and the Layers List.

Send to Back/Bring to Front

Use the Send to Back or Bring to Front buttons to send a group of controls placed on a selected Layer to the front or to
the back of the controls on other layers.

1. In the Layers List, select the Layer for which the order is to be set.
2. In the Layers List toolbar, click the Bring to Front or Send to Back button to send the controls placed on a Layer

to the front or the back.

Using the Layers Properties
Select a Layer from the Layers List to access the following properties in the property grid.

ActiveReports 14 517

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Value Description

DesignerLock True/False Locks or unlocks controls placed on a Layer.

You cannot move or resize the controls placed on the design surface of a
locked Layer through a keyboard or a mouse. Other editing functions like
cut, copy or paste and addition or deletion of controls are possible.

This property can also be set using the check-box for Lock in the Layers List.

DesignerTransparency 0 to 1 Sets the transparency of the controls on a Layer at design time to a value
between 0 and 1. A Layer with transparency set to 1 is not visible on the
designer.

DesignerVisible True/False Determines if the controls placed on a Layer are visible on the designer or
not.

This property can also be set using the check-box for Visibility in the Layers
List.

Name Layer Name
(string)

Sets the name of a Layer (except the Default Layer).

TargetDevice None, Screen,
Paper, Export,
All

Specifies or limits the visibility of controls placed on a Layer based on
the selected target.

None: Layer is not visible on any target device
Screen: Layer is visible on the viewers
Paper: Layer is visible on printing

ActiveReports 14 518

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Export: Layer is visible on export
All: Layer is visible on all targets i.e. Screen, Paper and Export

See View, Export or Print Layers for information on TargetDevice specific
outputs.

Property Value Description

View, Export or Print Layers
The GrapeCity.ActiveReports.PageReportModel.Layer.TargetDevice property determines whether you can view,
export or print the controls placed on a Layer. It allows you to show or hide the controls that belong to a Layer on
a specific target device. For example, if you want to display controls placed on Layer1 in the WinViewer and export the
output to PDF, you can select the Screen and Export options of the TargetDevice property simultaneously.

Note: TargetDevice property only determines the target (i.e. Screen, Export or Print) where the group of controls
placed on a Layer appear. In order to get the output on a viewer or export or print the controls, you need to add
code for exporting or printing or adding a viewer to the application.

TargetDevice property allows you to select from the following options:

None
Screen
Paper
Export
All

Setting the TargetDevice Property

ActiveReports 14 519

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Use the following steps to set or change the TargetDevice property of a Layer:

1. Select a Layer from the Layers List window. This becomes the Active Layer of the control.
2. In the Properties window, select the TargetDevice property.
3. From the dropdown, select out of the options: None, Screen, Paper, Export or All.

You can also select more than one option out of Screen, Paper and Export at the same time.

TargetDevice Output Type Description

None - Controls placed on a Layer cannot be viewed, exported
or printed.

Screen WinViewer Controls placed on a Layer can be viewed on any of the
supported viewers.

WebViewer

WPF Viewer

Paper Physical/ Virtual Printer Controls placed on a Layer are can be printed to
physical or virtual printers.

Export RenderingExtensions - HTML, PDF,
Word, Image, Xml, Excel

Controls placed on a Layer are exported to any of the
supported file formats.

Export Filters - HTML, PDF, Tiff,
Text, Rft, Excel

All All Outputs Controls placed on a Layer can be viewed, exported and
printed.

Tracing Layers
In Page Reports and Rdl reports, you can trace the layout of a pre-printed form to a pixel perfect accuracy using Layers.

This walkthrough illustrates how you can trace data fields accurately from a scanned image of a boarding pass. These
steps show the results on a Page Report but are applicable to Rdl Reports also.

Note: Right-click and save the image below in your project folder before starting the walkthrough.

The walkthrough is split up into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to an XML data source

ActiveReports 14 520

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding a dataset
Creating a report layout on different layers
Viewing the report

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

Adding an ActiveReport to a Visual Studio project

1. In Visual Studio, create a new Windows Forms Application project.
2. In the Solution Explorer window, right-click Form1, and rename it to MainForm.
3. From the Project menu, select Add New Item.
4. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file to Boarding.
5. Click the Add button to open a new Page Report in the designer.

See Quick Start for information on adding different report layouts.

Connecting the report to an XML data source

1. From the Solution Explorer, open Boarding.rdlx created earlier.
2. In the Report Explorer, right-click the Data Sources node and select Add Data Source or select Data Source from

the Add button dropdown.

3. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
CustomDS.

ActiveReports 14 521

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. In the Type drop down to select a data provider, choose Xml Provider.
5. In the connection string section, add the following custom data to your project.

Xml

 XmlData =
<Flight ID="31">
 <Passengers>
 <Passenger>
 <PassengerName>Maria Anders</PassengerName>
 <Seat>23A</Seat>
 <Tracking>2322- 030-0074321</Tracking>
 </Passenger>
 <Passenger>
 <PassengerName>Ana Trujillo</PassengerName>
 <Seat>18E</Seat>
 <Tracking>2322- 030-0074343</Tracking>
 </Passenger>
 <Passenger>
 <PassengerName>Antonio Moreno</PassengerName>
 <Seat>25A</Seat>
 <Tracking>6722- 034-6784349</Tracking>
 </Passenger>
 <Passenger>
 <PassengerName>Christina Berglund</PassengerName>
 <Seat>14B</Seat>
 <Tracking>5678- 543-6784349</Tracking>
 </Passenger>
 <Passenger>
 <PassengerName>Thomas Hardy</PassengerName>
 <Seat>28F</Seat>
 <Tracking>9834- 413-6784569</Tracking>
 </Passenger>
 </Passengers>
</Flight>

6. Click OK to close the dialog box.

Adding a dataset

1. In the Report Explorer, right-click the data source created in the previous step and select Add Data Set or select
Data Set option from the Add button dropdown.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as BoardingData.
3. On the Query page, select Text under Command Type and enter the following XML path into the Query text box

to access the data of each passenger.
//Passenger

4. On the Fields page, enter the values from the table below to create fields for your report. Values for XML data
fields must be a valid XPath expression.

Field Name Type Value

Tracking Database Field Tracking

ActiveReports 14 522

Copyright © 2020 GrapeCity, Inc. All rights reserved.

PassengerName Database Field PassengerName

Seat Database Field Seat

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

See Adding a DataSet for more information on adding dataset to a data source.

Creating a report layout on different layers

1. In the LayerList window, click the icon to add a new Layer to the report. Notice that a default Layer is already
added in the Layer List.

2. Select Layer1 to make it the Active Layer, and from the Properties window, change the Layer Name to ImgLayer.
3. In the Layer List window, check the Lock check-box to lock ImgLayer to make sure the image being traced is not

modified or changed by mistake.
4. In the Layer List window,click the Send To Back button to move ImgLayer behind the Default Layer.
5. In the LayerList window, select Default to make it the Active Layer.
6. From the Properties window, set the DesignerTransparency of the Default Layer to 0.5 to display the scanned

image to be placed on ImgLayer in the background.
7. From the toolbox, drag a List data region onto the design surface of the report.
8. In the Properties window of the List data region set the following values.

Property Name Values

DataSetName BoardingData

FixedSize Width: 6.27in
Height: 3in

Location Left: 0in
Top: 0.125in

Size Width: 6.27in
Height: 2.87in

9. In the Report Explorer window, right-click the Embedded Images node and select Add Embedded Image.
10. In the Open dialog box that appears, browse to the project folder location and select the BoardingPass.jpg image

you saved earlier.
11. Click Open to embed the image in your project.
12. From the Report Explorer, drag the embedded BoardingPass image onto the List data region and set the

properties as described in the following table.

Property Name Property Value

LayerName ImgLayer

Location 0in, 0.125in

Size 6.27in, 2.875in

13. From the Report Explorer, drag the following fields onto the List data region and set the following properties.

Field Name Property Values

PassengerName LayerName: Default

Location: 2.91in, 0.35in

Size: 1.375in, 0.25in

ActiveReports 14 523

Copyright © 2020 GrapeCity, Inc. All rights reserved.

PassengerName LayerName: Default

Location: 0.15in, 0.9in

Size: 1.37in, 0.25in

PassengerName LayerName: Default

Location: 4.5in, 0.9in

Size: 1.25in, 0.25in

Tracking LayerName: Default

Location: 0.15in, 2.19in

Size: 1.5in, 0.25in

Seat LayerName: Default

Location: 4.5in, 1.45in

Size: 1in, 0.375in

Font > FontSize: 22pt

14. In the Layer List window, select the Default Layer and then the ImgLayer and change their TargetDevice property
to Screen from the Properties window. See View, Export or Print Layers for more information.

Viewing the report

Click the preview tab to view the report.

OR

See Windows Forms Viewer to display report in the Viewer at run time.

Go to Top

Report Appearance
Customize the appearance of reports by applying styles and themes, as described in following topics:

Styles
Themes

Styles

What are Styles?

Styles are a set of properties that you can apply to selected controls in your Page or RDL reports to quickly change their appearance. A single style can define
properties for font, background color, line spacing, border color, padding, and many more. You can create four different types of styles, namely Common, Text,
Table Of Contents and Table Of Contents Level. For more information on the type of styles and how they differ from each other, see Working with Styles.

What are Style Sheets?

ActiveReports provides you with the ability to create multiple styles and store them in a style sheet. A style sheet can be understood as a collection of styles. You can
add the style sheet to your Page or RDL reports using the GrapeCity.ActiveReports.PageReportModel.Report.StyleSheetSource
and GrapeCity.ActiveReports.PageReportModel.Report.StyleSheetValue properties and apply the styles to selected controls using the

ActiveReports 14 524

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.PageReportModel.Style.StyleName property. You can either embed the style sheet within your report or save it externally in the *.rdlx-
styles format. For more information, see Working with Styles.

There are two ways to use these style sheets:

Embed the style sheets within the report and use its styles on controls in that report
Save the style sheets externally in *.rdlx-styles format and use it in multiple reports

Why use Styles?

Using styles gives you more control over how you format the report. Let us look at a few scenarios to understand how styles are helpful while designing reports.

Reusing Styles

An organization wants to create an Annual Sales Report that consists of multiple subreports, representing Sales by District and Sales by Product. Since all the
subreports are a part of the Annual Sales Report, the formatting needs to be consistent. You normally have to manually set properties for each control on the report
to format it and then replicate those same set of properties for the two subreports. This can be time consuming and can lead to inconsistent styling in
your reports. Let us see how the ActiveReports Style feature can help you generate consistent styles in all reports similar to the screenshot below.

Report author can create a style sheet for designing the Annual Sales Report (main report), add styles to the style sheet using the Stylesheet Editor dialog. After
creating the styles, these styles can be applied to various controls on Annual Sales Report using the GrapeCity.ActiveReports.PageReportModel.Style.StyleName
property. For more information, see Working with Styles.

ActiveReports 14 525

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Once the Annual Sales Report has been designed, the GrapeCity.ActiveReports.PageReportModel.Subreport.InheritStyleSheet property can be set to True (by
default) for each subreport.

By setting the InheritStyleSheet property to True, the style sheet used for the Annual Sales Report is automatically inherited in the subreports. This makes all the
styles in the style sheet available to the two subreports. To apply the styles to the report controls in a subreport, you simply need to select the report control
and specify the name of the style you want to use in the StyleName property.

In this example we can see how styles can help save time and maintain consistent formatting by giving you the flexibility to use the same style sheet in multiple
subreports.

You can also use the same style sheet in multiple reports by saving the style sheets externally in *.rdlx-styles format. For more information on how to work with
external style sheets, see Working with Styles.

Enhancing Report Portability

In ActiveReports, you can embed external style sheets in a report. This is particularly useful when you want to send reports that are styled using multiple style sheets.
Let us take an example of a Sales Report to see how embedded style sheets can help improve the report portability.

Scenario

An organization wants to send a Sales report that is styled using 4 different external style sheets. While sending the styled report, 5 files have to be sent
together, i.e. one report and 4 external style sheets. The person receiving these files needs to maintain and store 5 different files. Moreover, if the location of a style

ActiveReports 14 526

Copyright © 2020 GrapeCity, Inc. All rights reserved.

sheet is changed from the path set in the report, the style sheet will no longer be applied to the report until the path is modified in the report.

By embedding the external style sheets within the Sales report, only 1 file needs to be sent which in turn improves the portability of the report. For more information
on how to embed external style sheets, see Embed External style sheet into a report

ActiveReports provides you the ability to create styles and store them in a style sheet. You can add these style sheets to your Page or RDL reports and apply the
styles to selected controls using the GrapeCity.ActiveReports.PageReportModel.Style.StyleName property. You can also save these style sheets on your system.

The styles feature consists of the following elements.

Style Sheet Properties
Stylesheet Editor Dialog
Add New Style Dialog
Embed Stylesheet Dialog
Open Embedded Stylesheet Dialog

Here is some guidance on how to work with style sheets

Working with Styles within a Style Sheet
Working with Embedded Style Sheets
Working with External Style Sheets
Applying Styles Through Code

Style Sheet Properties

Define the style sheet of a report in the Properties window using the Source property and the Value property. For subreports, use the InheritStyleSheet property.

Property Name Description

Source The source of a report's style sheet. You can choose from the following options:

External - Choose this option if the style sheet (*.rdlx-styles format) is located as an external source, such as a local file, an
http location or a custom resource. To learn how to create external style sheets, see Working with External Style Sheets.

ActiveReports 14 527

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Embedded - Choose this option if style sheet is embedded in the report. The embedded style sheets are displayed under the
Embedded StyleSheets node of the Report Explorer.To learn how to create embedded style sheets, see Working with
Embedded Style Sheets.

Value The style sheet to apply to the report. You can choose from the following options:

Expression - Opens the Expression Editor dialog to create a valid expression.

New - Opens the New Stylesheet Editor dialog to create an external or embedded style sheet.

Open file - Opens the Open Stylesheet from file dialog to navigate to a local style sheet file. This option is only available for
external style sheets.

For embedded style sheets, a list of available style sheets in the report is provided.

InheritStyleSheet The style sheet to inherit in a subreport. Setting the InheritStyleSheet property to True (default value) inherits the style sheet
of the main report in the subreport.

Note: Field values are not evaluated when used as an expression in Stylesheet Value, StyleName and Styles properties.

Stylesheet Editor Dialog

You can open the Stylesheet Editor dialog by selecting the Stylesheet Editor option from the Report menu of the stand-alone designer or Visual Studio .NET
designer.

The Stylesheet Editor dialog consists of the following elements.

Elements Description

Open Stylesheet from File Opens a style sheet (*.rdlx-styles format) located externally.

Open Embedded Stylesheet Opens a style sheet embedded in the report.

Save Stylesheet to File Saves the current style sheet as an external style sheet in *.rdlx-styles format.

Embed Stylesheet Embeds the current style sheet in the report.

New Style Creates a new style in the current style sheet.

Remove Style Removes a style from the current style sheet.

Property window Modifies the properties of the selected style based on the selected style type. Available style properties change depending on
the type of style selected. You set the style type when you create a new style. The style type is selected when a new style is
created.

OK Saves the current style.

Cancel Closes the dialog without saving the changes.

Note: The values set in the Properties window override the values defined in the report's style sheet. The overridden values are displayed in bold in the
Properties window.

Add New Style Dialog

You can open the Add New Style dialog by clicking the New Style option in the Stylesheet Editor dialog.

The Add New Style dialog consists of the following elements.

Elements Description

Name Contains the name of the new style.

ActiveReports 14 528

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Type Sets the type of control to which you can apply the style, which determines the options that are available in the Properties
window of the Stylesheet Editor dialog.

Common
Apply this style type to the following report controls:

CheckBox
Image
List
Tablix
Shape
Table
TableOfContents
TextBox

Text
Apply this style type to the TextBox report control. It includes all properties of the Common style type, plus it offers
properties specific to the TextBox control.

TOC
Apply this style type to the TableOfContents control.

TOC Level
Apply this style type to the ToC.Level object of the TableOfContents control.

Parent Represents the parent style of a new style. If the parent style is specified, the property values are taken from the selected
parent style values. By default, the parent style is set to None.

Embed Stylesheet Dialog

You can access the Embed Stylesheet dialog by selecting the Save current Stylesheet option and then selecting Embed Stylesheet in the Stylesheet Editor
dialog.

The Embed Stylesheet dialog consists of the following elements.

Elements Description

Drop-down list box for style sheet
name

Enter a name for the embedded style sheet, or choose an existing style sheet from the drop-down list box to overwrite.

Open Embedded Stylesheet Dialog

You can access the Open Embedded Stylesheet dialog by selecting the Open stylesheet option and then selecting Open embedded Stylesheet from the
Stylesheet Editor dialog.

The Open Embedded Stylesheet dialog consists of the following elements.

Elements Description

Drop-down list box for opening
style sheet

Provides a drop-down list box to choose an existing style sheet to overwrite. You can also enter a new name for the style sheet
here.

ActiveReports 14 529

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Here is some guidance on how to work with style sheets

Working with Styles within a Style Sheet
Working with Embedded Style Sheets
Working with External Style Sheets
Applying Styles Through Code

Working with Styles within a Style Sheet

For any of these operations, you first need to open the style sheet in the editor.

To open the editor for embedded style sheets

1. In the Report Explorer, expand the Embedded StyleSheets node and select the existing style sheet you want to edit.
2. Right-click and select Edit to open it in Stylesheet Editor dialog.

To open the editor for external style sheets

1. In the stand-alone designer or Visual Studio designer, click the Report menu and select the Stylesheet Editor.
2. In the Stylesheet Editor dialog, click the Open button and select the Open Stylesheet from File option.

3. In the Open dialog, navigate to the *.rdlx-styles file that you want to open.
4. Click Open to open the external stylesheet in the Stylesheet Editor.

To add a new style to a style sheet

1. In the Stylesheet Editor dialog, click the New Style button to add a new style.
2. In the Add New Style dialog, enter the Name of the style, and then select the Type and Parent style.

Tip: For more information on the style types, see Working with Styles. To create style types for TableOfContents controls and heading levels, see Apply
styles to the TableOfContents control and Apply styles to the TableOfContents levels.

To modify a style in a style sheet

1. In the Stylesheet Editor, select the existing style that you want to modify and use the property fields on the right to make the changes.
2. Click OK to save the changes.

To remove a style from a style sheet

1. In the Stylesheet Editor, select the style that you want to remove and click Remove Style.
2. Click OK to save the changes.

To use a style from a style sheet at design time

1. Click the gray area around the report to select it, and under the Properties window, click the Property dialog link in the Commands section. See Properties
Window for more information on how to access commands.

2. In the Report dialog, go to the Appearance page.
3. In the Appearance page, set the Stylesheet Source to Embedded and in the Value field select an existing embedded style sheet. (Or select External and select

the <Open File> option and navigate to an *.rdlx-styles external style sheet.)

Tip: You can also access the Source and Value properties in the Properties window by expanding the Stylesheet node. For more details on the Source
and Value properties, see Working with Styles.

4. Click OK to close the dialog.
5. On the design surface, select the control you want to apply the style to.
6. In the Properties Window, from the StyleName property drop-down, select a style to apply to the controls.

ActiveReports 14 530

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Working with Embedded Style Sheets

Create and save a style sheet

1. In the Report Explorer, right-click the Embedded StyleSheets node, and select the Add Embedded Stylesheet option to access the Stylesheet Editor
dialog.

Tip: You can also access the Stylesheet Editor dialog from the Report Explorer by clicking the Add button and selecting Embedded Stylesheet. In the
stand-alone designer or Visual Studio designer, from the Report menu, select Stylesheet Editor.

2. Click the Save button and select Embed Stylesheet to embed the style sheet into the report.
3. Enter a name for the style sheet or choose an existing style sheet from the drop-down to overwrite, and then click OK to save the embedded style sheet.

All the saved style sheets embedded in the report appear under the Embedded StyleSheets node in the Report Explorer.

Save embedded style sheet as an external style sheet

1. In the Report Explorer, expand the Embedded StyleSheets node and select the embedded style sheet.
2. Right-click and select Edit to open the Stylesheet Editor dialog.
3. In the Stylesheet Editor dialog, click the Open button and select the Save Stylesheet to file option to save the embedded style sheet externally.

4. In the Save As dialog, navigate to the location where you want to save the style sheet, provide a name for the style sheet and click the Save button to save it
as an external *.rdlx-styles file.

Working with External Style Sheets

Create and save a style sheet

1. In the stand-alone designer or Visual Studio designer, click the Report menu and select the Stylesheet Editor.
2. In the Stylesheet Editor dialog, click the Open button and select the Save Stylesheet to file option.
3. In the Save As dialog, navigate to the location where you want to save the style sheet, provide a name for the style sheet and click the Save button to save it

as an external *.rdlx-styles file.

Embed External style sheet into a report

1. In the stand-alone designer or Visual Studio .NET designer, click the Report menu and select the Stylesheet Editor.
2. In the Stylesheet Editor dialog, click the Open button and select the Open Stylesheet from file option.

3. In the Open dialog, navigate to the external style sheet (*.rdlx-styles file) that you want to load and click the Open button to load it in the Stylesheet Editor
dialog.

4. In the Stylesheet Editor dialog, click the Save button and then select the Embed Stylesheet option.

ActiveReports 14 531

Copyright © 2020 GrapeCity, Inc. All rights reserved.

5. In the Embedded Stylesheet dialog, enter a name for the style sheet and then click OK to embed the loaded style sheet into your report.

All the saved style sheets embedded in the report appear under the Embedded StyleSheets node in the Report Explorer.

Applying Styles Through Code

1. In Visual Studio, create a new Page Report Application or open an existing one.
2. On the Form.cs or Form.vb that opens, double-click the title bar to create the Form_Load event.
3. Add the following code inside the Form_Load event.

Visual Basic

Visual Basic.NET code. Paste INSIDE the Form Load event.

'Path and Name of the loaded PageReport
Dim filePath As String = "C:\SampleReport.rdlx"
Dim pageReport As New GrapeCity.ActiveReports.PageReport(New System.IO.FileInfo(filePath))
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(pageReport)

' Set the style sheet source and value using external style sheets
reportDocument.PageReport.Report.StyleSheetSource =
GrapeCity.ActiveReports.PageReportModel.StyleSheetSource.External
reportDocument.PageReport.Report.StyleSheetValue = "C:\ExternalStyle.rdlx-styles"

' Set the style sheet source and value using embedded style sheets
reportDocument.PageReport.Report.StyleSheetSource =
GrapeCity.ActiveReports.PageReportModel.StyleSheetSource.Embedded
reportDocument.PageReport.Report.StyleSheetValue = "EmbeddedStylesheet1

' Add a Textbox control and apply style
Dim text As New GrapeCity.ActiveReports.PageReportModel.TextBox()
text.Value = "Sample Text"
text.Style.StyleName = "Style1"
pageReport.Report.Body.ReportItems.Add(text)
viewer1.LoadDocument(reportDocument)

C#

C# code. Paste INSIDE the Form Load event.

//Path and Name of the loaded PageReport
string filePath = @"C:\SampleReport.rdlx";
GrapeCity.ActiveReports.PageReport pageReport =
new GrapeCity.ActiveReports.PageReport(new System.IO.FileInfo(filePath));
GrapeCity.ActiveReports.Document.PageDocument reportDocument =
new GrapeCity.ActiveReports.Document.PageDocument(pageReport);

// Set the style sheet source and value using external style sheets
reportDocument.PageReport.Report.StyleSheetSource =
GrapeCity.ActiveReports.PageReportModel.StyleSheetSource.External;
reportDocument.PageReport.Report.StyleSheetValue = @"C:\ExternalStyle.rdlx-styles";

// Set the style sheet source and value using embedded style sheets
reportDocument.PageReport.Report.StyleSheetSource =
GrapeCity.ActiveReports.PageReportModel.StyleSheetSource.Embedded;
reportDocument.PageReport.Report.StyleSheetValue = "EmbeddedStylesheet1";

// Add a Textbox control and apply style
GrapeCity.ActiveReports.PageReportModel.TextBox text =
new GrapeCity.ActiveReports.PageReportModel.TextBox();
text.Value = "Sample Text";

ActiveReports 14 532

Copyright © 2020 GrapeCity, Inc. All rights reserved.

text.Style.StyleName = "Style1";
pageReport.Report.Body.ReportItems.Add(text);
viewer1.LoadDocument(reportDocument);

Themes
A theme is a collection of properties that defines the appearance of a report. A theme includes colors, fonts, images, and
constant expressions that you can apply to report elements once you add a theme to a report.

You can add one or many themes to a report. If a report has multiple themes, you can use the report's
GrapeCity.ActiveReports.PageReportModel.CollateBy enumeration to control the page order in a report. See Set Up
Collation for more information.

The Theme Editor and the Report - Themes dialog allow you to manage themes in a report.

In the Theme Editor, you can create a new theme by setting colors, fonts, images, and use constant expressions in a
theme and then saving a new theme as an .rdlx-theme file on your local machine. Then you can add this theme to your
report in the Report – Themes dialog. Also, in the File menu, select Open to open and modify an existing theme and
select Save or Save As to save the changes on your local machine.

To access the Theme Editor

From the Start menu, go to All Programs > GrapeCity > ActiveReports and select ActiveReports Theme Editor.

The Report – Themes dialog displays the report's themes. This dialog allows you to create a new theme, add, modify or
remove an existing one, as well as rearrange the order of themes if a report has many themes. When you select to create
or modify a theme, the Theme Editor is opened.

To access the Theme - Report dialog

1. In the Designer, click the gray area around the report page to select a report.
2. Do one of the following:

In the Properties window, select the Themes property and click the ellipsis (…) button to open the Report -
Themes dialog.
With the report selected, in the Properties window under properties where the commands are displayed,
click the Property dialog link. In the Report dialog that appears, go to Themes. See Properties Window for
further information on commands.

ActiveReports 14 533

Copyright © 2020 GrapeCity, Inc. All rights reserved.

On the Report menu, select Report Properties and go to Themes in the Report dialog that appears.

Create and add themes

A theme is a collection of properties that defines the appearance of a report. A theme includes colors, fonts, images, and
expressions that you can apply to report elements once you add a theme to a report.

You can add one or many themes to a report. If a report has multiple themes, you can use the
report's GrapeCity.ActiveReports.PageReportModel.Report.CollateBy property to control the page order in a report.

Use the following instructions to create and add themes.

To create a new theme

1. From the Start menu, go to All Programs > GrapeCity > ActiveReports and select ActiveReports Theme Editor.
2. In the Theme Editor that opens, define the colors, fonts, images, and constant expressions properties for your new

theme under the corresponding tabs.
3. On the File menu, select Save.
4. Choose a directory on your local machine and enter the name of a new theme, then click Save.

To add a theme to the report

1. In the Designer, click the gray area around the report page to select a report.
2. In the Properties window, select the Themes property and click the ellipsis (…) button to open the Report - Themes

dialog.
3. In the Report - Themes dialog that opens, click the Open... icon above the list of themes.
4. In the Open dialog that appears, select a theme file from your local files and click Open.

Customize and apply themes

Use the following instructions to customize an existing theme and apply it to your report.

To modify a theme

1. In the Designer, click the gray area around the report page to select a report.
2. In the Properties window, select the Themes property and click the ellipsis (…) button to open the Report - Themes

dialog.
3. In the Report - Themes dialog that opens, select an existing report theme.
4. Click the Edit... icon above the list of themes.
5. In the Theme Editor that opens, modify the theme properties and click OK to close the dialog.

To apply a theme color

1. In the Designer, select the report’s control (for example, a TextBox).
2. In the Properties window, go to the color-related property (for example, the BackgroundColor property) and click

the arrow to display the drop-down list of values.
3. In the list that appears, go to the Theme tab and select the color you want.

ActiveReports 14 534

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To apply a theme font

1. In the Designer, select the report’s control (for example, a TextBox).
2. In the Properties window, go to a property from the Font properties group (for example, the Font property) and

click the arrow to display the drop-down list of values.
3. In the values list that appears, select a font defined in a theme (for example, =Theme.Fonts!MinorFont.Family).

Use Constant Expressions in a theme

In the Theme Editor, you can define constant expressions to be used in a theme. Later, you can apply a constant
expression to the report’s control by selecting it in the Value field of that control.

Also, you can apply a constant expression to a report’s control in code by using the following syntax (VB code example):

=Theme.Constants!Header
=Theme.Constants("Header")

Constant expressions allow you to define a name and an associated value to be used in themes.

Use the following instructions to create and use constant expressions in themes.

To define a constant expression

1. In the Theme Editor, go to Constants.
2. Double-click the field under Name and enter the Constant name (for example, Header).
3. In the next field to the right, under Value, enter the Constant value (for example, Invoice#).

To use a constant expression

1. In the Designer, select the report’s control (for example, a TextBox).
2. In the Properties Window, go to the Values field and select the <Expression> option from the drop-down list to

open the Expression Editor.
3. In the Expression Editor, expand the Themes node with the constant expressions defined in the report theme.
4. In the Themes node, select a constant and then click the Replace or Insert button.
5. Click OK to add the constant expression in the TextBox.

ActiveReports 14 535

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Set Up Collation

You can add multiple themes to a report. In this case, the report renders a combination of multiple outputs for each
theme. For example, if a report has two themes, then the report output includes a combination of the first and the second
themes, applied to each report page. You can control the combination rules of the report output in the
GrapeCity.ActiveReports.PageReportModel.Report.CollateBy property.

Caution: If you are using collation in a report, you cannot use interactive features, such as drill down, links, document
map, and sorting.

You can control the page order of a rendered report with multiple themes by selecting the collation mode in the
CollateBy property of the report:

Note: The collection of constant expressions must be the same in all themes of a report. See Use Constant
Expressions in a Theme for further information.

1. In the Designer, click the gray area around the report page to select the report.
2. In the Properties Window, go to the CollateBy property and select one of the available options:

Simple. Renders report pages without any specific sorting. For example, if you have a report with 2 themes,
the report renders all pages with theme 1, then all pages with theme 2.

ValueIndex. Sorts report pages by page number. For example, if you have a report with 2 themes, the
report renders page 1 for theme 1 and 2, then page 2 for theme 1 and 2, and so on.

Value. Sorts report pages by the grouping expression that you specify in the report's FixedPage dialog. For
example, if you have a report with 2 themes with grouping, the report renders group1 (pages 1 and 2 of
theme1, then pages 1 and 2 of theme2), then group 2 (pages 1 and 2 of theme1, then pages 1 and 2 of
theme2), and so on.

Note: In RDL Reports, the Value collation mode is not available by design.

See Add Page Numbers for information on setting cumulative page count formats for Page Report.

ActiveReports 14 536

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Report Dialog
In a page report or a RDL report, you can set the basic report properties in the Report dialog. You can access this dialog
by doing one of the following:

Go to the Visual Studio Report menu and select Report Properties.
In the Report Explorer, right-click the Report node and from the context menu that appears, select Report
Properties.
In the Report Explorer, select the Report node and in the Commands section at the bottom of the Properties
Window, click the Property dialog command.
Right-click the gray area outside the design surface to select the Report and in the Commands section at the
bottom of the Properties Window, click the Property dialog command.

The Report dialog provides the following pages where you can set report properties:

General

The General page of the Report dialog allows you to control the following items:

Author: Enter the name of the report author here.
Description: Enter a description of the report here.
Draw grid: Clear this check box to remove the grid lines from the report design surface.
Snap to grid: Clear this check box to allow free placement of report items on the report design surface instead of
the automatic alignment of report items with grid lines.
Grid spacing: Enter the spacing between grid lines in inches. The default value is 0.125 inches.
Page headers: These options are enabled when you set a Page Header in a Report Definition Language (RDL)
report.

Print on first page - Select this check box to set the page header on the first page of the report.
Print on last page - Select this check box to set the page header on the last page of the report.

Page footers: These options are enabled when you set a Page Footer in a RDL report.
Print on first page - Select this check box to set the page footer on the first page of the report.
Print on last page - Select this check box to set the page footer on the last page of the report.

Auto refresh: Select this check box to automatically refresh the pages of the report at regular intervals. When this
check box is selected, you can supply the interval in seconds.
Ruler Units: Set the ruler units in Inches or Centimeters.
Preview Pages: Set the number of pages to display in the Preview tab. Minimum values is 0 and maximum is
10000 pages. If the value is set to 0, the Preview tab displays all the pages. By default, the Preview tab displays all
the pages.

ActiveReports 14 537

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Appearance

The Appearance page of the Report dialog allows you to control the page layout for your report.

Columns

Number of columns: Enter the number of columns you want to use in your report.
Spacing: Enter the number of inches of space to use between columns.

Page Layout

Paper Size: Select one among the standard paper sizes from the dropdown.
Width: Specify the width of the layout.
Height: Specify the height of the layout.
Left margin: Specify the Left margin for the layout.
Right margin: Specify the Right margin for the layout.
Top margin: Specify the Top margin for the layout.
Bottom margin: Specify the Bottom margin for the layout.
Orientation: Select one among Portrait and Landscape as your page orientation.

Design

Output background only at design-time: Select the checkbox to display background (for example, background
image or background color) in the design tab only.

Stylesheet

Source: Select one among Embedded and External as your style sheet source.
Value: Select the style sheet to apply to the report. Following options are available:

Expression - opens the Expression Editor dialog to set an expression.

New - opens the New Stylesheet Editor dialog for creating an external or embedded style sheet.

Open file - opens the Open Stylesheet from file dialog for navigating to a local style sheet file. This option is only
available for external style sheets.
In case of embedded style sheets, a list of available style sheets in the report is provided.

Parameters

The Parameters page of the Report dialog allows you to control how a user interface is presented to your users for each
parameter. See Parameters for further information.

Images

The Images page of the Report dialog allows you to add and modify images for your report. Click the Open button
located at the top left of the page to display the Open file dialog, where you can navigate to an image. Once you select an
image file and click the Open button, a thumbnail of the image is displayed in the Image column, and the Name and
MIME Type values are automatically populated in their respective columns.

You can use the images you add here in the Image control. The MIME Type column provides a combo-box with a list of
image file extensions, where you can change default file filter of the added image.

You can also use the Remove button located at the top right of the page to remove any added image.

ActiveReports 14 538

Copyright © 2020 GrapeCity, Inc. All rights reserved.

References

The References page of the Report dialog allows you to add references to assemblies and classes so that you can call
methods from them in expressions throughout your report. You can also access the References dialog from the Properties
Window by selecting the Classes (Collection) or References (Collection) property of a report and clicking the ellipsis
button that appears.

Assembly Name

This is a list of the assemblies available for use in your report. You can delete assemblies using the Remove button, or add
them using the Open button which presents the Open file dialog.

Classes

This is a list of instance-based classes you can create for use in your report.

Class name: Enter the namespace and name of the class here. (i.e. Invoicing.GetDueDate)
Instance name: Enter a name for the instance of the class here. (i.e. m_myGetDueDate)

Data Output

The Data Output page of the Report dialog allows you to control how the report's data is rendered in XML exports.

Element name: Enter the name you want to appear as the top level data element in your exported XML file.
Data transform (.xsl file): Enter the name of the XSL file you want to use as a style sheet for the exported XML file.
Data schema: Enter the schema or namespace to use for validating data types in the exported XML file.
Render textboxes as: Choose whether to render textboxes as Attributes or Elements in the exported XML file.

Attributes example: <table1 textbox3="Report created on: 7/26/2005 1:13:00 PM">
Elements example: <table1> <textbox3>Report created on: 7/26/2005 1:13:28
PM</textbox3>

Themes

The Themes page of the Report dialog displays the report's themes. This dialog allows you to create a new theme, add,
modify or remove an existing one, as well as rearrange the order of themes if a report has many themes. When you select
to create or modify a theme, the Theme Editor is opened. See Themes for further information.

Fixed Page Dialog
In a Page Report, you can set the basic properties for your page from the FixedPage dialog. You can access the FixedPage
dialog by doing one of the following:

Right-click the gray area outside the design surface and from the context menu that appears, select Fixed Layout
Settings.
Click the gray area outside the design surface to select the Report and in the commands section at the bottom of
the Properties Window, click the Fixed Layout Settings command.
Click the design surface to select the Page and in the Commands section at the bottom of the Properties Window,
click the Property dialog command.

ActiveReports 14 539

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In the Report Explorer, select the Report node or the page node and in the commands section at the bottom of the
Properties Window, click the Fixed Layout Settings or Property dialog command respectively.

The FixedPage dialog provides the following pages where you can set the page properties:

General

The General page of the FixedPage dialog allows you to control the following properties:

Name: Enter a name for the Page report. This name is used to call the page in code so it should be unique within
the report.
Dataset name: Select a dataset to associate with the page report. The dropdown list is automatically populated
with all the datasets in the report's dataset collection.

Grouping

The Grouping page is useful when you want to show data grouped on a field or an expression on report's pages. See
Group Data for more information.

The Grouping page contains following tabs which provide access to various grouping properties:

General

Name: Enter a name for the Fixed Layout group that is unique within the report. This property cannot be set until
after a Group on expression is supplied. A name is created automatically if you do not enter one.
Group On: Enter an expression to use for grouping the data.
Document map label: Enter an expression to use as a label to represent this item in the table of contents
(document map).

Filters

The Filters tab allows you to add and control the Filter collection for the Fixed Layout Group. Use the + button to add a
filter and the X button to delete a filter. You need to provide three values to add a new filter to the collection:

Expression: Enter the expression to use for evaluating whether data should be included in the group.
Operator: Select from the following operators to decide how to compare the expression to the left with the value
to the right:

Equal Only choose data for which the value on the left is equal to the value on the right.
Like Only choose data for which the value on the left is similar to the value on the right. For more
information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.

ActiveReports 14 540

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value
on the right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the
right.
TopN Only choose items from the value on the left which are the top number specified in the value on the
right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value
on the right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value
on the right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the
value on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on
the right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values
used with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Data Output

The Data Output tab allows you to control the following properties when you export to XML:

Element name: Enter a name to be used in the XML output for this group.
Collection: Enter a name to be used in the XML output for the collection of all instances of this group.
Output: Choose Yes or No to decide whether to include this group in the XML output.

Layout

Has own page numbering: Check this box to enable section page numbering like Page N of M (Section). See Add
Page Numbers for further information on setting page numbering in Page Report.

Sorting

The Sorting page of the FixedPage dialog allows you to enter sort expressions for sorting data alphabetically or
numerically.

Expression: Enter an expression by which to sort the data.

Direction: Select whether you want to sort the data in an Ascending or Descending order.

Filters

The Filters page of the FixedPage dialog allows you to control the Filter collection for the Fixed Layout. Use the + button
to add filters and X buttons to delete them. You need to provide three values to add a new filter to the collection:

Expression: Enter the expression to use for evaluating whether data should be included in the Fixed Layout.
Operator: Select from the following operators to decide how to compare the expression to the left with the value
to the right:

Equal Only choose data for which the value on the left is equal to the value on the right.

ActiveReports 14 541

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Like Only choose data for which the value on the left is similar to the value on the right. For more
information on using the Like operator, see the MSDN Web site.
NotEqual Only choose data for which the value on the left is not equal to the value on the right.
GreaterThan Only choose data for which the value on the left is greater than the value on the right.
GreaterThanOrEqual Only choose data for which the value on the left is greater than or equal to the value
on the right.
LessThan Only choose data for which the value on the left is less than the value on the right.
LessThanOrEqual Only choose data for which the value on the left is less than or equal to the value on the
right.
TopN Only choose items from the value on the left which are the top number specified in the value on the
right.
BottomN Only choose items from the value on the left which are the bottom number specified in the value
on the right.
TopPercent Only choose items from the value on the left which are the top percent specified in the value
on the right.
BottomPercent Only choose items from the value on the left which are the bottom percent specified in the
value on the right.
In Only choose items from the value on the left which are in the array of values specified on the right.
Selecting this operator enables the Values list at the bottom.
Between Only choose items from the value on the left which fall between the pair of values you specify on
the right. Selecting this operator enables two Value boxes instead of one.

Value: Enter a value to compare with the expression on the left based on the selected operator. For multiple values
used with the Between operator, the lower two value boxes are enabled.

Values: When you choose the In operator, you can enter as many values as you need in this list.

Data Output

The Data Output page of the FixedPage dialog allows you to control the following properties when you export to XML:

Element name: Enter a name to be used in the XML output for the Page report.
Output: Choose Auto, Yes, or No to decide whether to include the fixed page layout in the XML output. Choosing
Auto exports the contents of the fixed layout.

Data Visualizers
There are several report controls that support a type of expression called Data Visualizers that allow you to create small
graphs to make your data easy to understand. For example, you can red flag an overdue account using the Flags Icon Set
as a background image in TextBox control.
There are several types of Data Visualizers available through a dialog linked to properties on the report controls.

Image Data Visualizers
These Data Visualizers are supported in the Image report control Value property, and also in the TextBox, CheckBox,
Shape, and Container report controls' BackgroundImage - Value property. See the topics below to learn more.

Caution: In the following topics, the terms "argument" and "parameter" may seem interchangeable, but within an
expression, an argument refers to the returned value of a parameter, while a parameter may be a variable.

ActiveReports 14 542

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

Icon Set
Learn about the included image strips from which you can select using arguments. These include traffic lights, arrows,
flags, ratings, symbols, and more, plus you can create your own custom image strips.

Range Bar
Learn how you can provide minimum, maximum, and length arguments to render a 96 by 96 dpi bar image in line
with your text to show a quick visual representation of your data values.

Range Bar Progress
Learn how you can use a second bar to show progress along with the data range.

Data Bar
Learn about data bars, which are similar to range bars with a few different arguments.

Gradient
Learn how to apply gradient style to the background of a control.

Hatch
Learn how to apply hatch style to the background of a control.

Background Color Data Visualizer
These Data Visualizers are available in the TextBox and CheckBox report controls' BackgroundColor property. See the
topics below to learn more.

Color Scale 2
Learn about displaying TextBoxes with a range of background colors that are keyed to the value of the data.

Color Scale 3
Learn about color scales with an additional middle color value.

Icon Set
The Icon Set data visualization allows you to use arguments to select an image from an image strip and display it either as
a BackgroundImage, or as a Value. You can use the standard image strips included with ActiveReports, or create custom
image strips.

The Icon Set Data Visualizer is supported in the Image report control Value property, and also in the TextBox, CheckBox,
Shape, and Container report controls' BackgroundImage - Value property.

Standard Image Strips

Name Image

Checkbox

3TrafficLights

Arrows

Blank

Flags

GrayArrows

ActiveReports 14 543

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Quarters

Ratings

RedToBlack

Signs

Symbols1

Symbols2

TrafficLights

Note: When using icon sets, you must set the Source property to Database.

Parameters
Icon Set. This designates the name of the icon set to use.
Icon 1 Value. A Boolean expression that, if it evaluates to True, renders this icon from the strip.
Icon 2 Value. A Boolean expression that, if it evaluates to True, renders this icon from the strip.
Icon 3 Value. A Boolean expression that, if it evaluates to True, renders this icon from the strip.
Icon 4 Value. A Boolean expression that, if it evaluates to True, renders this icon from the strip.
Icon 5 Value. A Boolean expression that, if it evaluates to True, renders this icon from the strip.

You can use static values or any expression that evaluates to a Boolean value. For icon sets with fewer than five icons, set
the unused values to False.

Syntax
=IconSet("Flags", False, True, False, False, False)

Usage
Following the Icon Set argument, there are five Boolean arguments. The first argument to evaluate to True displays the
corresponding image. Use data expressions that evaluate to a Boolean value to replace the literal values in the code
above.

Example

This expression displays the first symbol (the green flag) on each row in which the Difference exceeds 10, displays the
second symbol (the yellow flag) on each row in which the quantity is greater than 0, and displays the third symbol (the red
flag) on each row in which the quantity is equal to or below 0. Notice that we provide literal False values in the fourth and
fifth arguments, which have no images in this strip.

Paste in the BackgroundImage Value property of a Textbox

=IconSet("Flags",Fields!Difference.Value > 10,Fields!Difference.Value >
0,Fields!Difference.Value <= 0,False,False)

ActiveReports 14 544

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In several of the included image strips, the last spots are empty. When using the Checkbox, 3TrafficLights, Flags,
RedToBlack, Signs, Symbols1, Symbols2, or TrafficLights image strip, it generally makes sense to set the Boolean values for
all of the unused icon spaces to False.

Custom Image Strips
The Blank image strip is included so that you can customize it. Drop down the section below for details.

Custom image strips

Custom image strips must conform to the following rules.

1. The format must be of a type that is handled by the .NET framework.
2. The size of the strip must be 120 x 24 pixels.
3. Each image must be 24 x 24 pixels in size.
4. There must be no more than five images in the strip.
5. If there are fewer than five images in the strip, there must be blank spaces in the image to fill in.

Types of Custom Images
Here is the syntax for various types of custom images, followed by examples of each.

External image syntax

ActiveReports 14 545

Copyright © 2020 GrapeCity, Inc. All rights reserved.

=IconSet(location of image strip, condition#1, condition#2, condition#3, condition#4,
condition#5)

External image path example

=IconSet("C:\Images\customstrip.bmp", 4 > 9, 5 > 9, 10 > 9, False, False)

External image URL example

=IconSet("http://mysite.com/images/customstrip.gif", 4 > 9, 5 > 9, 10 > 9, False, False)

Image from an assembly resource syntax

=IconSet("res:[Assembly Name]/Resource name", condition#1, condition#2, condition#3,
condition#4, condition#5)

Assembly resource image example

=IconSet("res:ReportAssembly,
Version=1.1.1.1./ReportAssembly.Resources.Images.CustomImage.png",
4 > 9, 5 > 9, 10 > 9, False, False)

Embedded image syntax

=IconSet("embeddedImage:ImageName", condition#1, condition#2, condition#3, condition#4,
condition#5)

Embedded image example

=IconSet("embeddedImage:Grades", Fields!Score.Value >=90, Fields!Score.Value >=80,
Fields!Score.Value >=70, Fields!Score.Value >=60, True)

Theme image syntax

=IconSet("theme:ThemeImageName", condition#1, condition#2, condition#3, condition#4,
condition#5)

Theme image example

=IconSet("theme:Grades", Fields!Score.Value >=90, Fields!Score.Value >=80,
Fields!Score.Value >=70,
Fields!Score.Value >=60, True)

Data Visualizers Dialog

To open the dialog, drop down the BackgroundImage property of TextBox, CheckBox, Shape, and Container report
controls, or the Value property of Image report control, and select <Data Visualizer...>. To build the data visualizer
expression, select the appropriate values for each of the options in the dialog.

ActiveReports 14 546

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Range Bar
The Range Bar data visualization displays a 96 by 96 dpi bar image. The colored bar renders as half the height of the
image, centered vertically. The amount of colored bar to render to the right of the Start argument (or to the left in the
case of a negative value) is based on the Length argument. If the Length argument is zero, a diamond renders.

The Minimum and Maximum arguments determine the range of data. The area between the Length argument and the
Maximum argument is transparent (or between the Length and the Minimum in the case of a negative value).

The Range Bar Data Visualizer is supported in the Image report control Value property, and also in the TextBox, CheckBox,
Shape, and Container report controls' BackgroundImage - Value property.

Parameters
Minimum. The lowest value in the range of data. This value corresponds to the leftmost edge of the image.
If this argument is greater than the Start argument, Start becomes equal to Minimum. The data type is Single.
Maximum. The highest value in the range of data. This value corresponds to the rightmost edge of the image.
If this argument is less than the Start argument, Start becomes equal to Maximum. The data type is Single.
Color. The HTML color string to use in rendering the Length in the bar image.
Start. The point from which the Range Bar begins to be rendered. The data type is Single.
Length. The width of the bar to render within the control. Setting this value to 0 renders a diamond shape instead

ActiveReports 14 547

Copyright © 2020 GrapeCity, Inc. All rights reserved.

of a bar. The data type is Single.

You can use static values or aggregate functions (e.g. Min or Max) to set the parameters. For more information on these
and other aggregate functions, see the Common Functions topic.

Syntax
=RangeBar(Minimum, Maximum, Color, Start, Length)

Usage
Use this data visualizer to render a bar in the color specified, the length of which changes depending on the number
returned by the Length parameter, in the case of the simple example, GrossProfit. If your data contains only positive
values, Start corresponds with Minimum at the left edge of the DataBar. The area between the Length and the Maximum
is transparent.

Simple Example

Set the Length parameter to the value of a field in your dataset to display the field values visually.

Paste into a TextBox BackgroundImage property

=RangeBar(0,15000,"BlueViolet",0,Fields!GrossProfit.Value)

Example Using Negative Values

When your data contains negative as well as positive values, you can use an Immediate If expression for the Color
parameter. In this example, if the Projected Stock value is negative, it renders in Crimson, while positive values render in
BlueViolet. You can also see that negative values render to the left of Zero and positive values render to the right. A
Length value of exactly zero renders as a diamond.

Paste into a TextBox BackgroundImage property

=RangeBar(-5,20,IIf((Fields!InStock.Value - 5) < 0, "Crimson",
"BlueViolet"),0,Fields!InStock.Value-5)

ActiveReports 14 548

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Default Behavior

The function returns null (i.e. no image is rendered) in the following cases:

1. The Maximum is less than or equal to the Minimum.
2. The expression is placed in a property which does not take an image.
3. The Source property of the image is not set to Database.

The Start value changes in the following cases:

1. If the Start value is less than the Minimum value, Start is the same as Minimum.
2. If the Start value is greater than the Maximum value, Start is the same as Maximum.

The Length value changes in the following cases:

1. If the Start value plus the Length value is less than the Minimum value, Length becomes Minimum minus Start.
2. If the Start value plus the Length value is greater than the Maximum value, Length becomes Maximum minus

Start.

If the argument for any of the parameters cannot be converted to the required data type, the default value is used instead.

Parameter Default Value

Minimum 0

Maximum 0

Color Green

ActiveReports 14 549

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Start 0

Length 0

Dialog

When you select a TextBox, CheckBox, Shape, or a Container control on your report, in the Properties window or
Properties dialog, you can drop down the BackGroundImage Value property and select <Data Visualizer...> to launch
the dialog. The same is true if you select an Image control and drop down the Value property. To build the data visualizer
expression, select the appropriate values for each of the options in the dialog.

Range Bar Progress
The Range Bar Progress data visualization displays a 96 by 96 dpi double bar image. The first colored bar renders as half the height of
the image, centered vertically. The amount of colored bar to render to the right of the Start argument (or to the left in the case of a
negative value) is based on the Length argument. If the Length argument is zero, a diamond renders.

The second colored bar renders using the ProgressColor as one fourth of the height of the image, centered vertically over the Length
bar. The amount of colored bar to render to the right of the Start argument (or to the left in the case of a negative value) is based on

ActiveReports 14 550

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the Progress argument. If the Progress argument is zero, a smaller diamond renders.

The Minimum and Maximum arguments determine the range of data. The area between the Length and Progress arguments and the
Maximum argument is transparent (or between the Length and Progress and the Minimum in the case of a negative value).

The Range Bar Progress Data Visualizer is supported in the Image report control Value property, and also in the TextBox, CheckBox,
Shape, and Container report controls' BackgroundImage - Value property.

Parameters
Minimum. The lowest value in the range of data. This value corresponds to the leftmost edge of the image. If this argument is
greater than the Start argument, Start becomes equal to Minimum. The data type is Single.
Maximum. The highest value in the range of data. This value corresponds to the rightmost edge of the image. If this argument
is less than the Start argument, Start becomes equal to Maximum. The data type is Single.
Color. The HTML color string to use in rendering the Length, the thicker bar in the bar image.
Start. The point from which the Range Bar Progress begins to be rendered. The data type is Single.
Length. The length of the thicker bar to render within the control. Setting this value to 0 renders a diamond shape instead of a
bar. The data type is Single.
ProgressColor. The HTML color string to use in rendering the Progress, the thinner bar in the bar image.
Progress. The length of the thinner bar to render within the control. Setting this value to 0 renders a diamond shape instead of
a bar. The data type is Single.

You can use static values or aggregate functions (e.g. Min or Max) to set the parameters. For more information on these and other
aggregate functions, see the Common Functions topic.

Syntax
=RangeBarProgress(Minimum, Maximum, Color, Start, Length, ProgressColor, Progress)

Usage
Use this data visualizer to render a double bar in the colors specified, the length of which changes depending on the number returned
by the Length parameter for the thick bar, in the case of the simple example, GrossSales. The thin bar length is based on the value
returned by the Progress parameter, in this case, GrossProfit. If your data contains only positive values, Start corresponds with
Minimum at the left edge of the Range Bar. The area between the Length or Progress and the Maximum is transparent.

Simple Example

Set the Length and Progress parameters to the values of fields in your dataset to display the field values visually.

Paste into a TextBox BackgroundImage property

=RangeBarProgress(0,30000,"BlueViolet",0,Fields!GrossSales.Value,"Gold",Fields!GrossProfit.Value)

ActiveReports 14 551

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Example Using Negative Values

When your data contains negative as well as positive values, you can use an Immediate If expression for the Color parameter. In the
example below, if the Difference value is negative, it is rendered in red, while positive values are rendered in gold. You can also see
that negative values are rendered to the left of Zero and positive values are rendered to the right. A Length value of exactly zero is
rendered as a diamond. The thicker blue violet bar represents the InStock value.

Paste into a TextBox BackgroundImage property

=RangeBarProgress(-10,20,"BlueViolet",0,Fields!InStock.Value,IIf(Fields!Difference.Value < 0,
"Red", "Gold"),Fields!Difference.Value)

Default Behavior

The function returns null (i.e. no image is rendered) in any of the following cases:

1. The Maximum is less than or equal to the Minimum.
2. The expression is placed in a property which does not take an image.
3. The Source property of the image is not set to Database.

The Start value changes in the following cases:

1. If the Start value is less than the Minimum value, Start is the same as Minimum.
2. If the Start value is greater than the Maximum value, Start is the same as Maximum.

The Length value changes in the following cases:

1. If the Start value plus the Length value is less than the Minimum value, Length becomes Minimum minus Start.
2. If the Start value plus the Length value is greater than the Maximum value, Length becomes Maximum minus Start.

The Progress value changes in the following cases:

1. If the Start value plus the Progress value is less than the Minimum value, Progress becomes Minimum minus Start.
2. If the Start value plus the Progress value is greater than the Maximum value, Progress becomes Maximum minus Start.

If the argument for any of the parameters cannot be converted to the required data type, the default value is used instead.

Parameter Default Value

ActiveReports 14 552

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Minimum 0

Maximum 0

Color Green

Start 0

Length 0

ProgressColor Red

Progress 0

Dialog

When you select a TextBox, CheckBox, Shape, or a Container control on your report, in the Properties window or Properties dialog,
you can drop down the BackgroundImage Value property and select <Data Visualizer...> to launch the dialog. To build the data
visualizer expression, select the appropriate values for each of the options on the dialog.

For a Range Bar Progress expression, be sure to select the Display a progress indicator check box. This enables the progress options.

Data Bar

ActiveReports 14 553

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Data Bar data visualization displays a 96 by 96 dpi bar image. The colored bar fills the Image top to bottom, while the
Value argument determines the amount of colored bar to render to the right of the Zero argument (or to the left in the
case of a negative value).

The Minimum and Maximum arguments determine the range of data. The area between the Value argument and the
Maximum argument is transparent (or between the Value and the Minimum in the case of a negative value).

The Data Bar Data Visualizer is supported in the Image report control Value property, and also in the TextBox, CheckBox,
Shape, and Container report controls' BackgroundImage - Value property.

Parameters
Value. This is the field value in the report to be evaluated. The data type is Single.
Minimum. The lowest value in the range of data against which the Value argument is compared. This value
corresponds to the leftmost edge of the image. If this argument is greater than the Zero argument, Zero becomes
equal to Minimum. The data type is Single.
Maximum. The highest value in the range of data against which the Value argument is compared. This value
corresponds to the rightmost edge of the image. If this argument is less than the Zero argument, Zero becomes
equal to Maximum. The data type is Single.
Zero. This value determines the zero point to the left of which negative data is rendered, and to the right of which
positive data is rendered. The data type is Single.
Color. The HTML color string to use in rendering the Value in the bar image.
Alternate Color. The HTML color string to use when the Value is less than the Zero value (optional).

Select the Use Alternate Color when Value is less than Zero Value check box to enable the Alternate Color parameter.
You can use static values or aggregate functions (e.g. Min or Max) to set parameters. For more information on these and
other aggregate functions, see the Common Functions topic.

Syntax
=DataBar(Value, Minimum, Maximum, Zero, Color)
=DataBar(Value, Minimum, Maximum, Zero, Color, Alternate Color)

Usage
Use this data visualizer to render a bar in the color specified, the length of which changes depending on the number
returned by the Value parameter, in the case of the simple example, InStock. If your data contains only positive values,
Zero corresponds with Minimum at the left edge of the Data Bar. The area between the Value and the Maximum is
transparent.

Simple Example

Set the Value parameter to the value of a field in your dataset to display the field values visually.

Paste into the BackgroundImage Value property of a TextBox

=DataBar(Fields!InStock.Value,0,20,0,"BlueViolet")

ActiveReports 14 554

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Example Using Negative Values

When your data contains negative as well as positive values, you can select the Use Alternate Color when Value is less
than Zero Value check box, and then select an Alternate Color. In this example, if the Difference value is negative, it is
rendered in Crimson, while positive values are rendered in BlueViolet. You can also see that negative values are rendered
to the left of Zero and positive values are rendered to the right.

Paste in the BackgroundImage Value property of a TextBox

=DataBar(Fields!Difference.Value,-10,20,0,"BlueViolet","Crimson")

ActiveReports 14 555

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Default Behavior

The function returns null (i.e. no image is rendered) in any of the following cases:

1. The Maximum is less than or equal to the Minimum.
2. The expression is placed in a property which does not take an image.
3. The Source property of the image is not set to Database.

If the argument for any of the parameters cannot be converted to the required data type, the default value is used instead.

Parameter Default Value

Value 0

Minimum 0

Maximum 0

Zero 0

Color Green

Alternate Color null

Dialog

When you select a TextBox, CheckBox, Shape, or a Container control on your report, in the Properties window or
Properties dialog, you can drop down the BackGroundImage Value property and select <Data Visualizer...> to launch
the dialog. The same is true if you select an Image control and drop down the Value property. To build the data visualizer
expression, select the appropriate values for each of the options in the dialog.

ActiveReports 14 556

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Gradient
The Gradient data visualization displays a gradient of color that transitions from one color to another.

Parameters
Gradient type. The available gradient types are Horizontal, Vertical, DiagonalUp, DiagonalDown, FromCenter, and
FromCorner.
Color1. The start (primary) color of the gradient.
Color2. The end (secondary) color of the gradient.

Syntax
=Gradient(Gradient type, Color1, Color2)

Usage
Using Data Visualizers, the gradient can be applied in TextBox, Shape, CheckBox, and Container

ActiveReports 14 557

Copyright © 2020 GrapeCity, Inc. All rights reserved.

controls from BackgroundImage - Value property and in Image control from Value property. The following example
shows how Gradient background style can be simply applied to a control.

Example

Set the following expression in the BackgroundImage.Value property of the Shape control.

Paste into the BackgroundImage Value property of a Shape

=Gradient("Vertical","LightCyan","BlueVoilet")

Dialog

When you select a Shape control on your report, in the Properties window, drop down the BackGroundImage - Value
property and select <Data Visualizer...> to launch the dialog. The same is true if you select an Image control and drop
down the Value property. To build the data visualizer expression, select the appropriate values for each of the options in
the dialog.

ActiveReports 14 558

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: The Gradient style set using Data Visualizers is not displayed at design time.

Hatch
The Hatch data visualization displays the geometric hatch pattern.

Parameters
Hatch style. The available hatch styles are Horizontal, Vertical, ForwardDiagonal, BackwardDiagonal, LargeGrid, and
many more.
Color1. The color of pattern or foreground color.
Color2. The background color.

Syntax
=Hatch(Hatch style,Color1,Color2)

Usage
Using Data Visualizers, the hatch can be applied in TextBox, Shape, CheckBox, and Container
controls from BackgroundImage - Value property and in Image control from Value property. The following example
shows how Hatch background style can be simply applied to a control.

Example

Set the following expression in the Shape control's BackgroundImage - Value property.

Paste into BackgroundImage property

=Hatch("BackwardDiagonal","LightCyan","BlueVoilet")

Dialog

When you select a Shape control on your report, in the Properties window, drop down the BackGroundImage - Value
property and select <Data Visualizer...> to launch the dialog. The same is true if you select an Image control and drop
down the Value property. To build the data visualizer expression, select the appropriate values for each of the options in

ActiveReports 14 559

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the dialog.

Note: The Hatch style set using Data Visualizers is not displayed at design time.

Color Scale 2
The ColorScale2 data visualization displays a background color in a range of colors to indicate minimum and maximum
values, and all shades in between. The Color Scale Data Visualizer is available for TextBox and CheckBox controls.

Parameters
Value. This is the field value in the report to evaluate. The data type is Single.
Minimum. If the Value evaluates to this number, the StartColor renders.
Maximum. If the Value evaluates to this number, the EndColor renders.
StartColor. The HTML color string to use if the Value evaluates to the Minimum value.
EndColor. The HTML color string to use if the Value evaluates to the Maximum value.

You can use static values or aggregate functions (e.g. Min or Max) to set the Minimum and Maximum parameters. For

ActiveReports 14 560

Copyright © 2020 GrapeCity, Inc. All rights reserved.

more information on these and other aggregate functions, see the Common Functions topic.

Syntax
=ColorScale2(Value, Minimum, Maximum, StartColor, EndColor)

Usage
Use an expression with this syntax in the BackgroundColor property of a Textbox or a CheckBox control. This causes the
background color to change depending on the value of the field you specified in the Value parameter, in the case of the
example, InStock. Any values falling between the Minimum value and the Maximum render with a color between the
StartColor and EndColor.

Example

Set the Value parameter to the value of a field in your dataset to display the field values visually.

Paste into the BackgroundColor property of a TextBox

=ColorScale2(Fields!InStock.Value,0,20,"Crimson","MidnightBlue")

Default Behavior

The function returns Transparent in any of the following cases:

1. The Value is out of range (i.e. does not fall between the Minimum and Maximum values).
2. The Maximum is less than the Minimum.

ActiveReports 14 561

Copyright © 2020 GrapeCity, Inc. All rights reserved.

If the argument for any of the parameters cannot be converted to the required data type, the default value is used instead.

Parameter Default Value

Value 0

Minimum 0

Maximum 0

StartColor Silver

EndColor WhiteSmoke

Dialog

When you select a TextBox or a CheckBox control on your report, in the Properties window or Properties dialog, you can
drop down the BackGroundColor property and select <Data Visualizer...> to launch the dialog. To build the data
visualizer expression, select the appropriate values for each of the options in the dialog.

Note: If you select the Use a middle color check box, the expression used in the BackgroundColor property changes
to ColorScale3. For more information, see ColorScale3.

ActiveReports 14 562

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Color Scale 3
The ColorScale3 data visualization displays a background color in a range of colors to indicate minimum, middle, and
maximum values, and all shades in between. The Color Scale Data Visualizer is available for TextBox and CheckBox
controls.

ActiveReports 14 563

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Parameters
Value. This is the field value in the report to be evaluated. The data type is Single.
Minimum. If the Value evaluates to this number, the StartColor is rendered.
Middle. If the Value evaluates to this number, the MiddleColor is rendered.
Maximum. If the Value evaluates to this number, the EndColor is rendered.
StartColor. The HTML color string to use if the Value evaluates to the Minimum value.
MiddleColor. The HTML color string to use if the Value evaluates to the Middlevalue.
EndColor. The HTML color string to use if the Value evaluates to the Maximum value.

You can use static values or aggregate functions (e.g. Min, Avg, or Max) to set the Minimum, Middle, and Maximum
parameters. For more information on these and other aggregate functions, see the Common Functions topic.

Syntax
=ColorScale3(Value, Minimum, Middle, Maximum, StartColor, MiddleColor, EndColor)

Usage
Use an expression with this syntax in the BackgroundColor property of a Textbox or a CheckBox control. This causes the
background color to change depending on the value of the field you specified in the Value parameter, in the case of the
example, InStock. Any values falling between the Minimum value and the Middle value render with a gradient scale color
between the StartColor and MiddleColor. The closer the value is to the Minimum, the closer to Crimson the color
renders. In the same way, values falling between the Middle and Maximum render with a color between the
MiddleColor and EndColor, in this case, varying shades of yellow-green.

Example

Set the Value parameter to the value of a field in your dataset to display the field values visually.

ActiveReports 14 564

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Paste into the BackgroundColor property of a TextBox

=ColorScale3(Fields!InStock.Value,0,10,20,"Crimson","Yellow","MidnightBlue")

Default Behavior

The function returns Transparent in any of the following cases:

1. The Value is out of range (i.e. does not fall between the Minimum and Maximum values).
2. The Maximum is less than the Minimum.
3. The Middle is not between the Minimum and the Maximum.

If the argument for any of the parameters cannot be converted to the required data type, the default value is used instead.

Parameter Default Value

Value 0

Minimum 0

Middle 0

Maximum 0

StartColor Silver

MiddleColor Gainsboro

ActiveReports 14 565

Copyright © 2020 GrapeCity, Inc. All rights reserved.

EndColor WhiteSmoke

Dialog

When you select a TextBox or a CheckBox control on your report, in the Properties window or Properties dialog, you can
drop down the BackGroundColor property and select <Data Visualizer...> to launch the dialog. To build the data
visualizer expression, select the appropriate values for each of the options in the dialog.

Note: If you clear the Use a middle color check box, the expression used in the BackgroundColor property changes
to ColorScale2. For more information, see ColorScale2.

Custom Resource Locator
Page reports and RDL reports can resolve resources from your file system using file paths, but sometimes resources are
preserved in very specific sources, such as a database. With RDL report, you can create a custom resource locator to read
any resources that might be required by your reports from any type of location. You can use it for resources such

ActiveReports 14 566

Copyright © 2020 GrapeCity, Inc. All rights reserved.

as images and theme files, or for reports to use in drillthrough links, subreports, or master reports.

API
You can implement a custom resource locator by deriving from the GrapeCity.ActiveReports.ResourceLocator and
overriding the GetResource method.

The GetResource method returns ParentUri and Value properties. The Value property contains the located resource as a
memory stream. The ParentUri property contains the string URI of the parent of the resource within the resource
hierarchy.

Here is the GetResource method used in the sample.

C# MyPicturesLocator.cs code showing usage of the GetResource Method from the Sample

C# code. Paste inside a class.

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Globalization;
using System.IO;
using System.Runtime.InteropServices;
using System.Text;
using GrapeCity.ActiveReports.Samples.CustomResourceLocator.Properties;
namespace GrapeCity.ActiveReports.Samples.CustomResourceLocator
{
 /// Implementation of ResourceLocator which looks for resources in the My Pictures
folder.
 internal sealed class MyPicturesLocator : ResourceLocator
 {
 private const string UriSchemeMyImages = "MyPictures:";
 '<summary>
 'Look for the resources in My Pictures folder.
 '</summary>
 '<param name="resourceInfo">The information about the resource to be obtained.
</param>
 '<returns>The resource, null if it was not found. </returns>
 public override Resource GetResource(ResourceInfo resourceInfo)
 {

 Resource resource;
 string name = resourceInfo.Name;
 if (name == null || name.Length == 0)
 {
 throw new ArgumentException(Resources.ResourceNameIsNull, "name");
 }
 Uri uri = new Uri(name);
 if (uri.GetLeftPart(UriPartial.Scheme).StartsWith(UriSchemeMyImages, true,
CultureInfo.InvariantCulture))
 {

ActiveReports 14 567

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Stream stream = GetPictureFromSpecialFolder(uri);
 if (stream == null)
 {
 stream = new MemoryStream();
 Resources.NoImage.Save(stream, Resources.NoImage.RawFormat);
 }
 resource = new Resource(stream, uri);
 }
 else
 {
 throw new
InvalidOperationException(Resources.ResourceSchemeIsNotSupported);
 }
 return resource;
 }
 /// <summary>
 /// Returns the specified image from My Pictures folder.
 /// </summary>
 /// <param name="path">The uri of the image located in My Pictures code, i.e.
MyImages:logo.gif.</param>
 /// <returns>The stream contains the image data or null if the picture can't be
found or handled.</returns>
 private static Stream GetPictureFromSpecialFolder(Uri path)
 {
 int startPathPos = UriSchemeMyImages.Length;
 if (startPathPos >= path.ToString().Length)
 {
 return null;
 }
 string pictureName = path.ToString().Substring(startPathPos);
 string myPicturesPath =
Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);
 if (!myPicturesPath.EndsWith("\\")) myPicturesPath += "\\";
 string picturePath = Path.Combine(myPicturesPath, pictureName);
 if (!File.Exists(picturePath)) return null;
 MemoryStream stream = new MemoryStream();
 try
 {
 Image picture = Image.FromFile(picturePath);
 picture.Save(stream, picture.RawFormat);
 stream.Position = 0;
 }
 catch(OutOfMemoryException)
 /// The file is not a valid image, or GDI+ doesn't support the
image type.
 {
 return null;
 }

ActiveReports 14 568

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 catch(ExternalException)
 /// The image can't be saved.
 {
 return null;
 }
 return stream;
 }
 }
}

Visual Basic MyPicturesLocator.vb code showing usage of the GetResource Method from the Sample

Visual Basic code. Paste inside a class.

Imports System.Globalization
Imports System.IO
Imports System.Runtime.InteropServices

Public Class MyPicturesLocator
 Inherits ResourceLocator

 Const UriSchemeMyImages As String = "MyPictures:"

 '<summary>
 'Look for the resources in My Pictures folder.
 '</summary>
 '<param name="resourceInfo">The information about the resource to be obtained.
</param>
 '<returns>The resource, null if it was not found. </returns>

 Public Overrides Function GetResource(ByVal resourceInfo As ResourceInfo) As
Resource
 Dim resource As Resource
 Dim name As String = resourceInfo.Name

 If (String.IsNullOrEmpty(name)) Then

 Throw New ArgumentException(My.Resources.ResourceNameIsNull, "name")

 End If

 Dim uri As New Uri(name)
 If (Uri.GetLeftPart(UriPartial.Scheme).StartsWith(UriSchemeMyImages, True,
CultureInfo.InvariantCulture)) Then

 Dim stream As Stream = GetPictureFromSpecialFolder(uri)
 If (stream Is Nothing) Then
 stream = New MemoryStream()

ActiveReports 14 569

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 My.Resources.NoImage.Save(stream, My.Resources.NoImage.RawFormat)
 End If
 resource = New Resource(stream, uri)

 Else
 Throw New
InvalidOperationException(My.Resources.ResourceSchemeIsNotSupported)
 End If
 Return resource
 End Function

 Function GetPictureFromSpecialFolder(ByVal path As Uri) As Stream
 Dim startPathPos As Integer = UriSchemeMyImages.Length

 If (startPathPos >= path.ToString().Length) Then
 Return Nothing
 End If

 Dim pictureName As String = path.ToString().Substring(startPathPos)
 Dim myPicturesPath As String =
Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)

 If (Not myPicturesPath.EndsWith("\\")) Then
 myPicturesPath += "\\"
 End If

 Dim picturePath As String = System.IO.Path.Combine(myPicturesPath, pictureName)

 If (Not File.Exists(picturePath)) Then
 Return Nothing
 End If

 Dim stream As New MemoryStream()

 Try
 Dim picture As Image = Image.FromFile(picturePath)
 picture.Save(stream, picture.RawFormat)
 stream.Position = 0
 Catch ex As OutOfMemoryException
 ' The file is not a valid image, or GDI+ doesn't support the image type.
 Return Nothing
 Catch ex As ExternalException
 ' The image can't be saved.
 Return Nothing
 End Try

 Return stream
 End Function

ActiveReports 14 570

Copyright © 2020 GrapeCity, Inc. All rights reserved.

End Class

Sample
The product sample is located here:

..\Samples14\Advanced\PageAndRDL\CustomResourceLocator\C# or VB.NET

contains a custom resource locator that looks for files in the current user’s My Pictures folder. It does this by looking for
special MyPictures protocol.

Section Report Concepts
There are a number of concepts that only apply to section reports.

In this section
Section Report Toolbox

This section provides information on each of the report controls available in the ActiveReports 14 Section
Report group of the Visual Studio toolbox.

Section Report Structure
Learn about the report structure in a section layout.

Section Report Events
Learn about events that you can use to customize section reports.

Designing Code-based Section Reports in .NET Core
Learn about the workaround to design Code-Based Section Reports in projects targeting .NET Core.

Scripting in Section Reports
Learn how to use scripts in a section layout.

Report Settings Dialog
See the various options provided in Report Settings dialog.

Date, Time, and Number Formatting
Learn how you can customize formatting with .NET strings.

Optimizing Section Reports
Learn about ways to optimize section reports to reduce memory consumption and increase speed.

CacheToDisk and Resource Storage
Learn about IsolatedStorage and other considerations when you use CacheToDisk to reduce memory consumption.

Section Report Toolbox
When a Section report has focus in Visual Studio, the ActiveReports 14 Section Report toolbox group offers a number of
report controls that you can use when creating a section report. You can drag these from the toolbox and drop them onto
your section reports. These tools are different than those in the Toolbox.

Note: Take care in naming report controls, as they are displayed to end users in the advanced search feature of the
Viewer.

ActiveReports 14 571

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In this section
Label

The label is used to display descriptive text for a control and helps the user to describe the data displayed in a report.
TextBox (Section Report)

The text box is a basic reporting control that allows direct display and editing of unformatted text.
CheckBox (Page Report)

The checkbox gives the user an option of yes or no and true or false.
RichTextBox

The rich text box control allows the user to enter rich text in the form of formatted text, tables, hyperlinks, images, etc.
Shape

The shape is a user interface element that allows to draw shapes on the screen.
Picture

This control displays images files on the screen and also performs functions like resizing and cropping of images
being used.

Line (Section Report)
The line visually draws boundaries or highlights specific areas of a report.

Page Break
The PageBreak control is used when you need to stop printing a report inside the selected section and resume it on a
new page.

Barcode (Section Report)
The BarCode control allows you to choose from several barcode styles available, and bind them to a data source.

SubReport (Section Report)
Use the subreport control as a placeholder for data from a separate report. Use code to connect the separate report
to the subreport control.

Ole Object
You can add an OLE object, bound to a database or unbound, directly to your report.

Note: The OleObject control is not displayed in the toolbox by default, because it is obsolete, and is only
available for backward compatibility.

Chart

You can use the ChartControl for a graphical presentation of data in a report. There are numerous chart types that
you can use to easily design and render data.

Report Info
The ReportInfo control allows you to quickly display page numbers, page counts and report dates.

Cross Section Controls
The CrossSectionLine and CrossSectionBox controls provide visual boundaries and highlight specific areas of your
report that span multiple report sections. This CrossSectionLine control is a vertical line that starts in the header
section and spans the intervening sections until it ends in the footer. (For a horizontal or diagonal line, use the Line
control.) The CrossSectionBox control starts in the header section and spans any intervening sections to end in the
related footer section.

Label
The Label control for Section reports is very similar to the standard Visual Studio Label control. Since, by inheriting from
the ARControl object, it can bind to data with the DataField property, and since you can enter static text in the TextBox
control, the main difference between the two controls is the Angle property of the Label control, and the following

ActiveReports 14 572

Copyright © 2020 GrapeCity, Inc. All rights reserved.

properties of the TextBox control: CanGrow, CanShrink, CountNullValues, Culture, DistinctField, OutputFormat,
SummaryFunc, SummaryGroup, SummaryRunning, and SummaryType.

This control may become obsolete if the Angle property is added to the TextBox, and then will be kept only for
compatibility with previous versions.

Important Properties

Property Description

Angle Gets or sets the angle (slope) of the text within the control area. Set the Angle property to 900 to
display text vertically.

CharacterSpacing Gets or sets the space between characters in points.

DataField Gets or sets the field name from the data source to bind to the control.

HyperLink Gets or sets a URL to which the viewer navigates when the user clicks the label at run time. The
URL becomes an anchor tag or a hyperlink in HTML and PDF exports.

LineSpacing Gets or sets the space between lines in points.

MinCondenseRate Specifies the minimal rate of the text horizontal shrinking in percentages. Should be between 10 and
100.

MultiLine Gets or sets a value indicating whether to allow text to break to multiple lines within the control.

ShrinkToFit Gets or sets a value indicating whether to decrease the font size so that all of the text shows within
the boundaries of the control.

Style Gets or sets a style string for the label.

Text Gets or sets the text to show on the report.

TextJustify Specifies how to distribute text when the Alignment property is set to Justify. With any other
Alignment setting, this property is ignored.

VerticalAlignment Gets or sets the vertical position of the label's text within the bounds of the control.

VerticalText Indicates whether to render the label's text vertically.

WrapMode Indicates whether a multi-line label control wraps words or characters to the beginning of the next
line when necessary.

You can double-click in the Label control to enter edit mode and enter text directly in the control, or you can enter text in
the Properties window or in code through the Text property.

You can format text in the Label control in edit mode using the ActiveReports toolbar, or you can modify properties in the
Properties window. Formats apply to all of the text in the control. Text formatting changes in the Properties window
immediately appear in the control, and changes made in the toolbar are immediately reflected in the Properties window.

Note: In edit mode for a Label with the Alignment property set to Justify, the Alignment value temporarily changes to
the default value, Left. Once you leave edit mode, it automatically changes back to Justify.

Keyboard Shortcuts
In edit mode, you can use the following keyboard shortcuts.

ActiveReports 14 573

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Key Combination Action

Enter New line.

Alt + Enter Saves modifications and exits edit mode.

Esc Cancels modifications and exits edit mode.

In the End User Designer, you can disable this feature in the EditModeEntering ('EditModeEntering Event' in the on-
line documentation) and EditModeExit ('EditModeExit Event' in the on-line documentation) events.

Label Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the label that is unique within the report. This name is displayed in the Document Outline and in
XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

DataField: Select a field from the data source to bind to the control.

Text: Enter static text to show in the label.

HyperLink: Enter a URL to use in the Viewer HyperLink event. The URL automatically converts to an anchor tag or
hyperlink in PDF and HTML exports.

Appearance

Background Color: Select a color to use for the background of the label.

Angle: Use the slider to set the degree of slope for the text within the control area.

Font

Name: Select a font family name or a theme font.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Normal or Bold.

Color: Choose a color to use for the text.

Decoration: Select check boxes for Underline and Strikeout.

GDI Charset: Enter a value to indicate the GDI character set to use. For a list of valid values, see MSDN Font.GDICharSet
Property.

GDI Vertical: Select this checkbox to indicate that the font is derived from a GDI vertical font.

Format

ActiveReports 14 574

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8

Line spacing: Enter a value in points to use for the amount of space between lines.

Character spacing: Enter a value in points to use for the amount of space between characters.

Multiline: Select this check box to allow text to render on multiple lines within the control.

Minimal rate of text horizontal shrinking (in %): Specify the percentage to which the text should be shrunk
horizontally.

Text direction
RightToLeft: Select this check box to reverse the text direction.

Vertical text: Select this check box for top to bottom text.

Alignment

Vertical alignment: Choose Top, Middle, or Bottom.

Horizontal alignment: Choose Left, Center, Right, or Justify.

Justify method: Choose Auto, Distribute, or DistributeAllLines.

Note: You must select Justify in the Horizontal alignment property to enable the Justification method property
options.

Wrap mode: Choose NoWrap, WordWrap, or CharWrap to determine whether and how text breaks to the next line.

Padding
Enter values in points to set the amount of space to leave around the label.

Top
Left
Right
Bottom

TextBox (Section Report)
The TextBox control is the basis of reporting as it is used to display text in section reports. You can bind it to data or set it
at run time. It is the same control that forms when you drag a field onto a report from the Report Explorer.

Important Properties

Property Description

CharacterSpacing Gets or sets a character spacing in points.

LineSpacing Gets or sets a line spacing in points.

OutputFormat Gets or sets the mask string used to format the Value property before placing it in the Text property.

Style Gets or sets a style string for the textbox.

TextJustify Specifies text justification with TextAlign set to Justify.

ActiveReports 14 575

Copyright © 2020 GrapeCity, Inc. All rights reserved.

VerticalAlignment Gets or sets the position of the textbox's text vertically within the bounds of the control.

VerticalText Gets or sets whether to render text according to vertical layout rules.

CanGrow Determines whether ActiveReports should increase the height of the control based on its content.

CanShrink Determines whether ActiveReports should decrease the height of the control based on its value.

MinCondenseRate Specifies the minimal rate of the text horizontal shrinking in percentages. Should be between 10 and
100.

MultiLine Gets or sets a value indicating whether this is a multi-line textbox control.

ShrinkToFit Determines whether ActiveReports decreases the font size when text values exceed available space.

WrapMode Indicates whether a multi-line textbox control automatically wraps words or characters to the
beginning of the next line when necessary.

CountNullValues Boolean which determines whether DBNull values should be included as zeroes in summary fields.

Culture Gets or sets CultureInfo used for value output formatting.

DataField Gets or sets the field name from the data source to bind to the control.

HyperLink Gets or sets the hyperlink for the text control.

Text Gets or sets the formatted text value to be rendered in the control.

DistinctField Gets or sets the name of the data field used in a distinct summary function.

SummaryFunc Gets or sets the summary function type used to process the DataField Values.

SummaryGroup Gets or sets the name of the group header section that is used to reset the summary value when
calculating subtotals.

SummaryRunning Gets or sets a value that determines whether that data field summary value will be accumulated or
reset for each level (detail, group or page).

SummaryType Gets or sets a value that determines the summary type to be performed.

You can double-click in the TextBox control to enter edit mode and enter text directly in the control, or you can enter text
in the Properties window or in code through the Text property.

You can format text in the TextBox control in edit mode using the ActiveReports toolbar, or you can modify properties in
the Properties window. Formats apply to all of the text in the control. Text formatting changes in the Properties window
immediately appear in the control, and changes made in the toolbar are immediately reflected in the Properties window.

Note: In edit mode for a TextBox with the Alignment property set to Justify, the Alignment value temporarily changes
to the default value, Left. Once you leave edit mode, it automatically changes back to Justify.

Keyboard Shortcuts
In edit mode, you can use the following keyboard shortcuts.

Key Combination Action

ActiveReports 14 576

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Enter New line.

Alt + Enter Saves modifications and exits edit mode.

Esc Cancels modifications and exits edit mode.

In the End User Designer, you can disable this feature in the EditModeEntering ('EditModeEntering Event' in the on-
line documentation) and EditModeExit ('EditModeExit Event' in the on-line documentation) events.

TextBox Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the textbox that is unique within the report. This name is displayed in the Document Outline and
in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

DataField: Select a field from the data source to bind to the control.

Text: Enter static text to show in the textbox. If you specify a DataField value, this property is ignored.

HyperLink: Enter a URL to use in the Viewer HyperLink event. The URL automatically converts to an anchor tag or
hyperlink in PDF and HTML exports.

Appearance

Background Color: Select a color to use for the background of the textbox.

Font

Name: Select a font family name or a theme font.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Normal or Bold.

Color: Choose a color to use for the text.

Decoration: Select check boxes for Underline and Strikeout.

GDI Charset: Enter a value to indicate the GDI character set to use. For a list of valid values, see MSDN Font.GDICharSet
Property.

GDI Vertical: Select this checkbox to indicate that the font is derived from a GDI vertical font.

Format

Line spacing: Enter a value in points to use for the amount of space between lines.

Character spacing: Enter a value in points to use for the amount of space between characters.

ActiveReports 14 577

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8

Multiline: Select this check box to allow text to render on multiple lines within the control.

Minimal rate of text horizontal shrinking (in %): Specify the percentage to which the text should be shrunk
horizontally.

Textbox height
Can increase to accommodate contents: Select this check box to set CanGrow to True.

Can decrease to accommodate contents: Select this check box to set CanShrink to True.

Can shrink text to fit fixed size control: Select this check box to set ShrinkToFit to True.

Text direction
RightToLeft: Select this check box to reverse the text direction.

Vertical text: Select this check box for top to bottom text.

Alignment

Vertical alignment: Choose Top, Middle, or Bottom.

Horizontal alignment: Choose Left, Center, Right, or Justify.

Justify method: Choose Auto, Distribute, or DistributeAllLines.

Wrap mode: Choose NoWrap, WordWrap, or CharWrap to select whether to wrap words or characters to the next line.

Note: You must select Justify in the Horizontal alignment property to enable the Justification method property
options.

Wrap mode: Choose NoWrap, WordWrap, or CharWrap to determine whether and how text breaks to the next line.

Padding
Enter values in points to set the amount of space to leave around the label.

Top
Left
Right
Bottom

Summary

SummaryFunc: Select a type of summary function to use if you set the SummaryRunning and SummaryType properties to
a value other than None. For descriptions of the available functions, see the SummaryFunc Enumeration (on-line
documentation).

SummaryGroup: Select a section group that you have added to the report. If you also set the SummaryRunning property
to Group, the textbox summarizes only the values for that group.

SummaryRunning: Select None, Group, or All. If None, the textbox shows the value for each record. If Group, the
textbox summarizes the value for the selected SummaryGroup. If All, the textbox summarizes the value for the entire
report.

SummaryType: Select the type of summary to use. For descriptions of the available types, see the SummaryType

ActiveReports 14 578

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Enumeration (on-line documentation).

Distinct Field: Select a field to use with one of the SummaryFunc distinct enumerated values.

Count null values: Select this check box to include null values as zeroes in summary fields.

CheckBox (Section Report)
In ActiveReports, you can use the CheckBox control to represent a Boolean value in a report. By default, it appears as a
small box with text to the right. If the DataField value evaluates to True, the small box appears with a check mark; if False,
the box is empty. By default, the checkbox is empty.

Important Properties

Property Description

CheckAlignment Gets or sets the alignment of the check box text within the control drawing area.

Checked Gets or sets a value indicating whether the check box is in the checked state. You can also set the
Checked property of the check box in code or bind it to a Boolean database value.

DataField Gets or sets the field from the data source to bind to the control.

Text Gets or sets the printed caption of the check box.

You can double-click in the CheckBox control to enter edit mode and enter text directly in the control, or you can enter
text in the Properties window or you can assign data to display in code through the Text property.

You can format text in the CheckBox control in edit mode using the ActiveReports toolbar, or you can modify properties in
the Properties window. Formats apply to all of the text in the control. Text formatting changes in the Properties window
immediately appear in the control, and changes made in the toolbar are immediately reflected in the Properties window.

Note: In edit mode for a CheckBox with the Alignment property set to Justify, the Alignment value temporarily
changes to the default value, Left. Once you leave edit mode, it automatically changes back to Justify.

Keyboard Shortcuts
In edit mode, you can use the following keyboard shortcuts.

Key Combination Action

Enter New line.

Alt + Enter Saves modifications and exits edit mode.

Esc Cancels modifications and exits edit mode.

In the End User Designer, you can disable this feature in the EditModeEntering ('EditModeEntering Event' in the on-
line documentation) and EditModeExit ('EditModeExit Event' in the on-line documentation) events.

CheckBox Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

ActiveReports 14 579

Copyright © 2020 GrapeCity, Inc. All rights reserved.

General

Name: Enter a name for the CheckBox that is unique within the report. This name is displayed in the Document Outline
and in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such
as period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

DataField: Select a field that returns a Boolean value from the data source to bind to the control. The value of this field
determines how to set the Checked property at run time.

Text: Enter static text to show in the textbox. If you specify a DataField value, this property is ignored.

Check Alignment: Drop down the visual selector to choose the vertical and horizontal position for the check box within
the control.

Checked: Select this check box to have the CheckBox control appear with a check mark in the box.

Appearance

Background Color: Select a color to use for the background of the textbox.

Font

Name: Select a font family name or a theme font.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Normal or Bold.

Color: Choose a color to use for the text.

Decoration: Select check boxes for Underline and Strikeout.

GDI Charset: Enter a value to indicate the GDI character set to use. For a list of valid values, see MSDN Font.GDICharSet
Property.

GDI Vertical: Select this checkbox to indicate that the font is derived from a GDI vertical font.

Alignment

Wrap mode: Choose NoWrap, WordWrap, or CharWrap to select whether to wrap words or characters to the next line.

Padding
Enter values in points to set the amount of space to leave around the check box.

Top
Left
Right
Bottom

RichTextBox

ActiveReports 14 580

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8

In ActiveReports, the RichTextBox control is used to display, insert and manipulate formatted text. It is different from
the TextBox control in a number of ways. The most obvious is that it allows you to apply different formatting to different
parts of its content.

You can also load an RTF file or an HTML file into the RichTextBox control at design time or at run time, and you can use it
to create field merged reports with field placeholders that you replace with values at run time. You can add fields to the
text you enter directly in the control by right-clicking and choosing Insert Fields and providing a field name.

For more information, see Load a File into a RichTextBox Control and Mail Merge with RichTextBox.

Keyboard Shortcuts

In edit mode, you can use the following keyboard shortcuts.

Key Combination Action

Enter New line.

Alt + Enter Saves modifications and exits edit mode.

Esc Cancels modifications and exits edit mode.

In the End User Designer, you can disable this feature in the EditModeEntering ('EditModeEntering Event' in the on-
line documentation) and EditModeExit ('EditModeExit Event' in the on-line documentation) events.

Load File Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Load file command to open the dialog. This allows you to select a file to load into the control at design time.
Supported file types are as follows.

Text (*.txt)
RichText (*.rtf)
HTML (*.htm, *.html)

Text/RichText file

When you load a Text/RichText file, the control will display the file at design time in the edit mode.

ActiveReports 14 581

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Important Properties

Property Description

AutoReplaceFields If True, any fields in the RTF control are replaced with fields from the data source.

CanGrow Determines whether ActiveReports should increase the height of the control based on its content.

CanShrink Determines whether ActiveReports should decrease the height of the field based on its value.

MultiLine Gets or sets a value that determines whether the RichTextBox prints multiple lines or a single line.

DataField Gets or sets the field name from the data source to bind to the control.

HTML File

When you load an HTML file, the control will display the HTML markup at design time in the edit mode.

ActiveReports 14 582

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Important: The HTML text in an HTML file, loaded into the RichTextBox control, must be enclosed in the <body>
</body> tags. Otherwise, the HTML data is converted into RTF.

Supported Tags
See the Supported HTML Tags section in Formatted Text to learn about what HTML tags the RichTextBox control
supports.

To load a file into the report at run time, use the Load method. For more information, see Load Method (on-line
documentation).

RichTextBox Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the RichTextBox that is unique within the report. This name is displayed in the Document Outline.
You can only use underscore (_) as a special character in the Name field. Other special characters such as period (.), space (
), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

DataField: Select a field from the data source to bind to the control.

Max length: Enter the maximum number of characters to display in the control. If you do not specify a value, it displays
an unlimited number of characters.

AutoReplaceFields: Select this check box to have ActiveReports replace any fields in the control with values from the data

ActiveReports 14 583

Copyright © 2020 GrapeCity, Inc. All rights reserved.

source.

Appearance

Background Color: Select a color to use for the background of the control.

Format

RichTextBox height
Can increase to accommodate contents: Select this check box to set CanGrow to True.

Can decrease to accommodate contents: Select this check box to set CanShrink to True.

Multiline: Select this check box to allow the control to display multiple lines of text.

Shape (Section Report)
In ActiveReports, the Shape control is used to add simple shapes to a report.

Important Properties

Property Description

LineColor Gets or sets the color of the shape lines.

LineStyle Gets or sets the pen style used to draw the line.

LineWeight Gets or sets the pen width used to draw the shape.

Style Gets or sets the shape type to draw. You can select from Rectangle, Ellipse and a RoundedRect.

RoundingRadius Sets the radius of each corner for the RoundRect shape type. You can select Default, TopLeft,
TopRight, BottomLeft or BottomRight. Selecting Default sets the radius of all the corners of the Shape
control to a specified percentage. Default value = 10 (percent).

Shape Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the shape that is unique within the report. This name is displayed in the Document Outline and in
XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

Appearance

Shape type: Select the type of shape to display. You can choose from Rectangle, Ellipse, or RoundRect. For a circle, set
the control width and height properties to the same value, and choose Ellipse, or choose RoundRect and set the Rounding

ActiveReports 14 584

Copyright © 2020 GrapeCity, Inc. All rights reserved.

radius to 100%.

Rounded Rectangle: When the Shape type is set to RoundRect, you can specify the radius for each corner of the shape
independently. Drag the handlers available at each corner of the shape to set the value of the radius at each corner.

Note: To enable specific corners, check the CheckBox available near each corner of the Shape control.

Use the same radius on specified corners: Select this option to apply the same radius to all selected corners of
the shape.

Use different radius on specified corners: Select this option to apply a different radius to each selected corner of
the shape.

Line style: Select a line style to use for the shape line. You can set it to Transparent, Solid, Dash, Dot, DashDot,
DashDotDot, or Double.

Line weight: Enter the width for the shape line.

Line color: Select a color to use for the shape line.

Background color: Select a color to use for the background of the shape.

Background style: Select a background style for the shape from Solid, Gradient, and Pattern. Depending on the style
selected, other properties are available.

Picture
In section reports, the Picture control is used to print an image on the report. In the Image property of the Picture control,
you can select any image file to display on your report.

Note: Use the PictureAlignment and SizeMode properties to control cropping and alignment.

Important Properties

Property Description

LineColor Gets or sets the border line color around the Picture control.

LineStyle Gets or sets the pen style used to paint the border around the Picture control.

LineWeight Gets or sets the pen width of the border line.

PictureAlignment Gets or sets the position of the image within the control area.

Description Gets or sets the alternate description for the picture. Used in the Html Export for the "alt" img tag
property.

HyperLink Gets or sets a URL address that can be used in the viewer's Hyperlink event to navigate to the
specified location. The URL is automatically converted into an anchor tag or a hyperlink in HTML and
PDF exports.

Image Gets or sets the image to print.

SizeMode Gets or sets a value that determines how the image is sized to fit the Picture control area.

ActiveReports 14 585

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Picture Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the picture control that is unique within the report. This name is displayed in the Document
Outline and in XML exports. You can only use underscore (_) as a special character in the Name field. Other special
characters such as period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

DataField: Select a field from the data source to bind to the control.

Choose image: Click this button open a dialog where you can navigate to a folder from which to select an image file to
display.

HyperLink: Enter a URL to use in the Viewer HyperLink event. The URL automatically converts to an anchor tag or
hyperlink in PDF and HTML exports.

Title: Enter static text for the picture.

Description: Enter text to describe the image for those who cannot see it. This is used in the HTML export for the "alt"
attribute of the img tag.

Appearance

Line style: Select a line style to use for the border line. You can set it to Transparent, Solid, Dash, Dot, DashDot,
DashDotDot, or Double.

Line weight: Enter the width for the border line.

Line color: Select a color to use for the border line.

Background color: Select a color to use for the background of the picture control.

Picture alignment: Select how to align the image within the control. You can select from TopLeft, TopRight, Center,
BottomLeft, or BottomRight.

Size mode: Select how to size the image within the control. You can select from Clip, Stretch, or Zoom. Clip uses the
original image size and clips off any excess, Stretch fits the image to the size and shape of the control, and Zoom fits the
image into the control while maintaining the aspect ratio of the original image.

Line (Section Report)
In ActiveReports, the Line control allows you to draw vertical, horizontal or diagonal lines that visually separate or
highlight areas within a section on a report.

Note: If you need lines to span across report sections, please see the CrossSectionLine control.

You can use your mouse to visually move and resize the Line, or you can use the Properties window to change its X1, X2,

ActiveReports 14 586

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Y1, and Y2 properties to specify the coordinates for its starting and ending points.

Important Properties

Property Description

AnchorBottom Anchors the line to the bottom of the containing section so that the line grows along with the section.

LineColor Gets or sets the color of the line.

LineStyle Gets or sets the pen style used to draw the line.

LineWeight Gets or sets the pen width of the line.

X1 Gets or sets the horizontal coordinate of the line's starting point.

X2 Gets or sets the horizontal coordinate of the line's end point.

Y1 Gets or sets the vertical coordinate of the line's starting point.

Y2 Gets or sets the vertical coordinate of the line's end point.

Line Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the line that is unique within the report. This name is displayed in the Document Outline and in
XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

Appearance

Line style: Select a line style to use for the line. You can set it to Transparent, Solid, Dash, Dot, DashDot, DashDotDot, or
Double.

Line weight: Enter the width for the line.

Line color: Select a color to use for the line.

Anchor at bottom: Select this check box to automatically change the Y2 value to the value of the bottom edge of the
containing section after it has grown to accommodate data at run time.

Page Break
You can cause ActiveReports to break to a new page at any point within any section using the PageBreak control. All
controls placed below the PageBreak in the section render to a new page.

Caution: It is not recommended to place PageReport control over other controls as it can cause extra page breaks.

ActiveReports 14 587

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tip: Another way to cause ActiveReports to break to a new page is by setting the NewPage property of a section to
Before, After, or BeforeAfter. This property is available on any section except for PageHeader and PageFooter.

Important Properties

Property Description

Enabled Determines whether to enable the PageBreak.

Location - X Gets or sets the horizontal location of an object.

Location - Y Gets or sets the vertical location of an object.

PageBreak Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the PageBreak that is unique within the report. This name is displayed in the Document Outline
and in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such
as period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Enabled: Select a field from the data source to bind to the control.

Barcode (Section Report)
The Barcode report control offers various barcode styles to choose from. This saves you the time and expense of finding
and integrating a separate component. As with other data-bound report controls, you can bind a barcode to data using
the DataField property.

Apart from the barcode style, you can manage the alignment, color, background color, caption position, font, text, and
check whether checksum is enabled in the Properties Window. There are more properties available with the Code49,
PDF417, and QRCode barcode styles. Click the Barcode to reveal its properties in the Properties window. All of the
properties specific to this report control are also available in the Barcode dialog.

Important Properties

The following properties help you to customize the specific barcode you need for your application:

Property Description

Alignment The horizontal alignment of the caption in the control. Select from Near, Center, or Far. See
CaptionPosition for vertical alignment.

AutoSize When set to True, the barcode automatically stretches to fit the control.

BackColor Select a background fill color for the barcode.

BarHeight Set the height, in inches, of the barcode's bars. If the bar height exceeds the height of the control,
this property is ignored.

ActiveReports 14 588

Copyright © 2020 GrapeCity, Inc. All rights reserved.

CaptionGrouping Gets or sets a value indicating whether to add spaces between groups of characters in the caption
to make long numbers easier to read. This property is only available with certain styles of barcode,
and is ignored with other styles.

CaptionPosition The vertical alignment of the caption in the control. Select from None, Above, or Below.
See Alignment for horizontal alignment. None is selected by default, and no caption is displayed.

CheckSumEnabled Some barcode styles require a checksum and some have an optional checksum. CheckSumEnabled
has no effect if the style already requires a check digit or if the style does not offer a checksum
option.

Font Set the font for the caption. Only takes effect if you set the CaptionPosition property to a value
other than None.

ForeColor Select a color for the barcode and caption.

NarrowBarWidth Also known as the X dimension, this is a value defining the width of the narrowest part of the
barcode. Before using an extremely small value for this width, ensure that the scanner can read it.
This value is specified in pixels (for example, 10 pixels).

NWRatio Also known as the N dimension, this is a value defining the multiple of the ratio between the
narrow and wide bars in symbologies that contain bars in only two widths. For example, if it is a 3
to 1 ratio, this value is 3.

QuietZone Sets an area of blank space on each side of a barcode that tells the scanner where the symbology
starts and stops. You can set separate values for the Left, Right, Top, and Bottom.

Rotation Sets the amount of rotation to use for the barcode. You can select from None, Rotate90Degrees,
Rotate180Degrees, or Rotate270Degrees.

Style Sets the symbology used to render the barcode. See the table below for details about each style.

SupplementOptions Sets the 2/5-digit add-ons for EAN/UPC symbologies. You can specify Text, DataField, BarHeight,
CaptionPosition, and Spacing for the supplement.

Text Sets the value to print as a barcode symbol and caption. ActiveReports fills this value from the
bound data field if the control is bound to the data source.

Limitations

Some barcode types may render incorrectly and contain white lines in the Html and RawHtml views. However, this
limitation does not affect printing and scanning. The list of barcode types that may render with white lines in the Html and
RawHtml views:

Code49
QRCode
Pdf417
RSSExpandedStacked
RSS14Stacked
RSS14StackedOmnidirectional

Barcode Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click

ActiveReports 14 589

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the Property dialog command to open the dialog.

General

Name: Enter a name for the control that is unique within the report. This name is displayed in the Document Outline and
in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

DataField: Select a field from the data source to bind to the control.

Text: Enter static text to show in the textbox. If you specify a DataField value, this property is ignored.

Autosize: Clear this check box to prevent the barcode from automatically resizing to fit the control.

Caption

Location: Select a value to indicate whether and where to display a caption for the barcode. You can select from Above,
Below, or None.

Text alignment: Select a value to indicate how to align the caption text. You can select from Center, Near, or Far.

Barcode Settings

Style: Enter the type of barcode to use. ActiveReports supports all of the most popular symbologies:

Table of all included symbologies

Notes: The RSS and QRCode styles have fixed height-to-width ratios. When you resize the width, the height is
automatically calculated.

When you choose a style that offers supplemental options, the additional options appear below.

Symbology Name Example Description

Ansi39 ANSI 3 of 9 (Code 39) uses upper case,
numbers, - , * $ / + %. This is the default
barcode style.

Ansi39x ANSI Extended 3 of 9 (Extended Code 39)
uses the complete ASCII character set.

BC412 Data BC412 uses 35 characters, 0 - 9 and A
- Z. It is designed for semiconductor wafer
identification.

Codabar Codabar uses A B C D + - : . / $ and
numbers.

ActiveReports 14 590

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Code_11 Encodes the numbers 0 through 9, the
hyphen (-), and start/stop characters. It is
primarily used in labeling
telecommunications equipment.

Code_128_A Code 128 A uses control characters,
numbers, punctuation, and upper case.

Code_128_B Code 128 B uses punctuation, numbers,
upper case and lower case.

Code_128_C Code 128 C uses only numbers.

Code_128auto Code 128 Auto uses the complete ASCII
character set. Automatically selects
between Code 128 A, B and C to give the
smallest barcode.

Code_2_of_5 Code 2 of 5 uses only numbers.

Code_93 Code 93 uses uppercase, % $ * / , + -, and
numbers.

Code25intlv Interleaved 2 of 5 uses only numbers.

Code39 Code 39 uses numbers, % * $ /. , - +, and
upper case.

Code39x Extended Code 39 uses the complete ASCII
character set.

Code49 Code 49 is a 2D high-density stacked
barcode containing two to eight rows of
eight characters each. Each row has a start
code and a stop code. Encodes the
complete ASCII character set.

ActiveReports 14 591

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Code93x Extended Code 93 uses the complete ASCII
character set.

DataMatrix Data Matrix is a high density, two-
dimensional barcode with square modules
arranged in a square or rectangular matrix
pattern.

EAN_13 EAN-13 uses only numbers (12 numbers
and a check digit). It takes only
12 numbers as a string to calculate a check
digit (CheckSum) and add it to the
thirteenth position. The check digit is an
additional digit used to verify that a bar
code has been scanned correctly. The check
digit is added automatically when the
CheckSumEnabled property is set to True.

EAN_13 with the add-on code EAN-13 may include the add-on code to
the right of the main code. The add-on
code may include up to 5 supplemental
characters.

EAN_8 EAN-8 uses only numbers (7 numbers and
a check digit).

EAN128FNC1 EAN-128 is an alphanumeric one-
dimensional representation of Application
Identifier (AI) data for marking containers in
the shipping industry. This barcode is now
obsolete. You should use UCC/EAN–128
instead which provides similar functionality
with better performance.

GS1QRCode GS1QRCode is a subset of the QR Code.
The GS1 QR Code is a 2D symbol that
denotes the Extended Packaging URL for a
trade item. It is processed to obtain one
URL address associated with the trade item
identified by the Global Trade Item Number
(GTIN). GS1 QR Code requires the
mandatory association of the GTIN and
Extended Packaging URL.

GS1 QR Code allows to encode GS1 System

ActiveReports 14 592

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Application Identifiers (AI) into QR Code 2D
barcodes.

Limitation: Kanji, CN, JP and Korean
characters.

HIBCCode128 HIBCCode128 barcode uses the Code128
symbology. It encodes Primary Data and
Secondary Data using slash (/) as delimiter.
It is used in the health care products
industry for identification purpose.

HIBCCode39 HIBCCode39 barcode uses the Code39
symbology, with the
Code39OptionalCheckDigit property set to
True. It encodes 'Primary Data' and
'Secondary Data' using slash (/) as delimiter.
It is used in the health care products
industry for identification purpose.

IATA_2_of_5 IATA_2_of_5 is a variant of Code_2_of_5 and
uses only numbers with a check digit.

IntelligentMail Intelligent Mail, formerly known as the 4-
State Customer Barcode, is a 65-bar code
used for domestic mail in the U.S.

IntelligentMailPackage IntelligentMailPackage is more efficient in
terms of processing and tracking mails than
Intelligent Mail barcode.

ISBN International Standard Book Number
barcode is a special form of the EAN-13
code and is used as a unique 9-digit
commercial book identifier.

ISMN Internationally Standard Music Number
barcode is a special form of the EAN-13
code. It is used for marking printed musical
publications.

ISSN International Standard Serial Number
barcode is a special form of the EAN-13
code. It is used to identify serial
publications, publications that are issued in
numerical order, such as the volumes of a
magazine.

ActiveReports 14 593

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ITF14 Interleaved Two of Five This code is used to
mark cartons and palettes that are
including goods with an EAN-13 code. One
digit is added in front of the EAN-13 code
to mark the packing variant.

JapanesePostal This is the barcode used by the Japanese
Postal system. Encodes alpha and numeric
characters consisting of 18 digits including
a 7-digit postal code number, optionally
followed by block and house
number information. The data to be
encoded can include hyphens.

Matrix_2_of_5 Matrix 2 of 5 is a higher density barcode
consisting of 3 black bars and 2 white bars.

MaxiCode MaxiCode is special polar barcode that uses
256 characters. It is used to encode a
specific amount of data.

MicroPDF417 MicroPDF417 is two-dimensional (2D),
multi-row symbology, derived from
PDF417. Micro-PDF417 is designed for
applications that need to encode data in a
two-dimensional (2D) symbol (up to 150
bytes, 250 alphanumeric characters, or 366
numeric digits) with the minimal symbol
size.

MicroPDF417 allows you to insert an FNC1
character as a field separator for variable
length Application Identifiers (AIs).

To insert FNC1 character, set “\n” for C#, or
“vbLf” for VB to Text property at run time.

MicroQRCode MicroQRCode is a two-dimensional (2D)
barcode that is designed for applications
that use a small amount of data. It can
handle numeric and alphanumeric data as
well as Japanese kanji and kana
characters. This symbology can encode up
to 35 numeric characters.

ActiveReports 14 594

Copyright © 2020 GrapeCity, Inc. All rights reserved.

MSI MSI Code uses only numbers.

Pdf417 Pdf417 is a popular high-density 2-
dimensional symbology that encodes up to
1108 bytes of information. This barcode
consists of a stacked set of smaller
barcodes. Encodes the full ASCII character
set. It has ten error correction levels
and three data compaction modes: Text,
Byte, and Numeric. This symbology can
encode up to 1,850
alphanumeric characters or 2,710 numeric
characters.

Pharmacode Pharmacode represents only numeric
data from 3 to 131070. It is a barcode
standard used in the pharmaceutical
industry for packaging. It is designed to be
readable despite printing errors.

Plessey Plessey uses hexadecimal digits to encode.
It is a one-dimensional barcode used
mainly in libraries.

PostNet PostNet uses only numbers with a check
digit.

PZN PZN Pharmaceutical Central/General
Number uses the same encoding algorithm
as Code 39 but can carry only digits –
0123456789. The number of digits
supported for encoding are 6 or 7. The
letters 'PZN' and checksum digit are
automatically added. It is mainly used to
identify medicine and health-care products
in Germany and other German-speaking
countries.

QRCode QRCode is a 2D symbology that is capable
of handling numeric, alphanumeric and
byte data as well as Japanese kanji and
kana characters. This symbology can
encode up to 7,366 characters.

ActiveReports 14 595

Copyright © 2020 GrapeCity, Inc. All rights reserved.

RM4SCC Royal Mail RM4SCC uses only letters and
numbers (with a check digit). This is the
barcode used by the Royal Mail in the
United Kingdom.

RSS14 RSS14 is a 14-digit Reduced Space
Symbology that uses EAN.UCC item
identification for point-of-sale
omnidirectional scanning. The RSS family of
barcodes is also known as GS1 DataBar.

RSS14Stacked RSS14Stacked uses the EAN.UCC
information with Indicator digits as in the
RSS14Truncated, but stacked in two rows
for a smaller width.
RSS14Stacked allows you to set Composite
Options, where you can select the type of
the barcode in the Type drop-down list and
the value of the composite barcode in the
Value field.

RSS14Stacked CCA RSS14Stacked with Composite Component
- Version A.

RSS14StackedOmnidirectional RSS14StackedOmnidirectional uses the
EAN.UCC information with omnidirectional
scanning as in the RSS14, but stacked in
two rows for a smaller width.

RSS14Truncated RSS14Truncated uses the EAN.UCC
information as in the RSS14, but also
includes Indicator digits of zero or one for
use on small items not scanned at the point
of sale.

RSSExpanded RSSExpanded uses the EAN.UCC
information as in the RSS14, but also adds
AI elements such as weight and best-before
dates.

RSSExpanded allows you to insert an FNC1
character as a field separator for variable
length Application Identifiers (AIs).

ActiveReports 14 596

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To insert FNC1 character, set “\n” for C#, or
“vbLf” for VB to Text property at run time.

RSSExpandedStacked RssExpandedStacked uses the EAN.UCC
information with AI elements as in the
RSSExpanded, but stacked in two rows for a
smaller width.

RSSExpandedStacked allows you to insert
an FNC1 character as a field separator for
variable length Application Identifiers (AIs).

To insert FNC1 character, set “\n” for C#, or
“vbLf” for VB to Text property at run time.

RSSLimited RSS Limited uses the EAN.UCC information
as in the RSS14, but also includes Indicator
digits of zero or one for use on small items
not scanned at the point of sale.
RSSLimited allows you to set Composite
Options, where you can select the type of
the barcode in the Type drop-down list and
the value of the composite barcode in the
Value field.

RSSLimited CCA RSS Limited with Composite Component -
Version A.

SSCC_18 SSCC_18 is an 18-digit Serial Shipping
Container Code. It is used to identify
individual shipping containers for tracking
purposes.

Telepen Telepen has 2 different modes -
alphanumeric-only and numeric-only. Both
modes require a start character, a check
digit, and a stop character. It is mainly used
in manufacturing industries.

UCCEAN128 UCC/EAN –128 complies to GS1-128
standards. GS1-128 uses a series of
Application Identifiers to encode data. This
barcode uses the complete ASCII character
set. It also uses FNC1 character as the first
character position. Using AI's, it encodes
best before dates, batch numbers, weights,
and more such attributes. It is also used in
HIBC applications.

ActiveReports 14 597

Copyright © 2020 GrapeCity, Inc. All rights reserved.

UPC_A UPC-A uses only numbers (11 numbers and
a check digit).

UPC_A with the add-on code UPC-A may include the add-on code to the
right of the main code. The add-on code
may include up to 5 supplemental
characters.

UPC_E0 UPC-E0 uses only numbers. Used for zero-
compression UPC symbols. For the Caption
property, you may enter either a six-digit
UPC-E code or a complete 11-digit
(includes code type, which must be zero)
UPC-A code. If an 11-digit code is entered,
the Barcode control will convert it to a six-
digit UPC-E code, if possible. If it is not
possible to convert from the 11-digit code
to the six-digit code, nothing is displayed.

UPC_E0 with the add-on code UPC-E0 may include the add-on code to
the right of the main code. The add-on
code may include up to 5 supplemental
characters.

UPC_E1 UPC-E1 uses only numbers. Used typically
for shelf labeling in the retail environment.
The length of the input string for U.P.C. E1
is six numeric characters.

UPC_E1 with the add-on code UPC-E1 may include the add-on code to
the right of the main code. The add-on
code may include up to 5 supplemental
characters.

Bar Height: Enter a value in inches (for example, .25in) for the height of the barcode.

Narrow Bar Width (also known as X dimension): Enter a value in points (for example, 0.8pt) for the width of the narrowest
part of the barcode. Before using an extremely small value for this width, ensure that the scanner can read it.

ActiveReports 14 598

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tip: For accurate scanning, the quiet zone should be ten times the Narrow Bar Width value.

Narrow Width Bar Ratio: Enter a value to define the multiple of the ratio between the narrow and wide bars in
symbologies that contain bars in only two widths. For example, if it is a 3 to 1 ratio, this value is 3. Commonly used values
are 2, 2.5, 2.75, and 3.

QuietZone

A quiet zone is an area of blank space on either side of a barcode that tells the scanner where the symbology starts
and stops.

Left: Enter a size in inches of blank space to leave to the left of the barcode.

Right: Enter a size in inches of blank space to leave to the right of the barcode.

Top: Enter a size in inches of blank space to leave at the top of the barcode.

Bottom: Enter a size in inches of blank space to leave at the bottom of the barcode.

Note: The units of measure listed for all of these properties are the default units of measure used if you do not
specify. You may also specify cm, mm, in, pt, or pc.

Checksum

A checksum provides greater accuracy for many barcode symbologies.

Compute Checksum: Select whether to automatically calculate a checksum for the barcode.

Note: If the symbology you choose requires a checksum, setting this value to False has no effect.

Code49 Options

Code49 Options are available for the Code49 barcode style.

Grouping: Indicates whether to use grouping for the Code49 barcode. The possible values are True or False
(default). If Grouping is set to True, any value not expressed by a single barcode is expressed by splitting it into
several barcodes.

GroupNumber: Enter a number between 0 (default) and 8 for the barcode grouping. When the Group property is
set to 2, the grouped barcode's second symbol is created. When invalid group numbers are set, the
BarCodeDataException is thrown.

ActiveReports 14 599

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Code128 Options

Code128 has three settings that work in conjunction: Dpi, BarAdjust, and ModuleSize. This property only applies to
the barcode style EANFNC1. You can improve the readability of the barcode by setting all three properties.

Dpi: Sets the printer resolution. Specify the resolution of the printer as dots per inch to create an optimized
barcode image with the specified Dpi value.
BarAdjust: Sets the adjustment size by dot units, which affects the size of the module and not the entire
barcode.
ModuleSize: Sets the horizontal size of the barcode module.

DataMatrix Options

DataMatrix Options are available for the DataMatrix barcode style.

EccMode: Select the Ecc mode from the drop-down list. The possible values are ECC000, ECC050, ECC080,
ECC100, ECC140 or ECC200.

Ecc200 Symbol Size: Select the size of the ECC200 symbol from the drop-down list. The default value is
SquareAuto.

Ecc200 Encoding Mode: Select the encoding mode for ECC200 from the drop-down list. The possible values are
Auto, ASCII, C40, Text, X12, EDIFACT or Base256.

Ecc000_140 Symbol Size: Select the size of the ECC000_140 barcode symbol from the drop-down list.

Structured Append: Select whether the barcode symbol is part of the structured append symbols. The possible
values are True or False.

Structure Number: Enter the structure number of the barcode symbol within the structured append symbols.

File Identifier: Enter the file identifier of a related group of the structured append symbols. If you set the value to
0, the file identifier symbols are calculated automatically.

EAN128FNC1 Options

EAN128FNC1 Options are available for the EAN128FNC1 barcode style.

DPI: Specify the printer resolution.

Module Size: Enter the horizontal size of the barcode module.

Bar Adjust: Enter the adjustment size by dot units, which affects the size of the module and not the entire barcode.

GS1Composite Options

GS1Composite Options are available for the RSS14Stacked and RSSLimited barcode styles.

Type: Select the type of the composite barcode from the drop-down list. The possible values are None or CCA.
CCA (Composite Component - Version A) is the smallest variant of the 2-dimensional composite component.

Value: Enter the expression to set the value of the composite barcode.

ActiveReports 14 600

Copyright © 2020 GrapeCity, Inc. All rights reserved.

MaxiCode Options

 MaxiCode option to select mode is available for MaxiCode barcode.

Mode: Select the mode of the MaxiCode barcode. The available values are Mode2 to Mode6.

MicroPDF417 Options

MicroPDF417 Options are available for the MicroPDF417 barcode style.

Compaction Mode: Select the type of the compaction mode from the drop-down list. The possible values
are Auto, TextCompactionMode, NumericCompactionMode, or ByteCompactionMode.

Version: Select the version from the drop-down box to set the symbol size.

Segment Index: The segment index of the structured append symbol. The valid value is from 0 to 99998, and less
than the value in Segment Count.

Segment Count: The segment count of the structured append symbol. The valid value is from 0 to 99999.

File ID: The file id of the structured append symbol. The valid value is from 0 to 899.

MicroQRCode Options

MicroQRCode Options are available for the MicroQRCode barcode style.

ErrorLevel: Select the error correction level for the barcode from the drop-down list. Valid values are M, L, or Q.
The available Error Level values change depending on the version you select.

Version: Enter the version of the MicroQRCode barcode style. Valid values are M1, M2, M3, or M4. The maximum
amount of data can be stored in version M4.

Mask: Select the pattern for the barcode masking from the drop-down list. Valid values are Mask00, Mask01,
Mask10, or Mask11.

Encoding: Select the barcode encoding from the drop-down list.

PDF417 Options

PDF417 Options are available for the Pdf417 barcode style.

Columns: Enter column numbers for the barcode. Values for this property range from 1 to 30. The default value is -
1 which automatically determines column numbers.

Rows: Enter row numbers for the barcode. Values range between 3 and 90. The default value is -1 which
automatically determines row numbers.

ErrorLevel: Enter the error correction level for the barcode. Values range between 0 and 8. The error correction
capability increases as the value increases. With each increase in the ErrorLevel value, the size of the barcode
increases. The default value is -1 for automatic configuration.

PDF 417 Barcode Type: Select the PDF417 barcode type form the drop-down list. The possible values are Normal
or Simple. Simple is the compact type in which the right indicator is neither displayed nor printed.

QRCode Options

QRCode Options are available for the QRCode barcode style.

Model: Select the model for the QRCode barcode style from the drop-down list. The possible values are Model1,
the original model or Model2, the extended model. For GS1QRCode, Model1 is not supported.

ActiveReports 14 601

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ErrorLevel: Select the error correction level for the barcode from the drop-down list. The possible values are L (7%
restorable), M (15% restorable), Q (25% restorable), and H (30% restorable). The higher the percentage, the larger
the barcode becomes.

Version: Enter the version of the QRCode barcode style. Version indicates the size of the barcode. As the value
increases, the barcode's size increases, enabling more information to be stored. Specify any value between 1 and
14 when the Model property is set to Model1 and 1 to 40 for Model2. The default value is -1, which automatically
determines the version most suited to the value.

Mask: Select the pattern for the barcode masking form the drop-down list. Mask is used to balance brightness and
offers 8 patterns in the QRCodeMask enumeration. The default value is Auto, which sets the masking pattern
automatically, and is recommended for most uses.

Mask000 (i+j) mod 2 = 0
Mask001 i mod 2 = 0
Mask010 j mod 3 = 0
Mask011 (i+j) mod 3 = 0
Mask100 ((i div 2)+(j div 3)) mod 2 = 0
Mask101 (ij) mod 2 + (ij) mod 3 = 0
Mask110 ((ij) mod 2 +(ij) mod 3) mod 2 = 0
Mask111 ((ij)mod 3 + (i+j) mod 2) mod 2 = 0

Connection: Select whether to use the connection for the barcode. The possible values are True or False. This
property is used in conjunction with the ConnectionNumber property. This property is not applicable to
GS1QRCode barcode.

ConnectionNumber: Enter the connection number for the barcode. Use this property with the Connection
property to set the number of barcodes it can split into. Values between 0 and 15 are valid. An invalid
number raises the BarCodeData Exception. This property is not applicable to GS1QRCode barcode.

Encoding: Select the barcode encoding from the drop-down list.

RssExpandedStacked Options

RssExpandedStacked Options are available for the RSSExpandedStacked barcode style.

Row Count: Enter the number of the barcode stacked rows.

Supplementary Options

Supplementary Options are available for UPC_A, UPC_E0, UPC_E1, EAN_13, and EAN_8 barcode styles.

Supplement DataField: Select the data field for the barcode supplement.

Supplement Value: Enter the expression to set the value of the barcode supplement.

Caption Location: Select the location for the supplement caption from the drop-down list. The possible values are
None, Above or Below.

Supplement Bar Height: Enter the bar height for the barcode supplement.

Supplement Spacing: Enter the spacing between the main and supplement barcodes.

Appearance

Fore color: Select a color to use for the bars in the barcode.

Background color: Select a color to use for the background of the control.

ActiveReports 14 602

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Rotation: Select a value indicating the degree of rotation to apply to the barcode. You can select from None,
Rotate90Degrees, Rotate180Degrees, or Rotate270Degrees.

Font

Name: Select a font family name to use for the caption.

Size: Choose the size in points for the font.

Style: Choose from Normal or Italic.

Weight: Choose from Normal or Bold.

Decoration: Select check boxes for Underline and Strikeout.

GDI Charset: Enter a value to indicate the GDI character set to use. For a list of valid values, see MSDN Font.GDICharSet
Property.

GDI Vertical: Select this checkbox to indicate that the font is derived from a GDI vertical font.

SubReport (Section Report)
In section reports, you can use the SubReport control to embed a report into another report. Once you place the
Subreport control on a report, use code to create an instance of the report you want to load in it, and to attach the report
object to the SubReport.

You can also pass parameters to the subreport from the main report so that data related to the main report displays in
each instance of the subreport.

When to use a subreport
Due to the high overhead of running a second report and embedding it in the first, it is generally best to consider whether
you need to use subreports. Some good reasons to use subreports include:

Multiple data sources
Multiple detail sections
Side-by-side charts or tables

Remove page-dependent features from reports to be used as
subreports
Subreports are disconnected from any concept of a printed page because they render inside the main report. For this
reason, page-dependent features are not supported for use in subreports. Keep any such logic in the main report. Page-
related concepts that are not supported in subreports include:

Page numbers
Page header and footer sections (delete these sections to save processing time)
KeepTogether properties
GroupKeepTogether properties
NewPage properties

Coding best practices

ActiveReports 14 603

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8

Use the ReportStart event of the main report to create an instance of the report for your SubReport control, and then
dispose of it in the ReportEnd event. This way, you are creating only one subreport instance when you run the main
report.

In the Format event of the containing section, use the Report property of the SubReport control to attach a report object
to the SubReport control.

Caution: It is not a recommended practice to initialize the subreport in the Format event. Doing so creates a new
instance of the subreport each time the section processes. This consumes a lot of memory and processing time,
especially in a report that processes a large amount of data.

Important Properties

Property Description

CanGrow Determines whether ActiveReports increases the height of the control based on its content.

CanShrink Determines whether ActiveReports decreases the height of the control based on its value.

CloseBorder By default, the bottom border of the control does not render until the end of the subreport. Set this
property to True to have it render at the bottom of each page. (Only available in code.)

Report Attaches a report object to the control. (Only available in code.)

SubReport Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the SubReport that is unique within the report. This name is displayed in the Document Outline
and in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such
as period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

ReportName: Enter the name of the report.

Format

SubReport Height
Can increase to accommodate contents: Clear this check box to set CanGrow to False.

Can decrease to accommodate contents: Clear this check box to set CanShrink to False.

Ole Object
The OleObject control is hidden from the toolbox by default, and is only retained for backward compatibility. You can

ActiveReports 14 604

Copyright © 2020 GrapeCity, Inc. All rights reserved.

enable the OleObject control in the Visual Studio toolbox only.

To enable the control in the Visual Studio toolbox, you must change the EnableOleObject property to true. This property
can be found here: C:\Program Files (x86)\GrapeCity\ActiveReports
14\Grapecity.ActiveReports.config

Once enabled, you can add the OleObject control to reports. When you drop the control onto your report, the Insert
Object dialog appears. This dialog allows you to create a new object or select one from an existing file.

Note: When you deploy reports that use the OleObject, you must also deploy the GrapeCity.ActiveReports.Interop.dll.

Caution: The WPF Viewer does not support the OLE object. If you preview a report containing the OLE object in the
WPF Viewer, the OLE object will not be displayed.

Important Properties

Property Description

PictureAlignment Gets or sets the position of the object's content within the control area.

Class Specifies the class name of the Ole object.

SizeMode Gets or sets a value that determines how the object is sized to fit the OleObject control area.

Insert Object Dialog
The Insert Object dialog provides the following two options:

Create New lets you select from a list of object types that you can insert into your report.

Object Types

Adobe Acrobat Document
Microsoft Equation 3.0
Microsoft Excel 97-2003 Worksheet
Microsoft excel Binary Worksheet
Microsoft Excel Chart
Microsoft Excel Macro-Enabled Worksheet
Microsoft Excel Worksheet
Microsoft Graph Chart
Microsoft PowerPoint 97-2003 Presentation
Microsoft PowerPoint 97-2003 Slide
Microsoft PowerPoint Macro-Enabled Presentation
Microsoft PowerPoint Macro-Enabled Slide

Microsoft PowerPoint Presentation
Microsoft PowerPoint Slide
Microsoft Word 97-2003 Document
Microsoft Word Document
Microsoft Macro-Enabled Document
OpenDocument Presentation
OpenDocument Spreadsheet
OpenDocument Text
Package
Paintbrush Picture
Wordpad Document

Create from File allows you to insert the contents of the file as an object into your document so that you can
display it while printing.

Chart
In ActiveReports, you can use the Chart data region to present data graphically in a report. The chart offers you 17 core

ActiveReports 14 605

Copyright © 2020 GrapeCity, Inc. All rights reserved.

chart types along with all of their variations, plus access to properties that control every aspect of your chart's appearance.

The Chart data region presents a series of points in different ways depending upon the chart type you choose. Some chart
types display multiple series of data points in a single chart. Add more information to your chart by configuring data
points, axes, titles, and labels. You can modify all of these elements in the Properties Window.

When you first drop a Chart data region onto a report, the Chart Wizard appears, and you can set up your chart type,
appearance, series, titles, axes, and legend on the pages of the wizard. You can specify a data source on the Series page.

Important Properties

Property Description

BlackAndWhiteMode Gets or sets a value indicating whether the chart is drawn in black and white using hatch patterns
and line dashing to designate colors.

AutoRefresh Gets or sets a value indicating whether the chart is automatically refreshed (redrawn) after every
property change.

Backdrop Gets or sets the chart's background style.

ChartAreas Opens the ChartArea Collection Editor where you can set properties such as axes and wall
ranges, and you can add more chart areas.

ChartBorder Gets or sets the chart's border style.

ColorPalette Gets or sets the chart's color palette.

DataSource Gets or sets the data source for the chart.

GridLayout Gets or sets the layout of the chart's areas in columns and rows.

Legends Opens the Legend Collection Editor where you can set up the chart's legends.

Series Opens the Series Collection Editor where you can set up the series collection for the chart.

Titles Opens the Titles Collection Editor where you can set up titles in the header and footer of the
chart.

UIOptions Gets or sets user interface features for the chart. Choose from None, ContextCustomize,
UseCustomTooltips, or ForceHitTesting.

Culture Gets or sets the chart's culture used for value output formatting.

ImageType Sets or returns the image generated by the chart. Choose from Metafile or PNG.

Chart Commands and Dialogs
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
any of the commands to open a dialog. Commands in this section include:

Clear Chart clears all of the property settings from the chart so that you can begin with a clean slate. You are given
an opportunity to cancel this action.
Load allows you to load a saved XML file containing a chart that you created using the Chart data region.
Save As allows you to save the current chart to an XML file that you can load into a chart on any section report.
Customize opens the main Chart Designer dialog where you can access Chart Areas, Titles, Series, Legends, and
Appearance tabs. This dialog has access to more of the customizable areas than the wizard, but all of the

ActiveReports 14 606

Copyright © 2020 GrapeCity, Inc. All rights reserved.

properties in this dialog are also available in the Properties window.
Wizard reopens the Chart Wizard that appears by default when you first drop a Chart data region onto a report.
Data Source opens the Chart Data Source dialog where you can build a connection string and create a query.

Chart Elements
The Chart elements help you to easily analyze the visual information and interpret numerical and relational data. The
following image illustrates the elements that make up the Chart data region.

Axis Label

A label along an axis that lets you label the units being shown.

Axis Title

The axis title allows you to provide a title for the information being shown on the axis.

Chart Backdrop

The chart backdrop is the background for the whole chart that is created. You can create your own backdrop using the
different styles and colors available or you can use an image as a backdrop for your chart.

Chart Title

The chart title serves as the title for the chart.

Footer Title

The footer title allows you to add a secondary title for the chart along the bottom.

Grid Line

Grid lines can occur on horizontal and vertical axes and normally correlate to the major or minor tick marks for the axes.

Legend

The legend serves as a key to the specific colors or patterns being used to show series values in the chart.

Marker

The marker is used to annotate a specific plotted point in a data series.

Marker Label

The marker label allows you to display the value of a specific plotted point in a data series.

Major Tick

ActiveReports 14 607

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Major tick marks can occur on horizontal and vertical axes and normally correlate to the major gridlines for the axes.

Minor Tick

Minor tick marks can occur on horizontal and vertical axes and normally correlate to the minor gridlines for the axes.

Series

The series is a related group of data values that are plotted on the chart. Each plotted point is a data point that reflects
the specific values charted. Most charts, such as the above bar chart, can contain more than one series, while others, such
as a pie chart, can contain only one.

Wall Backdrop

The wall is the back section of the chart on which data is plotted.

Chart Wizard
The Chart data region features a Chart Wizard which takes you through the basic steps of creating a chart. The Chart
Wizard automatically appears when you first add a chart control to a report. If you prefer not to have the wizard appear
automatically, clear the Auto Run Wizard checkbox at the bottom of the wizard.

The Chart Wizard has the following pages:

Chart Type

In the Chart Wizard that appears, the Chart Type page displays all available 2D and 3D chart types, along with a preview of
the selected chart to the right. You can select the type of chart that you want to create and change the axes by selecting
the Swap Axes checkbox. If you are using a 3D chart, you can also change the projection and light settings.

Appearance

The Appearance page has two tabs. The Palette tab allows you to select a color scheme. The Appearance tab allows you
to select individual elements in the chart preview, such as its title, footer, legend, legend title, backdrop, and the chart
itself and select appearance settings for them.

Series

The Series page has two tabs. The Series Settings tab allows you to set the data source for the chart and bind data fields
to X and Y values for each series in the chart, and to add and remove chart series. You can even set different chart types
for each series. The Data Points tab allows you to set static data values when you choose not to bind the X and Y values
to data fields.

Title

The Title Page helps you to set properties for the header and footer titles. You can change the title text, font size and
color, border settings, background color and visibility.

Axes

The Axes page has two tabs, one for Axis X and the other for Axis Y. On these tabs, you can enter titles for the axes and
set the font size and other font properties. This page also allows you to add and format labels, add tick marks and grid
lines, and select whether to show the axis inside or outside the chart area.

ActiveReports 14 608

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Legend

The Legend page allows you to set up the appearance of the legend. You can change its visibility, label appearance,
header and footer text and appearance, layout, and location within the chart. You can also place the legend inside the
chart by checking the Legend inside check box in the Position section.

Chart Types (Section Reports)
These topics introduce you to the different Chart Types you can create with the Chart control.

Area Chart
Area2D, StackedArea, StackedArea100Pct, and Area3D

Bar Chart
Bar2D and Bar3D

Line Chart
Bezier, Line, LineXY and Line3D

Pie and Doughnut Charts
Doughnut/Pie and Doughnut3D/Pie

Financial Chart
Candle, HiLo, Renko, Point and Figure, Kagi, Stock, StockOpenClose, and Three Line Break

Point and Bubble Charts
Bubble, BubbleXY, Scatter, and PlotXY

ActiveReports 14 609

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Area Chart
The Area Chart displays quantitative data and is based on the Line chart. In Area charts, the space between axis and line
are commonly emphasized with colors, textures and hatchings.

2D Area Charts
This section describes 2D charts that fall under the Area Chart category.

3D Area Charts
This section describes 3D charts that fall under the Area Chart category.

2D Area Charts
Given below is the list of 2D charts that fall under the Area Chart category:

Area Chart

An area chart is used to compare trends over a period of time or across categories.

Chart Information

ChartType Area2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties None

Stacked Area Chart

A stacked area chart is an area chart with two or more data series stacked one on top of the other. Use this chart to show
how each value contributes to a total.

Chart Information

ActiveReports 14 610

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ChartType Area2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties None

Stacked Area 100% Chart

A stacked area chart (100%) is an 100% area chart with two or more data series stacked one on top of the other. Use this
chart to show how each value contributes to a total.

Chart Information

ChartType Area2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties None

3D Area Charts
Given below is the list of 3D charts that fall under the Area Chart category:

Area Chart

Use a 3D area chart to compare trends in two or more data series over a period of time or in specific categories, so that
data can be viewed side by side.

Note: To view a chart in 3D, in the ChartAreas property open the ChartArea Collection Editor and set the

ActiveReports 14 611

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ProjectionType property to Orthogonal.

Chart Information

ChartType Area3D

Number of Y values per
data point

1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The LineBackdrop property gets or sets the backdrop
information for the 3D line.
The Thickness property gets or sets the thickness of the
3D line.
The Width property gets or sets the width of the 3D line.

Below is an example of how to set the custom chart properties at run time for a 3D area chart as shown for the first series
in the image above.

Visual Basic

Me.ChartControl1.Series(0).Properties("LineBackdrop") = New
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(Color.Red, CType(150, Byte))
Me.ChartControl1.Series(0).Properties("Thickness") = 5.0F
Me.ChartControl1.Series(0).Properties("Width") = 30.0F

C#

this.ChartControl1.Series[0].Properties["LineBackdrop"] = new
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.Red, ((System.Byte)
(150)));
this.ChartControl1.Series[0].Properties["Thickness"] = 5f;
this.ChartControl1.Series[0].Properties["Width"] = 30f;

Stacked Area Chart

3D stacked area chart displays stacked area chart in 3D.

Chart Information

ChartType Area3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties The Width property gets or sets the width of the 3D stacked area.

Stacked Area 100%

ActiveReports 14 612

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3D stacked area chart (100%) displays stacked area chart in 3D (100%).

Chart Information

ChartType Area3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support 3

Custom Properties The Width property gets or sets the width of the 3D stacked area.

Bar Chart
The Bar Chart is a chart with rectangular bars where the lengths of bars are proportional to the values they represent. The
bars can be plotted vertically or horizontally.

2D Bar Charts
This section describes 2D charts that fall under the Bar Chart category.

3D Bar Charts
This section describes 3D charts that fall under the Bar Chart category.

2D Bar Charts
Given below is the list of 2D charts that falls under the Bar Chart category.

Bar Chart

In a Bar Chart, values are represented by the height of the bar shaped marker as measured by the y-axis. Category labels
are displayed on the x-axis. Use a bar chart to compare values of items across categories.

Chart Information

ChartType Bar2D

Number of Y values per data point 1

Number of series 1 or more

Marker support Series or Data Point

ActiveReports 14 613

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Custom Properties The Gap property gets or sets the space between the bars of each X axis value.

Below is an example of how to set the custom chart properties at run time for a bar chart.

Visual Basic

Me.ChartControl1.Series(0).Properties("Gap") = 50.0F

C#

this.ChartControl1.Series[0].Properties["Gap"] = 50f;

Gantt Chart

The Gantt chart is a project management tool used to chart the progress of individual project tasks. The chart compares
project task completion to the task schedule.

Caution: In a Gantt chart, the X and Y axes are reversed. AxisX is vertical and AxisY is horizontal.

Chart Information

ChartType Bar2D

Number of Y values per data point 2

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties The Gap property gets or sets the space between the bars of each X axis value.

Below is an example of how to set the custom chart properties at run time for a Gantt chart.

Visual Basic

Me.ChartControl1.Series(0).Properties("Gap") = 50.0F

C#

this.ChartControl1.Series[0].Properties["Gap"] = 50f;

Horizontal Bar Chart

In a Horizontal Bar Chart, both the axes are swapped and therefore the bars appears horizontally. Although, values are
represented by the height of the bar shaped marker as measured by the y-axis and the Category labels are displayed on
the x-axis. Use a horizontal bar chart to compare values of items across categories.

ActiveReports 14 614

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Information

ChartType Bar2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties The Gap property gets or sets the space between the bars of each X axis value.

Below is an example of how to set the custom chart properties at run time for a horizontal bar chart.

Visual Basic

Me.ChartControl1.Series(0).Properties（"Gap") = 65.0F

C#

this.ChartControl1.Series[0].Properties["Gap"] = 65f；

Stacked Bar Chart

A stacked bar chart is a bar chart with two or more data series stacked one on top of the other. Use this chart to show
how each value contributes to a total.

Chart Information

ChartType Bar2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties The Gap property gets or sets the space between the bars of each X axis value.

Below is an example of how to set the custom chart properties at run time for a StackedBar chart.

ActiveReports 14 615

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.ChartControl1.Series(0).Properties("Gap") = 100.0F

C#

this.ChartControl1.Series[0].Properties["Gap"] = 100f;

Stacked Bar Chart 100%

A StackedBAR110Pct chart is a bar chart with two or more data series stacked one on top of the other to sum up to 100%.
Use this chart to show how each value contributes to a total with the relative size of each series representing its
contribution to the total.

Chart Information

ChartType Bar2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties The Gap property gets or sets the space between the bars of each X axis value

Below is an example of how to set the custom chart properties at run time for a StackedBAR110Pct chart.

Visual Basic

Me.ChartControl1.Series(0).Properties("Gap") = 100.0F

C#

this.ChartControl1.Series[0].Properties["Gap"] = 100f;

3D Bar Charts
Given below is the list of 3D charts that fall under the Bar Chart category.

Caution: To view a chart in 3D, open the ChartArea Collection Editor in the ChartAreas property and set the
ProjectionType property to Orthogonal.

Bar Chart

In a Bar Chart, values are represented by the height of the bar shaped marker as measured by the y-axis. Category labels are
displayed on the x-axis. Use a 3D bar chart to compare values of items across categories, allowing the data to be viewed in a

ActiveReports 14 616

Copyright © 2020 GrapeCity, Inc. All rights reserved.

convenient 3D format.

Chart Information

ChartType Bar3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.
The BarType property gets or sets the type of bars that is displayed.Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.
The RotationAngle propertygets or sets the starting horizontal angle for custom 3D
bar shapes. Can only be used with the Custom BarType.
The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

Gantt Chart

The 3D gantt chart displays a gantt chart in 3D.

Caution: In a 3D Gantt chart the X and Y axes are reversed. AxisX is vertical and AxisY is horizontal.

Chart Information

ChartType Bar3D

Number of Y values per data point 2

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.
The BarType property gets or sets the type of bars that are displayed. Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.
The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

ActiveReports 14 617

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Horizontal Bar Chart

In a Horizontal Bar Chart, both the axes are swapped and therefore the bars appears horizontally. Although, values are
represented by the height of the bar shaped marker as measured by the y-axis and the Category labels are displayed on the x-
axis. Use a horizontal 3D bar chart to compare values of items across categories, allowing the data to be viewed in a
convenient 3D format.

Chart Information

ChartType Bar3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.
The BarType propertygets or sets the type of bars that is displayed. Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.
The RotationAngle property gets or sets the starting horizontal angle for custom 3D
bar shapes. Can only be used with the Custom BarType.
The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

Below is an example of how to set the custom chart properties at run time for a horizontal 3D bar chart as shown above.

Visual Basic

Me.ChartControl1.Series(0).Properties("BarTopPercent") = 80.0F
Me.ChartControl1.Series(0).Properties("BarType") =
GrapeCity.ActiveReports.Chart.BarType.Custom
Me.ChartControl1.Series(0).Properties("Gap") = 65.0F
Me.ChartControl1.Series(0).Properties("PointBarDepth") = 100.0F
Me.ChartControl1.Series(0).Properties("RotationAngle") = 0.0F
Me.ChartControl1.Series(0).Properties("VertexNumber") = 6

C#

this.ChartControl1.Series[0].Properties["BarTopPercent"] = 80f;
this.ChartControl1.Series[0].Properties["BarType"] =
GrapeCity.ActiveReports.Chart.BarType.Custom;

ActiveReports 14 618

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.ChartControl1.Series[0].Properties["Gap"] = 65f;
this.ChartControl1.Series[0].Properties["PointBarDepth"] = 100.0f;
this.ChartControl1.Series[0].Properties["RotationAngle"] = 0f;
this.ChartControl1.Series[0].Properties["VertexNumber"] = 6;

Stacked Bar Chart

Use a 3D bar graph to compare values of items across categories, allowing the data to be viewed conveniently in a 3D format.
A stacked bar graph is a bar graph with two or more data series stacked on top of each other. Use this graph to show how
each value contributes to a total.

Chart Information

ChartType Bar3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.
The BarType property gets or sets the type of bars that are displayed. Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.
The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

Below is an example of how to set the custom chart properties at run time for a StackedBar3D chart.

Visual Basic

Me.ChartControl1.Series(0).Properties("BarTopPercent") = 80.0F
Me.ChartControl1.Series(0).Properties("BarType") =
GrapeCity.ActiveReports.Chart.BarType.Custom
Me.ChartControl1.Series(0).Properties("Gap") = 65.0F
Me.ChartControl1.Series(0).Properties("VertexNumber") = 6

C#

this.ChartControl1.Series[0].Properties["BarTopPercent"] = 100f;
this.ChartControl1.Series[0].Properties["BarType"] =
GrapeCity.ActiveReports.Chart.BarType.Custom;
this.ChartControl1.Series[0].Properties["Gap"] = 65f;
this.ChartControl1.Series[0].Properties["VertexNumber"] = 6

ActiveReports 14 619

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Stacked Bar Chart 100%

A Stacked Bar 3D 100% chart is a bar chart with two or more data series in 3D stacked one on top of the other to sum up to
100%. Use this chart to show how each value contributes to a total with the relative size of each series representing its
contribution to the total.

Chart Information

ChartType Bar3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.

The BarType property gets or sets the type of bars that are displayed. Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.

The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

Below is an example of how to set the custom chart properties at run time for a StackedBar3D100Pct chart.

Visual Basic

Me.ChartControl1.Series(0).Properties("BarTopPercent") = 80.0F
Me.ChartControl1.Series(0).Properties("BarType") =
GrapeCity.ActiveReports.Chart.BarType.Custom
Me.ChartControl1.Series(0).Properties("Gap") = 65.0F
Me.ChartControl1.Series(0).Properties("VertexNumber") = 6

C#

this.ChartControl1.Series[0].Properties["BarTopPercent"] = 100f;
this.ChartControl1.Series[0].Properties["BarType"] =
GrapeCity.ActiveReports.Chart.BarType.Custom;
this.ChartControl1.Series[0].Properties["Gap"] = 65f;
this.ChartControl1.Series[0].Properties["VertexNumber"] = 6

Bar/Cylinder Chart

It is almost similar to a bar chart and values are represented by the height of the bar shaped marker as measured by the y-
axis. Category labels are displayed on the x-axis. The only difference is that in a Bar/Cylinder Chart the data is represented

ActiveReports 14 620

Copyright © 2020 GrapeCity, Inc. All rights reserved.

through cylindrical shaped markers.

Chart Information

ChartType Bar3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.
The BarType property gets or sets the type of bars that is displayed. Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.
The RotationAngle property gets or sets the starting horizontal angle for custom 3D
bar shapes. Can only be used with the Custom BarType.
The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

Bar/Pyramid Chart

In a Bar/Pyramid Chart the data is represented through pyramid shaped bars and values are represented by the height of the
bars as measured by the y-axis. Category labels are displayed on the x-axis.

Chart Information

ChartType Bar3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.
The BarType property gets or sets the type of bars that is displayed. Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.
The RotationAngle property gets or sets the starting horizontal angle for custom 3D
bar shapes. Can only be used with the Custom BarType.
The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

Clustered Bar chart

Use a 3D clustered bar chart to compare values of items across categories, allowing the data to be viewed in a convenient 3D

ActiveReports 14 621

Copyright © 2020 GrapeCity, Inc. All rights reserved.

format.

Chart Information

ChartType Bar3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The BarTopPercent property gets or sets the percentage of the top of the bar that is
shown for Cone or Custom BarTypes.
The BarType property gets or sets the type of bars that are displayed. Use BarType
enumeration value.
The Gap property gets or sets the space between the bars of each X axis value.
The RotationAngle property gets or sets the starting horizontal angle for custom 3D
bar shapes. Can only be used with the Custom BarType.
The VertexNumber property gets or sets the number of vertices for the data point,
used to create custom 3D bar shapes. Can only be used with the Custom BarType. Bars
must contain 3 or more vertices.

Below is an example of how to set the custom chart properties at run time for a 3D clustered bar chart as shown above.

Visual Basic

' set the custom properties for series 1.
Me.ChartControl1.Series(0).Properties("BarTopPercent") = 50.0F
Me.ChartControl1.Series(0).Properties("BarType") =
GrapeCity.ActiveReports.Chart.BarType.Custom
Me.ChartControl1.Series(0).Properties("Gap") = 300.0F
Me.ChartControl1.Series(0).Properties("RotationAngle") = 0.0F
Me.ChartControl1.Series(0).Properties("VertexNumber") = 6

' set the custom properties for series 2.
Me.ChartControl1.Series(1).Properties("BarTopPercent") = 20.0F
Me.ChartControl1.Series(1).Properties("BarType") =
GrapeCity.ActiveReports.Chart.BarType.Custom
Me.ChartControl1.Series(1).Properties("Gap") = 300.0F
Me.ChartControl1.Series(1).Properties("RotationAngle") = 90.0F
Me.ChartControl1.Series(1).Properties("VertexNumber") = 3

C#

// set the custom properties for series 1.
this.ChartControl1.Series[0].Properties["BarTopPercent"] = 50f;

ActiveReports 14 622

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.ChartControl1.Series[0].Properties["BarType"] =
GrapeCity.ActiveReports.Chart.BarType.Custom;
this.ChartControl1.Series[0].Properties["RotationAngle"] = 0f;
this.ChartControl1.Series[0].Properties["VertexNumber"] = 6;

// set the custom properties for series 2.
this.ChartControl1.Series[1].Properties["BarTopPercent"] = 20f;
this.ChartControl1.Series[1].Properties["BarType"] =
GrapeCity.ActiveReports.Chart.BarType.Custom;
this.ChartControl1.Series[1].Properties["Gap"] = 300f;
this.ChartControl1.Series[1].Properties["RotationAngle"] = 90f;
this.ChartControl1.Series[1].Properties["VertexNumber"] = 3;

Line Chart
The Line Chart is a type of chart that displays information as a series of data points, connected by straight line segments.

2D Line Charts
This section describes 2D charts that fall under the Line Chart category.

3D Line Charts
This section describes 3D charts that fall under the Line Chart category.

2D Line Charts
Given below is the list of 2D charts that fall under the Line Chart category.

Bezier Chart

Use a Bezier or spline chart to compare trends over a period of time or across categories. It is a line chart that plots curves
through the data points in a series.

Chart Information

ChartType Line2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties
The Line property gets or sets the line element. Used to set color, thickness and
shape of a line.

ActiveReports 14 623

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Tension property gets or sets the tension of the curved lines.

Bezier XY Chart

A Bezier XY chart connects DataPoints on X and Y with curved lines.

Chart Information

ChartType
Line2D

Number of Y values per data
point

1

Number of Series
1 or more

Marker Support
Series or Data Point

Custom Properties
The Line property gets or sets the line element. Used to set color, thickness and shape
of a line.
The Tension property gets or sets the tension of the curved lines.

Line Chart

Use a 2D line chart to compare trends over a period of time or in certain categories in a 2D format.

Chart Information

ChartType Line2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties
The Line property gets or sets the line element. Used to set color, thickness and
shape of a line.
The LineJoin property sets the type of join to draw when two lines connect.

Line XY Chart

A line XY chart plots points on the X and Y axes as one series and uses a line to connect points to each other.

ActiveReports 14 624

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Information

ChartType
Line2D

Number of Y values per data
point

1

Number of Series
1 or more

Marker Support
Series or Data Point

Custom Properties

The Line property gets or sets line elements. Used for setting color, thickness and
shape of a line.

The LineJoin property gets or sets the type of join to draw when two lines connect.

3D Line Charts
Given below is the list of 3D charts that fall under the Line Chart category.

Bezier Chart

Render a Bezier or Spline chart in 3D format.

Chart Information

ChartType Line3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The LineBackdrop property gets or sets the backdrop information for the 3D
curved line.
The Tension property gets or sets the tension of the curved lines.
The Width property gets or sets the width of the 3D curved line.

Line Chart

ActiveReports 14 625

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Use a 3D line chart to compare trends over a period of time or in certain categories in a 3D format.

Caution: To view a chart in 3D, open the ChartArea Collection Editor in the ChartAreas property and set the
ProjectionType property to Orthogonal.

Chart Information

ChartType Line3D

Number of Y values per data point 1

Number of Series 1or more

Marker Support Series or Data Point

Custom Properties
The LineBackdrop property gets or sets the backdrop information for the 3D line.
The Thickness property gets or sets the thickness of the 3D line.
The Width property gets or sets the width of the 3D line.

Below is an example of how to set the custom chart properties at run time for a horizontal 3D bar chart as shown above.

Visual Basic

Me.ChartControl1.Series(0).Properties("LineBackdrop") = New Backdrop(Color.GreenYellow)
Me.ChartControl1.Series(0).Properties("Thickness") = 8.0F
Me.ChartControl1.Series(0).Properties("Width") = 40.0F

C#

this.chartControl1.Series[0].Properties["LineBackdrop"] = new
Backdrop(Color.GreenYellow);
this.chartControl1.Series[0].Properties["Thickness"] = 8f;
this.chartControl1.Series[0].Properties["Width"] = 40f;

Pie and Doughnut Charts
A Pie Chart is a circular chart divided into sectors to illustrate proportion.

A Doughnut Chart is functionally identical to a Pie Charts. It also has single-series and multi-series versions, with the
only difference that it has a hole in the middle.

2D Pie/Doughnut Charts
This section describes 2D charts that fall under the Pie/Doughnut Chart category.

3D Pie/Doughnut Charts
This section describes 3D charts that fall under the Pie/Doughnut Chart category.

ActiveReports 14 626

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2D Pie/Doughnut Charts
Given below is the list of 2D charts that fall under the Pie/Doughnut Chart category.

Doughnut Chart

A doughnut chart shows how the percentage of each data item contributes to the total.

In order to show each section of the pie in a different color, set the Background property for each data point.

Chart Information

ChartType Pie/Doughnut 2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The Clockwise property gets or sets a value indicating whether to display the data
in clockwise order.
The ExplodeFactor property gets or sets the amount of separation between data
point values.
The HoleSize property gets or sets the inner radius of the chart.
The OutsideLabels property gets or sets a value indicating whether the data point
labels appear outside the chart.
The StartAngle property gets or sets the horizontal start angle for the series.

Below is an example of how to set custom chart properties at run time for a doughnut chart.

Visual Basic

Me.ChartControl1.Series(0).Properties("ExplodeFactor") = 0.0F
Me.ChartControl1.Series(0).Properties("HoleSize") = 0.25F
Me.ChartControl1.Series(0).Properties("OutsideLabels") = False
Me.ChartControl1.Series(0).Properties("Radius") = 2.0F
Me.ChartControl1.Series(0).Properties("StartAngle") = 0.0F

C#

this.ChartControl1.Series[0].Properties["ExplodeFactor"] = 0f;
this.ChartControl1.Series[0].Properties["HoleSize"] = 0.25f;
this.ChartControl1.Series[0].Properties["OutsideLabels"] = false;
this.ChartControl1.Series[0].Properties["Radius"] = 2.0f;
this.ChartControl1.Series[0].Properties["StartAngle"] = 0f;

ActiveReports 14 627

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Funnel Chart

A funnel chart shows how the percentage of each data item contributes as a whole.

Chart Information

ChartType Pie/Doughnut 2D

Number of Y
values per data
points

1

Number of
Series

1 or more

Marker
Support

Series or Data Point

Custom
Properties

The CalloutLine property gets or sets the style for a line connecting the marker label to its
corresponding funnel section. The default value is a black one-point line.
The FunnelStyle property gets or sets the Y value for the series points to the width or height of the
funnel. The default value is YIsHeight.
The MinPointHeight property gets or sets the minimum height allowed for a data point in the funnel
chart. The height is measured in relative coordinates.
The NeckHeight property gets or sets the neck height for the funnel chart. This property can only be
used with the FunnelStyle property set to YIsHeight. The default value is 5.
The NeckWidth property gets or sets the neck width for the funnel chart. This property can only be
used with the FunnelStyle property set to YIsHeight. The default value is 5.
The OutsideLabels property gets or sets a value indicating whether the labels are placed outside of
the funnel chart. The default value is True.
The OutsideLabelsPlacement property gets or sets a value indicating whether the data point labels
appear on the left or right side of the funnel. This property can only be used with the OutsideLabels
property set to True.
The PointGapPct property gets or sets the amount of space between the data points of the funnel
chart. The PointGapPct is measured in relative coordinates. The default value is 0, and valid values
range from 0 to 100.

Pyramid Chart

A Pyramid chart shows how the percentage of each data item contributes as a whole.

Chart Information

ChartType Pie/Doughnut 2D

Number of Y
values per data
point

1

Number of 1 or more

ActiveReports 14 628

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Series

Marker
Support

Series or Data Points

Custom
Properties

The CalloutLine property gets or sets the style for a line connecting the marker label to its
corresponding pyramid section. The default value is a black one-point line.
The MinPointHeight property gets or sets the minimum height allowed for a data point in the pyramid
chart. The height is measured in relative coordinates.
The OutsideLabels property gets or sets a value indicating whether the labels are placed outside of the
pyramid chart. The default value is True.
The OutsideLabelsPlacement property gets or sets a value indicating whether the data point labels
appear on the left or right side of the pyramid. This property can only be used with the OutsideLabels
property set to True.
The PointGapPct property gets or sets the amount of space between the data points of the pyramid
chart. The PointGapPct is measured in relative coordinates. The default value is 0, and valid values
range from 0 to 100.

3D Pie/Doughnut Charts
Given below is the list of 3D charts that fall under the Pie/Doughnut Chart category.

Caution: To view a chart in 3D, open the ChartArea Collection Editor in the ChartAreas property and set the
ProjectionType property to Orthogonal.

Doughnut Chart

A 3D doughnut chart shows how the percentage of each data item contributes to a total percentage, allowing the data to be
viewed in a 3D format.

Chart Information

ChartType Pie/Doughnut 3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The Clockwise property gets or sets a value indicating whether to display the data in
clockwise order.
The ExplodeFactor property gets or sets the amount of separation between data point
values. The value must be less than or equal to 1. To explode one section of the
doughnut chart, set ExplodeFactor to the data point instead of the series.
The HoleSize property gets or sets the inner radius of the chart. If set to 0, the chart
looks like a pie chart. The value must be less than or equal to 1.

ActiveReports 14 629

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The OutsideLabels property gets or sets a value indicating whether the data point labels
appear outside the chart.
The Radius property gets or sets the size of the doughnut within the chart area.
The StartAngle property gets or sets the horizontal start angle for the series data points.

Below is an example of how to set the custom chart properties at run time for a 3D doughnut chart as shown in the image above.

To write the code in Visual Basic.NET

Visual Basic

Me.ChartControl1.Series(0).Properties("ExplodeFactor") = 0.0F
Me.ChartControl1.Series(0).Properties("HoleSize") = 0.33F
Me.ChartControl1.Series(0).Properties("OutsideLabels") = False
Me.ChartControl1.Series(0).Properties("Radius") = 2.0F
Me.ChartControl1.Series(0).Properties("StartAngle") = 50.0F

To write the code in C#

C#

this.chartControl1.Series[0].Properties["ExplodeFactor"] = 0f;
this.chartControl1.Series[0].Properties["HoleSize"] = .33f;
this.chartControl1.Series[0].Properties["OutsideLabels"] = false;
this.chartControl1.Series[0].Properties["StartAngle"] = 50f;

Funnel Chart

A 3D funnel chart shows how the percentage of each data item contributes to the whole, allowing the data to be viewed in a 3D
format.

Chart Information

ChartType Pie/Doughnut 3D

Number of Y
values per
data points

1

Number of
Series

1 or more

Marker
Support

Series or Data Point

The BaseStyle property gets or sets a circular or square base drawing style for the 3D funnel chart.
The CalloutLine property gets or sets the style for a line connecting the marker label to its corresponding
funnel section. The default value is a black one-point line.
The FunnelStyle property gets or sets the Y value for the series points to the width or height of the funnel. The

ActiveReports 14 630

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Custom
Properties

default value is YIsHeight.
The MinPointHeight property gets or sets the minimum height allowed for a data point in the funnel chart.
The height is measured in relative coordinates.
The NeckHeight property gets or sets the neck height for the funnel chart. This property can only be used with
the FunnelStyle property set to YIsHeight. The default value is 5.
The NeckWidth property gets or sets the neck width for the funnel chart. This property can only be used with
the FunnelStyle property set to YIsHeight. The default value is 5.
The OutsideLabels property gets or sets a value indicating whether the labels are placed outside of the funnel
chart. The default value is True.
The OutsideLabelsPlacement property gets or sets a value indicating whether the data point labels appear on
the left or right side of the funnel. This property can only be used with the OutsideLabels property set to True.
The PointGapPct property gets or sets the amount of space between the data points of the funnel chart. The
PointGapPct is measured in relative coordinates. The default value is 0, and valid values range from 0 to 100.
The RotationAngle property gets or sets the left-to-right rotation angle of the funnel. The valid values range
from -180 to 180 degrees. This property is only effective with the Projection property set to Orthogonal and
the BaseStyle property set to SquareBase.

Below is an example of how to set the custom chart properties at run time for a 3D funnel chart.

To write the code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart
Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
 .Properties("BaseStyle") = BaseStyle.SquareBase
 .Properties("CalloutLine") = New Line(Color.Black, 2, LineStyle.Dot)
 .Properties("FunnelStyle") = FunnelStyle.YIsWidth
 .Properties("MinPointHeight") = 10.0F
 .Properties("NeckWidth") = 20.0F
 .Properties("NeckHeight") = 5.0F
 .Properties("OutsideLabels") = True
 .Properties("OutsideLabelsPlacement") = LabelsPlacement.Right
 .Properties("PointGapPct") = 3.0F
 .Properties("RotationAngle") = 3.0F
End With

To write the code in C#

C#

using GrapeCity.ActiveReports.Chart;
using GrapeCity.ActiveReports.Chart.Graphics;

C#

this.ChartControl1.Series[0].Properties["BaseStyle"] = BaseStyle.SquareBase;
this.ChartControl1.Series[0].Properties["CalloutLine"] = new Line(Color.Black, 2,
LineStyle.Dot);

ActiveReports 14 631

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.ChartControl1.Series[0].Properties["FunnelStyle"] = FunnelStyle.YIsWidth;
this.ChartControl1.Series[0].Properties["MinPointHeight"] = 10f;
this.ChartControl1.Series[0].Properties["NeckWidth"] = 20f;
this.ChartControl1.Series[0].Properties["NeckHeight"] = 5f;
this.ChartControl1.Series[0].Properties["OutsideLabels"] = true;
this.ChartControl1.Series[0].Properties["OutsideLabelsPlacement"] = LabelsPlacement.Right;
this.ChartControl1.Series[0].Properties["PointGapPct"] = 3f;
this.ChartControl1.Series[0].Properties["RotationAngle"] = 3f;

Pyramid Chart

A 3D Pyramid chart shows how the percentage of each data item contributes to the whole, allowing the data to be viewed in a 3D
format.

Chart Information

ChartType Pie/Doughnut 3D

Number of Y
values per
data point

1

Number of
Series

1 or more

Marker
Support

Series or Data Points

Custom
Properties

The BaseStyle property gets or sets a circular or square base drawing style for the 3D pyramid chart.
The CalloutLine property gets or sets the style for a line connecting the marker label to its corresponding
pyramid section. The default value is a black one-point line.
The MinPointHeight property gets or sets the minimum height allowed for a data point in the pyramid chart.
The height is measured in relative coordinates.
The OutsideLabels property gets or sets a value indicating whether the labels are placed outside of the pyramid
chart. The default value is True.
The OutsideLabelsPlacement property gets or sets a value indicating whether the data point labels appear on
the left or right side of the pyramid. This property can only be used with the OutsideLabels property set to True.
The PointGapPct property gets or sets the amount of space between the data points of the pyramid chart. The
PointGapPct is measured in relative coordinates. The default value is 0, and valid values range from 0 to 100.
The RotationAngle property gets or sets the left-to-right rotation angle of the pyramid. The valid values range
from -180 to 180 degrees. This property is only effective with the Projection property set to Orthogonal and the
BaseStyle property set to SquareBase.

Below is an example of how to set the custom chart properties at run time for a Pyramid chart.

To write the code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart

ActiveReports 14 632

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
 .Properties("BaseStyle") = BaseStyle.SquareBase
 .Properties("MinPointHeight") = 10.0F
 .Properties("OutsideLabels") = True
 .Properties("OutsideLabelsPlacement") = LabelsPlacement.Right
 .Properties("PointGapPct") = 3.0F
 .Properties("RotationAngle") = 3.0F
End With

To write the code in C#

C#

using GrapeCity.ActiveReports.Chart;
using GrapeCity.ActiveReports.Chart.Graphics;

C#

this.ChartControl1.Series[0].Properties["BaseStyle"] = BaseStyle.SquareBase;
this.ChartControl1.Series[0].Properties["MinPointHeight"] = 10f;
this.ChartControl1.Series[0].Properties["OutsideLabels"] = true;
this.ChartControl1.Series[0].Properties["OutsideLabelsPlacement"] = LabelsPlacement.Right;
this.ChartControl1.Series[0].Properties["PointGapPct"] = 3f;
this.ChartControl1.Series[0].Properties["RotationAngle"] = 3f;

Pie Chart

This type of chart displays the contribution of each value to a total.

Chart Information

ChartType Pie/Doughnut 3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

Ring Chart

This chart type uses rings (inner and outer) to represent data.

Chart Information

ActiveReports 14 633

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ChartType Pie/Doughnut 3D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

Financial Chart
Financial charts are those which are specific to representing data related to financial activities. The Chart data region can
draw a number of financial chart types:

Candle, High Low, High Low Open Close
Kagi, Renko
Point and Figure, Three Line Break

2D Financial Charts
This section describes 2D charts that fall under the Financial Chart category.

3D Financial Charts
This section describes 3D charts that fall under the Financial Chart category.

2D Financial Charts
Given below is the list of 2D charts that fall under the Financial Chart category.

Candle Stick Chart

A candle chart displays stock information, using High, Low, Open and Close values. The size of the wick line is determined
by the High and Low values, while the size of the bar is determined by the Open and Close values. The bar is displayed
using different colors, depending on whether the price of the stock has gone up or down.

Chart Information

ChartType Financial2D

Number of Y
values per data
point

4 (The first value is the high figure, the second is the low figure, the third is the opening figure, and
the fourth is the closing figure.)

Number of Series 1 or more

ActiveReports 14 634

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Marker Support Series or Data Point. Marker labels use the first Y value as the default value.

Custom
Properties

The BodyDownswingBackdrop property gets or sets the backdrop information used to fill the
rectangle for data points in which the closing figure is lower than the opening figure.
The BodyUpswingBackdrop property gets or sets the backdrop information used to fill the
rectangle for data points in which the closing figure is higher than the opening figure.
The BodyWidth property gets or sets the width of the rectangle used to show upswing or
downswing.
The WickLine property gets or sets the line information for the wick line.

Below is an example of how to set the custom chart properties at run time for a candle chart as shown in the image above.

To write the code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
.Properties("BodyDownswingBackdrop") = New Chart.Graphics.Backdrop(Color.FromArgb(255,
192, 255))
.Properties("BodyUpswingBackdrop") = New Chart.Graphics.Backdrop(Color.FromArgb(192,
192, 255))
.Properties("WickLine") = New Chart.Graphics.Line(Color.Indigo)
.Properties("BodyWidth") = 7.0F
End With

To write the code in C#

C# code

Using GrapeCity.ActiveReports.Chart.Graphics

C# Code

this.ChartControl1.Series[0].Properties["BodyDownswingBackdrop"]= new
Chart.Graphics.Backdrop
(Color.FromArgb(255, 192, 255));
this.ChartControl1.Series[0].Properties["BodyUpswingBackdrop"] = new
Chart.Graphics.Backdrop
(Color.FromArgb(192, 192, 255));
this.ChartControl1.Series(0).Properties("WickLine") = new
Chart.Graphics.Line(Color.Indigo);
this.ChartControl1.Series[0].Properties["BodyWidth"] = 7f;

HiLo Chart

A HiLo chart displays stock information using High and Low, or Open and Close, values. The length of the HiLo line is
determined by the High and Low values, or the Open and Close values.

ActiveReports 14 635

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Information

ChartType Financial2D

Number of Y values per data point 2

Number of Series 1 or more

Marker Support Series or Data Point. Marker labels use the first Y value as the default value.

Custom Properties The HiloLine property gets or sets the line information for the HiLo line.

Below is an example of how to set the custom chart properties at run time for a HiLo chart as shown in the image above.

To write the code in Visual Basic.NET

Visual Basic

Me.ChartControl1.Series(0).Properties("HiloLine") = New
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.DeepSkyBlue, 4)

To write the code in C#

C#

this.ChartControl1.Series[0].Properties["HiloLine"] = new
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.DeepSkyBlue, 4);

Point and Figure Chart

The point and figure chart uses stacked columns of X's to indicate that demand exceeds supply and columns of O's to
indicate that supply exceeds demand to define pricing trends. A new X or O is added to the chart if the price moves
higher or lower than the BoxSize value. A new column is added when the price reverses to the level of the BoxSize value
multiplied by the ReversalAmount. The use of these values in the point and figure chart to calculate pricing trends makes
this chart best suited for long-term financial analysis.

ActiveReports 14 636

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Information

ChartType Financial2D

Number of Y values per
data point

2

Number of Series 1 or more

Marker Support Series or Data Points

Custom Properties

The BoxSize property gets or sets the amount a price must change in order to create
another X or O.
The DownswingLine property gets or sets the style and color settings for the downswing
O's.
The ReversalAmount property gets or sets the amount that a price must shift in order for a
new column to be added.
The UpswingLine property gets or sets the style and color settings for the upswing X's.

Below is an example of how to set the custom chart properties at run time for a Point and Figure chart.

To write the code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
 .Properties("DownswingLine") = New Chart.Graphics.Line(Color.Red)
 .Properties("UpswingLine") = New Chart.Graphics.Line(Color.Blue)
 .Properties("BoxSize") = 3.0F
End With

To write the code in C#

C#

using GrapeCity.ActiveReports.Chart.Graphics;

C#

this.ChartControl1.Series[0].Properties["DownswingLine"] = new
Chart.Graphics.Line(Color.Red);
this.ChartControl1.Series[0].Properties["UpswingLine"] = new
Chart.Graphics.Line(Color.Blue);
this.ChartControl1.Series[0].Properties["BoxSize"] = 3f;

Renko Chart

The Renko chart uses bricks of uniform size to chart price movement. When a price moves to a greater or lesser value than

ActiveReports 14 637

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the preset BoxSize value required to draw a new brick, a new brick is drawn in the succeeding column. The change in box
color and direction signifies a trend reversal.

Chart Information

ChartType Financial2D

Number of Y values per data
point

1

Number of Series 1 or more

Marker Support Series or Data Points

Custom Properties

The BodyDownswingBackdrop property gets or sets the style and color settings for the
downswing bricks.
The BodyUpswingBackdrop property gets or sets the style and color settings for the
upswing bricks.
The BoxSize property gets or sets the amount a price must change in order to create
another brick.

Below is an example of how to set the custom chart properties at run time for a Renko chart.

To write the code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
 .Properties("BodyDownswingBackdrop") = New Backdrop(Color.BlueViolet)
 .Properties("BodyUpswingBackdrop") = New Backdrop(Color.Navy)
 .Properties("BoxSize") = 3.0F
End With

To write the code in C#

CS

using GrapeCity.ActiveReports.Chart.Graphics;

CS

this.ChartControl1.Series[0].Properties["BodyDownswingBackdrop"] = new
Backdrop(Color.BlueViolet);

ActiveReports 14 638

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.ChartControl1.Series[0].Properties["BodyUpswingBackdrop"] = new
Backdrop(Color.Navy);
this.ChartControl1.Series[0].Properties["BoxSize"] = 3f;

Kagi Chart

A Kagi chart displays supply and demand trends using a sequence of linked vertical lines. The thickness and direction of
the lines vary depending on the price movement. If closing prices go in the direction of the previous Kagi line, then that
Kagi line is extended. However, if the closing price reverses by the preset reversal amount, a new Kagi line is charted in the
next column in the opposite direction. Thin lines indicate that the price breaks the previous low (supply) while thick lines
indicate that the price breaks the previous high (demand).

Chart Information

ChartType Financial2D

Number of Y values per data point 1

Number of Series 1

Marker Support Series or Data Points

Custom Properties

The DownswingLine property gets or sets the style
and color settings to use for a Kagi line which
charts a price decrease.
The ReversalAmount property gets or sets the
amount that a price must shift in order for the Kagi
line to change direction.
The UpswingLine property gets or sets the style
and color settings to use for a Kagi line which
charts a price increase.

Below is an example of how to set the custom chart properties at run time for a Kagi chart.

To write code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
 .Properties("BodyDownswingBackdrop") = New Backdrop(Color.Red)
 .Properties("BodyUpswingBackdrop") = New Backdrop(Color.Blue)
 .Properties("DownswingLine") = New Chart.Graphics.Line(Color.DarkRed)

ActiveReports 14 639

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 .Properties("ReversalAmount") = "25"
 .Properties("UpswingLine") = New Chart.Graphics.Line(Color.DarkBlue)
 .Properties("Width") = 50.0F
End With

To write code in C#

C#

using GrapeCity.ActiveReports.Chart.Graphics;

C#

this.ChartControl1.Series[0].Properties["BodyDownswingBackdrop"] = new
Backdrop(Color.Red);
this.ChartControl1.Series[0].Properties["BodyUpswingBackdrop"] = new
Backdrop(Color.Blue);
this.ChartControl1.Series[0].Properties["DownswingLine"] = new
Chart.Graphics.Line(Color.DarkRed);
this.ChartControl1.Series[0].Properties["ReversalAmount"] = "25";
this.ChartControl1.Series[0].Properties["UpswingLine"] = new
Chart.Graphics.Line(Color.DarkBlue);
this.ChartControl1.Series[0].Properties["Width"] = 50f;

Stock Chart

In a stock chart, series are displayed as a set of lines with markers for high, low, close, and open values. Values are
represented by the height of the marker as measured by the y-axis. Category labels are displayed on the x-axis.

Stock chart is a visual representation of data related to the stock market. It may be used to represent data like stock prices
and stock activities.

Chart Information

ChartType Financial2D

Number of Y values per data
point

4

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The CloseLine property gets or sets the information for the close value line.
The HiLoLine property gets or sets the line information for the HiLo line.
The OpenLine property property gets or sets the information for the open value line.
The TickLen property property gets or sets the tick length for the close value and open
value lines.

Stock Close Only Chart

A Stock chart is a visual representation of data related to the stock market. This type of chart requires four series of values
in the correct order (open, high, low, and then close).

ActiveReports 14 640

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Information

ChartType Financial2D

Number of Y values per data
point

4

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties

The CloseLine property gets or sets the information for the close value line.
The HiLoLine property gets or sets the line information for the HiLo line.
The OpenLine property property gets or sets the information for the open value line.
The TickLen property property gets or sets the tick length for the close value and open
value lines.

Stock Open Only Chart

A Stock chart is a visual representation of data related to the stock market. This type of chart requires four series of values
in the correct order (open, high, low, and then close), low, and then close).

Chart Information

ChartType Financial2D

Number of Y values per data
point

4

Number of Series 3

Marker Support Series or Data Point

Custom Properties

The CloseLine property gets or sets the information for the close value line.
The HiLoLine property gets or sets the line information for the HiLo line.
The OpenLine property property gets or sets the information for the open value line.
The TickLen property property gets or sets the tick length for the close value and open
value lines.

Three Line Break Chart

A Three Line Break chart uses vertical boxes or lines to illustrate price changes of an asset or market. Movements are
depicted with box colors and styles; movements that continue the trend of the previous box paint similarly while
movements that trend oppositely are indicated with a different color and/or style. The opposite trend is only drawn if its
value exceeds the extreme value of the previous three boxes or lines. The below Three Line Break depicts upward pricing
movement with black boxes and downward pricing movement with red boxes.

ActiveReports 14 641

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart Information

ChartType Financial2D

Number of Y values
per data point

1

Number of Series 1

Marker Support Series or Data Points

Chart-Specific
Properties

The BodyDownswingBackdrop property gets or sets the style and color settings for the
downswing boxes.
The BodyUpswingBackdrop property gets or sets the style and color settings for the upswing
boxes.
The NewLineBreak property gets or sets the number of previous boxes/lines that must be
compared before a new box/line is drawn. The default value is 3.

Below is an example of how to set the custom chart properties at run time for a Three Line Break chart.

To write code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
 .Properties("BodyDownswingBackdrop") = New Backdrop(Color.Red)
 .Properties("BodyUpswingBackdrop") = New Backdrop(Color.Black)
 .Properties("NewLineBreak") = 3
End With

To write code in C#

C#

using GrapeCity.ActiveReports.Chart.Graphics;

C#

this.ChartControl1.Series[0].Properties["BodyDownswingBackdrop"] = new
Backdrop(Color.Red);
this.ChartControl1.Series[0].Properties["BodyUpswingBackdrop"] = new
Backdrop(Color.Black);
this.ChartControl1.Series[0].Properties["NewLineBreak"] = 3;

3D Financial Charts
Given below is the list of 3D charts that fall under the Financial Chart category.

Kagi Chart

ActiveReports 14 642

Copyright © 2020 GrapeCity, Inc. All rights reserved.

A Kagi chart displays supply and demand trends using a sequence of linked vertical lines. The thickness and direction of
the lines vary depending on the price movement. If closing prices go in the direction of the previous Kagi line, then that
Kagi line is extended. However, if the closing price reverses by the preset reversal amount, a new Kagi line is charted in the
next column in the opposite direction. Thin lines indicate that the price breaks the previous low (supply) while thick lines
indicate that the price breaks the previous high (demand).

Chart Information

ChartType
Financial3D

Number of
Y values per
data point

1

Number of
Series

1

Marker
Support

Series or Data Points

Custom
Properties

The BodyDownswingBackdrop property gets or sets the style and color settings for the three-
dimensional side view of downswing Kagi lines. This property is only available with the Kagi 3D chart
type, and is only effective when the Width property is set to a value higher than 25.
The BodyUpswingBackdrop property gets or sets the style and color settings for the three-dimensional
side view of upswing Kagi lines. This property is only available with the Kagi 3D chart type, and is only
effective when the Width property is set to a value higher than 25.
The DownswingLine property gets or sets the style and color settings to use for a Kagi line which charts
a price decrease.
The ReversalAmount property gets or sets the amount that a price must shift in order for the Kagi line
to change direction.
The UpswingLine property gets or sets the style and color settings to use for a Kagi line which charts a
price increase.
The Width property gets or sets the width of the three-dimensional side view of the Kagi lines.This
property is only available with the Kagi 3D chart type, and must be set higher than its default value of 1
in order to display body downswing and upswing backdrops.

Below is an example of how to set the custom chart properties at run time for a Kagi chart.

To write code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)

ActiveReports 14 643

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 .Properties("BodyDownswingBackdrop") = New Backdrop(Color.Red)
 .Properties("BodyUpswingBackdrop") = New Backdrop(Color.Blue)
 .Properties("DownswingLine") = New Chart.Graphics.Line(Color.DarkRed)
 .Properties("ReversalAmount") = "25"
 .Properties("UpswingLine") = New Chart.Graphics.Line(Color.DarkBlue)
 .Properties("Width") = 50.0F
End With

To write code in C#

C#

using GrapeCity.ActiveReports.Chart.Graphics;

C#

this.ChartControl1.Series[0].Properties["BodyDownswingBackdrop"] = new
Backdrop(Color.Red);
this.ChartControl1.Series[0].Properties["BodyUpswingBackdrop"] = new
Backdrop(Color.Blue);
this.ChartControl1.Series[0].Properties["DownswingLine"] = new
Chart.Graphics.Line(Color.DarkRed);
this.ChartControl1.Series[0].Properties["ReversalAmount"] = "25";
this.ChartControl1.Series[0].Properties["UpswingLine"] = new
Chart.Graphics.Line(Color.DarkBlue);
this.ChartControl1.Series[0].Properties["Width"] = 50f;

Renko Chart

The Renko chart uses bricks of uniform size to chart price movement. When a price moves to a greater or lesser value than
the preset BoxSize value required to draw a new brick, a new brick is drawn in the succeeding column. The change in box
color and direction signifies a trend reversal.

Chart Information

ChartType
Financial3D

Number of Y values per data
point

1

Number of Series
1 or more

Marker Support
Series or Data Points

The BodyUpswingBackdrop property gets or sets the style and color settings for the
upswing bricks.

ActiveReports 14 644

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Custom Properties BodyDownswingBackdrop Gets or sets the style and color settings for the downswing
bricks.
The BoxSize property gets or sets the amount a price must change in order to create
another brick.

Below is an example of how to set the custom chart properties at run time for a Renko chart.

To write code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

With Me.ChartControl1.Series(0)
 .Properties("BodyDownswingBackdrop") = New Backdrop(Color.Red)
 .Properties("BodyUpswingBackdrop") = New Backdrop(Color.Blue)
 .Properties("BoxSize") = 3.0F
End With

To write code in C#

CS

using GrapeCity.ActiveReports.Chart.Graphics;

C#

this.ChartControl1.Series[0].Properties["BodyDownswingBackdrop"] = new
Backdrop(Color.Red);
this.ChartControl1.Series[0].Properties["BodyUpswingBackdrop"] = new
Backdrop(Color.Blue);
this.ChartControl1.Series[0].Properties["BoxSize"] = 3f;

Three Line Break Chart

Three line break 3D chart is a chart rendered in 3D.

Chart Information

ChartType
Financial3D

Number of Y values
per data point

1

Number of Series
1

Marker Support
Series or Data Points

ActiveReports 14 645

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Custom Properties

The BodyDownswingBackdrop property gets or sets the style and color settings for the
downswing boxes.
The BodyUpswingBackdrop property gets or sets the style and color settings for the upswing
boxes.
The NewLineBreak property gets or sets the number of previous boxes/lines that must be
compared before a new box/line is drawn. The default value is 3.

Point and Bubble Charts
Point or Bubble charts represent data by means of points and bubbles.

The ActiveReports Chart control can draw a number of point/bubble chart types:

Bubble, BubbleXY, PlotXY and Scatter.

2D Point/Bubble Charts
This section describes 2D charts that fall under the Point/Bubble Chart category.

2D Point/Bubble Charts
Given below is the list of 2D charts that fall under the Point/Bubble Chart category.

Bubble Chart

The Bubble chart is an XY chart in which bubbles represent data points. The first Y value is used to plot the bubble along the Y
axis, and the second Y value is used to set the size of the bubble. The bubble shape can be changed using the series Shape
property.

Chart Information

ChartType Point/Bubble2D

Number of Y values per data point 2

Number of Series 1 or more

Marker Support Series or Data Point. Marker labels use the second Y value as the default value.

Custom Properties

The MaxSizeFactor property gets or sets the maximum size of the bubble radius. Values
must be less than or equal to 1. Default is .25.
The MaxValue property gets or sets the bubble size that is used as the maximum.
The MinValue property gets or sets the bubble size that is used as the minimum.
The Shape property gets or sets the shape of the bubbles. Uses or returns a valid
MarkerStyle enumeration value.

Below is an example of setting the custom chart properties at run time for a bubble chart as shown in the image above.

ActiveReports 14 646

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic.NET

Visual Basic

Me.ChartControl1.Series(0).Properties("MaxSizeFactor") = 0.25F
Me.ChartControl1.Series(0).Properties("MaxValue") = 55.0R
Me.ChartControl1.Series(0).Properties("MinValue") = 5.0R
Me.ChartControl1.Series(0).Properties("Shape") =
GrapeCity.ActiveReports.Chart.MarkerStyle.Circle

To write code in C#

C#

this.ChartControl1.Series[0].Properties["MaxSizeFactor"] = .25f;
this.ChartControl1.Series[0].Properties["MaxValue"] = 55D;
this.ChartControl1.Series[0].Properties["MinValue"] = 5D;
this.ChartControl1.Series[0].Properties["Shape"] =
GrapeCity.ActiveReports.Chart.MarkerStyle.Circle;

Bubble XY Chart

The Bubble XY chart is an XY chart in which bubbles represent data points. The BubbleXY uses a numerical X axis and plots the x
values and first set of Y values on the chart. The second Y value is used to set the size of the bubble.

Chart Information

ChartType
Point/Bubble2D

Number of Y values per
data point

2

Number of Series
1 or more

Marker Support
Series or Data Point. Marker labels use the second Y value as the default value.

Custom Properties

The MaxSizeFactor gets or sets the maximum size of the bubble radius. Values must be less than
or equal to 1. Default is .25.
The MaxValue property gets or sets the bubble size that is used as the maximum.
The MinValue property gets or sets the bubble size that is used as the minimum.
The Shape property gets or sets the shape of the bubbles. Uses or returns a valid MarkerStyle
enumeration value.

Below is an example of setting the custom chart properties at run time for a bubble XY chart as shown in the image above.

To write code in Visual Basic.NET

Visual Basic

Me.ChartControl1.Series(0).Properties("MaxSizeFactor") = 0.25F
Me.ChartControl1.Series(0).Properties("MaxValue") = 50.0R
Me.ChartControl1.Series(0).Properties("MinValue") = 0.0R

ActiveReports 14 647

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Me.ChartControl1.Series(0).Properties("Shape") =
GrapeCity.ActiveReports.Chart.MarkerStyle.InvTriangle

To write code in C#

C#

this.ChartControl1.Series[0].Properties["MaxSizeFactor"] = .25f;
this.ChartControl1.Series[0].Properties["MinValue"] = 0D;
this.ChartControl1.Series[0].Properties["MaxValue"] = 50D;
this.ChartControl1.Series[0].Properties["Shape"] =
GrapeCity.ActiveReports.Chart.MarkerStyle.InvTriangle;

Plot XY Chart

A plot XY chart shows the relationships between numeric values in two or more series sets of XY values.

Chart Information

ChartType
Point/Bubble2D

Number of Y values per data point
1

Number of Series
1 or more

Marker Support
Series or Data Point

Custom Properties
None

Scatter Chart

Use a scatter chart to compare values across categories.

Chart Information

ActiveReports 14 648

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ChartType Point/Bubble2D

Number of Y values per data point 1

Number of Series 1 or more

Marker Support Series or Data Point

Custom Properties None

Chart Series
A chart series is the key to showing data in a chart. All data is plotted in a chart as a series and all charts contain at least
one series. The bars in the image below depict two series in a simple bar chart.

Each series is made up of a set of data points consisting of an X value that determines where on the X axis the data is
plotted, and one or more Y values. Most charts use one Y value but a few charts such as the Bubble, BubbleXY, and the
financial charts take multiple Y values.

When you bind data to a series, the X value is bound using the ValueMembersX property on the Series object, and the Y
value is bound using the ValueMembersY property.

The Series object also contains properties for each individual series, including chart type, custom chart properties,
annotations, containing chart area, and more. Each chart type in the ActiveReports Chart control contains series-specific
properties that apply to it. You can set the chart type and these series-specific properties in the Series Collection
Editor dialog, which opens when you click the ellipsis button next to the Series (Collection) property in the Visual
Studio Properties window.

You can manipulate each data point in the DataPoint Collection dialog box. You can access the dialog from the Series
Collection Editor by clicking the ellipsis button next to the Points (Collection) property.

ActiveReports 14 649

Copyright © 2020 GrapeCity, Inc. All rights reserved.

When you set a property on the Series object, it is applied to all data point objects in the series unless a different value for
the property is set on a specific data point. In that case, the data point property setting overrides the series property
setting for that particular data point. Note that for charts bound to a data source, you do not have access to the DataPoint
collection in the dialog.

If you specify the value for any of the custom properties, this value is not cleared when you change the ChartType.
Although this will show properties that do not apply to certain ChartTypes, it has the advantage of keeping
your settings in case you accidentally change the ChartType.

Setting chart and series-specific properties at run time

To set custom properties for a chart on the series programmatically, reference the series by name or index and use the
string Properties attribute name you wish to set.

The following code samples set the shape for bubbles on a bubble chart to diamond.

To write code in Visual Basic.Net

Visual Basic.NET code. Paste INSIDE the section Format event.

Me.ChartControl1.Series(0).Properties("Shape") = Chart.MarkerStyle.Diamond

To write the code in C#

C# code. Paste INSIDE the section Format event.

this.chartControl1.Series[0].Properties["Shape"] =
GrapeCity.ActiveReports.Chart.MarkerStyle.Diamond;

To set custom properties for a chart on the data points object programmatically, reference the series by name or index,
reference the data point by index, and use the string Properties attribute name you wish to set.

The following code samples set the explode factor on a doughnut chart for the second point in the series.

To write code in Visual Basic.Net

Visual Basic.NET code. Paste INSIDE the section Format event.

Me.ChartControl1.Series(0).Points(1).Properties("ExplodeFactor") = 0.5F

To write the code in C#

C# code. Paste INSIDE the section Format event.

ActiveReports 14 650

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.chartControl1.Series[0].Points[1].Properties["ExplodeFactor"] = .5f;

Chart Appearance
The following section explains in what ways you can modify the chart appearance.

Chart Effects
This section describes the visual effects that are available for the Chart data region.

Chart Control Items
This section describes the chart elements that you can use to customize the Chart data region.

Chart Axes and Walls
This section provides basic information about the axes and walls in the Chart data region.

Chart Effects
These topics introduce some basic information on the visual effects of the Chart data region.

Colors
Learn about the different ways you can change the color and gradients to enhance the visual appearance of a chart.

3D Effect
This section describes 3D effects that you can use to customize the chart.

Alpha Blending
This section explains about alpha blending property of the chart.

Lightning
Learn about directional light ratio, line type and line source of the chart.

Colors
In the Chart data region, colors can be used in different ways to enhance the chart's appearance, distinguish different
series, point out or draw attention to data information such as averages, and more.

Color Palettes
The Chart data region includes several pre-defined color palettes that can be used to automatically set the colors for data
values in a series. The pre-defined palettes are as follows.

Default The default palette.
Cascade A cascade of eight cool colors ranging from deep teal down through pale orchid.
Springtime The colors of spring, in deep green, two vivid colors and five pastels.
Iceberg A range of the soft blues and greys found in an iceberg.
Confetti A sprinkling of bright and pastel colors.
Greens A palette of greens.
Berries The colors of berries.
Autumn A quiet palette of autumn colors.
Murphy A range of the soft blues and greens.

These enumerated values are accessed through the Series class with code like the following.

ActiveReports 14 651

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic.NET

Visual Basic

Me.ChartControl1.Series(0).ColorPalette = Chart.ColorPalette.Iceberg

To write code in C#

C#

this.ChartControl1.Series[0].ColorPalette =
GrapeCity.ActiveReports.Chart.ColorPalette.Iceberg;

Gradients
Gradients can be used in object backdrops to enhance the visual appearance of various chart items. Gradients can be used
in the following chart sections:

Chart
Chart area
Wall
Title
Legend
Legend item (for custom legend items)
WallRange
Series
Data point
Marker
Marker Label
Annotation TextBar

You can set gradients for a backdrop at run time by creating a BackdropItem, setting its Style property to Gradient,
setting the GradientType, and setting the two colors to use for the gradient as shown in the following example.

To write code in Visual Basic.NET

Visual Basic

Imports GrapeCity.ActiveReports.Chart.Graphics

Visual Basic

Dim bItem As New GrapeCity.ActiveReports.Chart.BackdropItem
bItem.Style = Chart.Graphics.BackdropStyle.Gradient
bItem.Gradient = Chart.Graphics.GradientType.Vertical
bItem.Color = Color.Purple
bItem.Color2 = Color.White
Me.ChartControl1.Backdrop = bItem

To write code in C#

C#

ActiveReports 14 652

Copyright © 2020 GrapeCity, Inc. All rights reserved.

using GrapeCity.ActiveReports.Chart.Graphics;

C#

GrapeCity.ActiveReports.Chart.BackdropItem bItem = new
GrapeCity.ActiveReports.Chart.BackdropItem();
bItem.Style = GrapeCity.ActiveReports.Chart.Graphics.BackdropStyle.Gradient;
bItem.Gradient = GrapeCity.ActiveReports.Chart.Graphics.GradientType.Vertical;
bItem.Color = System.Drawing.Color.Purple;
bItem.Color2 = System.Drawing.Color.White;
this.ChartControl1.Backdrop = bItem;

3D Effects
Using the projection and viewpoint settings, you can display your 3D chart at any angle to provide the desired view or call
attention to a specific chart section.

Projection

Determine the projection for a 3D chart using the following properties.

Property Name Description

ZDepthRatio
The Z depth ratio is the level of depth the Z axis has in the chart. The ratio of the length specified in
the X-axis of Z-axis Values range from 0 (for a 2D chart) to 1.0. This property is useful in adjusting
the size of 3D chart.

ProjectionDX
The origin position of the Z axis in relation to the X axis. This property is valid only when the
ProjectionType is Orthogonal.

ProjectionDY
The origin position of the Z axis in relation to the Y axis. This property is valid only when the
ProjectionType is Orthogonal.

ProjectionType
The type of projection used for the chart. In order to show charts three dimensionally, the
ProjectionType in the ChartArea Collection editor must be set to Orthogonal. To access this dialog
box, click the ellipsis button next to the ChartAreas (Collection) property in the Properties Window.

HorizontalRotation
The HorizontalRotation property allows you to set the degree (-90° to 90°) of horizontal rotation
from which the chart is seen.

VerticalRotation
The VerticalRotation property allows you to set the degree (-90° to 90°) of vertical rotation from
which the chart is seen.

Alpha Blending
The Backdrop class in the Chart control has an Alpha property which employs GDI+, and is used to set the transparency
level of each object's backdrop. GDI+ uses 32 bits overall and 8 bits per alpha, red, green, and blue channels respectively
to indicate the transparency and color of an object. Like a color channel's levels of color, the alpha channel represents 256
levels of transparency.

The default value of the Alpha property is 255, which represents a fully opaque color. For a fully transparent color, set this
value to 0. To blend the color of the object's backdrop with the background color, use a setting between 0 and 255.

ActiveReports 14 653

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In the Chart control, you can use the Color.FromArgb method provided by standard Color constructor of .NET Framework
class library to set the alpha and color levels for a particular chart element.

The following example shows how you can use the method to set the alpha and color values for the chart backdrop.

To write code in Visual Basic.NET

Visual Basic

Me.ChartControl1.Backdrop = New
GrapeCity.ActiveReports.Chart.BackdropItem(Color.FromArgb(100, 0, 11, 220))

To write code in C#

C#

this.ChartControl1.Backdrop = new
GrapeCity.ActiveReports.Chart.BackdropItem(System.Drawing.Color.FromArgb(100, 0, 11,
220));

Changing the alpha level of a chart element reveals other items that are beneath the object. Because you can set the alpha
level for any chart element that supports color, you can also create custom effects for any chart. For example, you can use
alpha blending to combine background images with a semi-transparent chart backdrop to create a watermark look.

Lighting
The Chart control allows you to completely customize lighting options for 3D charts.

Directional Light Ratio
Using the DirectionalLightRatio property, you can control the directional or ambient intensity ratio.

Light Type
By setting the Type property to one of the enumerated LightType values, you can control the type of lighting used in the
chart. The settings are as follows:

Ambient：An ambient light source is used. It is equal to DirectionalLightRatio = 0.
Directional：：An infinite directional light source (like the sun, the light source having the same angle of incidence
from each side) is used.
Point：：A point light source (light is generated from one point and light source having different angle of incidence
according to the sides) is used.

ActiveReports 14 654

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Light Source
You can also set the Source property to a Point3d object, which controls the location of the light source.

Chart Control Items
The following topics review the chart control items that you can use to customize your chart.

Chart Annotation
This topic explains how you can add annotations to your chart.

Chart Titles and Footers
This topic explains how you can add a title or a footer to your chart.

Legends
This topic explains how you can add legends to your chart.

Markers
This topic explains how to create markers for showing specific data series values.

Label Symbols
This topic describes how to set format strings to display data in a legend, a marker or a symbol to be used as
placeholders.

Constant Lines and Stripes
This topic explains how to add constant lines and stripes to your chart.

Chart Annotations
The Chart control offers a built-in annotation tool to allow you to include floating text bars or images in your charts or call
attention to specific items or values in your charts using the line and text bar controls included in the Annotations
Collection Editor. You can find the Annotations Collection Editor under the Series properties of the Chart Designer.

The following properties are important while setting up annotations for your chart:

StartPoint Sets the starting point (X and Y axis values) for an annotation line.
EndPoint Sets the end point (X and Y axis values) for an annotation line.
AnchorPlacement Sets the position of the anchor point for the text bar on the chart surface.
AnchorPoint Sets the point (X and Y axis values) where the text bar will be anchored based on the anchor
placement selected.

The following code demonstrates creating annotation lines and annotation text, setting their properties, and adding them
to the series annotations collection at run time.

To write code in Visual Basic.NET

ActiveReports 14 655

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic

' create the annotation lines and text bar.
Dim aLine1 As New GrapeCity.ActiveReports.Chart.Annotations.AnnotationLine
Dim aLine2 As New GrapeCity.ActiveReports.Chart.Annotations.AnnotationLine
Dim aText1 As New GrapeCity.ActiveReports.Chart.Annotations.AnnotationTextBar
Dim aText2 As New GrapeCity.ActiveReports.Chart.Annotations.AnnotationTextBar

' set the properties for each line and text bar.
With aLine1
 .EndPoint = New GrapeCity.ActiveReports.Chart.Graphics.Point2d(1.5F, 30.0F)
 .Line = New
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red, 2)
 .StartPoint = New GrapeCity.ActiveReports.Chart.Graphics.Point2d(1.5F, 15.0F)
End With
With aLine2
 .EndPoint = New GrapeCity.ActiveReports.Chart.Graphics.Point2d(4.6F, 47.0F)
 .Line = New
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red, 2)
 .StartPoint = New GrapeCity.ActiveReports.Chart.Graphics.Point2d(3.6F, 45.0F)
End With
With aText1
 .AnchorPlacement =
GrapeCity.ActiveReports.Chart.Annotations.AnchorPlacementType.Bottom
 .AnchorPoint = New GrapeCity.ActiveReports.Chart.Graphics.Point2d(1.5F, 31.0F)
 .Height = 25.0F
 .Line = New
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red, 2)
 .Text = "Min Value"
 .Width = 100.0F
End With
With aText2
 .AnchorPlacement =
GrapeCity.ActiveReports.Chart.Annotations.AnchorPlacementType.Left
 .AnchorPoint = New GrapeCity.ActiveReports.Chart.Graphics.Point2d(4.7F, 47.0F)
 .Height = 25.0F
 .Line = New
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red, 2)
 .Text = "Max Value"
 .Width = 100.0F
End With

' add the annotation lines and text bars to the annotations collection for the series
Me.ChartControl1.Series(0).Annotations.AddRange(New
GrapeCity.ActiveReports.Chart.Annotations.Annotation() {aLine1, aLine2, aText1, aText2})

To write code in C#

ActiveReports 14 656

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C#

// create the annotation lines and text bar.
GrapeCity.ActiveReports.Chart.Annotations.AnnotationLine aLine1 = new
GrapeCity.ActiveReports.Chart.Annotations.AnnotationLine();
GrapeCity.ActiveReports.Chart.Annotations.AnnotationLine aLine2 = new
GrapeCity.ActiveReports.Chart.Annotations.AnnotationLine();
GrapeCity.ActiveReports.Chart.Annotations.AnnotationTextBar aText1 = new
GrapeCity.ActiveReports.Chart.Annotations.AnnotationTextBar();
GrapeCity.ActiveReports.Chart.Annotations.AnnotationTextBar aText2 = new
GrapeCity.ActiveReports.Chart.Annotations.AnnotationTextBar();

// set the properties for each line and text bar.
aLine1.EndPoint = new GrapeCity.ActiveReports.Chart.Graphics.Point2d(1.5F, 30F);
aLine1.Line = new GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red,
2);
aLine1.StartPoint = new GrapeCity.ActiveReports.Chart.Graphics.Point2d(1.5F, 15F);
aLine2.EndPoint = new GrapeCity.ActiveReports.Chart.Graphics.Point2d(4.6F, 47F);
aLine2.Line = new GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red,
2);
aLine2.StartPoint = new GrapeCity.ActiveReports.Chart.Graphics.Point2d(3.6F, 45F);
aText1.AnchorPlacement =
GrapeCity.ActiveReports.Chart.Annotations.AnchorPlacementType.Bottom;
aText1.AnchorPoint = new GrapeCity.ActiveReports.Chart.Graphics.Point2d(1.5F, 31F);
aText1.Height = 25F;
aText1.Line = new GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red,
2);
aText1.Text = "Min Value";
aText1.Width = 100F;
aText2.AnchorPlacement =
GrapeCity.ActiveReports.Chart.Annotations.AnchorPlacementType.Left;
aText2.AnchorPoint = new GrapeCity.ActiveReports.Chart.Graphics.Point2d(4.7F, 47F);
aText2.Height = 25F;
aText2.Line = new GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Red,
2);
aText2.Text = "Max Value";
aText2.Width = 100F;

// add the annotation lines and text bars to the annotations collection for the series
this.ChartControl1.Series[0].Annotations.AddRange(
new GrapeCity.ActiveReports.Chart.Annotations.Annotation[] {aLine1, aLine2, aText1,
aText2});

Chart Titles and Footers
The Chart control allows you to add custom titles to your charts. The Titles collection is accessible from the Chart object.
With the ability to add as many titles as needed, dock them to any side of a chart area, change all of the font properties,

ActiveReports 14 657

Copyright © 2020 GrapeCity, Inc. All rights reserved.

add borders and shadows, make the background look the way you want it, and change the location of the text, you can
easily make your titles look the way you want them to look.

The following code demonstrates creating header and footer titles, setting their properties, and adding them to the titles
collection at run time.

1. In design view of the report, double-click the section where you placed your chart. This creates a Format event
handling method for the section.

2. Add code to the handler to create header and footer titles.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the section Format event.

' create the header and footer titles
Dim tHeader As New GrapeCity.ActiveReports.Chart.Title
Dim tFooter As New GrapeCity.ActiveReports.Chart.Title

' set the properties for the header
tHeader.Alignment = Chart.Alignment.Center
tHeader.Backdrop = New
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.Thistle)
tHeader.Border = New GrapeCity.ActiveReports.Chart.Border(New
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.DimGray), 3)
tHeader.DockArea = Me.ChartControl1.ChartAreas(0)
tHeader.Docking = Chart.DockType.Top
tHeader.Font = New GrapeCity.ActiveReports.Chart.FontInfo(System.Drawing.Color.White,
New System.Drawing.Font("Arial", 25.0F))
tHeader.Text = "Chart Title"
tHeader.Visible = True

' set the properties for the footer
tFooter.Alignment = Chart.Alignment.Center
tFooter.Backdrop = New
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.Thistle)
tFooter.Border = New GrapeCity.ActiveReports.Chart.Border(New
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Indigo), 0,
System.Drawing.Color.Black)
tFooter.DockArea = Me.ChartControl1.ChartAreas(0)
tFooter.Docking = Chart.DockType.Bottom
tFooter.Font = New GrapeCity.ActiveReports.Chart.FontInfo(System.Drawing.Color.DimGray,
New System.Drawing.Font("Arial", 12.0F, System.Drawing.FontStyle.Bold))
tFooter.Text = "Chart Footer"
tFooter.Visible = True

ActiveReports 14 658

Copyright © 2020 GrapeCity, Inc. All rights reserved.

' add the header and footer titles to the titles collection
Me.ChartControl1.Titles.AddRange(New GrapeCity.ActiveReports.Chart.Title() {tHeader,
tFooter})

To write the code in C#

C# code. Paste INSIDE the section Format event.

// create the header and footer titles
GrapeCity.ActiveReports.Chart.Title tHeader = new GrapeCity.ActiveReports.Chart.Title();
GrapeCity.ActiveReports.Chart.Title tFooter = new GrapeCity.ActiveReports.Chart.Title();

// set the properties for the header
tHeader.Alignment = Chart.Alignment.Center;
tHeader.Backdrop = new
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.Thistle);
tHeader.Border = new GrapeCity.ActiveReports.Chart.Border(new
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.DimGray), 3);
tHeader.DockArea = this.ChartControl1.ChartAreas[0];
tHeader.Docking = Chart.DockType.Top;
tHeader.Font = new GrapeCity.ActiveReports.Chart.FontInfo(System.Drawing.Color.White,
new System.Drawing.Font("Arial", 25F));
tHeader.Text = "Chart Title";
tHeader.Visible = true;

// set the properties for the footer
tFooter.Alignment = Chart.Alignment.Center;
tFooter.Backdrop = new
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.Thistle);
tFooter.Border = new GrapeCity.ActiveReports.Chart.Border(new
GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Indigo), 0,
System.Drawing.Color.Black);
tFooter.DockArea = this.ChartControl1.ChartAreas[0];
tFooter.Docking = Chart.DockType.Bottom;
tFooter.Font = new GrapeCity.ActiveReports.Chart.FontInfo(System.Drawing.Color.DimGray,
new System.Drawing.Font("Arial", 12F, System.Drawing.FontStyle.Bold));
tFooter.Text = "Chart Footer";
tFooter.Visible = true;

// add the header and footer titles to the titles collection
this.ChartControl1.Titles.AddRange(new GrapeCity.ActiveReports.Chart.Title[]
{tHeader,tFooter});

Legends
The Chart control automatically creates a legend item for each series added to a chart at design time and sets the Legend

ActiveReports 14 659

Copyright © 2020 GrapeCity, Inc. All rights reserved.

property for each series by default. However, the legend's Visible property must be set to True for getting it displayed with the
chart. The text for legend caption is taken from the Name property on the series.

Note: Each Series displayed in the Legend must have a Name. If the Name property is not set, the Series does not show up
in the Legend.

The following code demonstrates how to create a legend at run time, add it to the Legends collection of the Chart object and
set the legend property of the series to the new legend, resulting in the legend shown above.

To write code in Visual Basic.NET

Visual Basic code. Paste INSIDE the section Format event

' create the legend and title for the legend
Dim legend1 As New GrapeCity.ActiveReports.Chart.Legend
Dim lHeader As New GrapeCity.ActiveReports.Chart.Title

' set the properties for the legend title
lHeader.Backdrop = New
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(Chart.Graphics.BackdropStyle.Transparent,
 _Color.White, Color.White, Chart.Graphics.GradientType.Vertical,
 Drawing2D.HatchStyle.DottedGrid, Nothing, _Chart.Graphics.PicturePutStyle.Stretched)
lHeader.Border = New GrapeCity.ActiveReports.Chart.Border(New
Chart.Graphics.Line(Color.White, 2,
 _Chart.Graphics.LineStyle.None), 0, Color.Black)
lHeader.Font = New GrapeCity.ActiveReports.Chart.FontInfo
(Color.White, New System.Drawing.Font("Arial", 10.0F, _FontStyle.Bold))
lHeader.Text = "Series:"

' set the properties for the legend and add it to the legends collection
legend1.Alignment = GrapeCity.ActiveReports.Chart.Alignment.TopRight
legend1.Backdrop = New
GrapeCity.ActiveReports.Chart.BackdropItem(Chart.Graphics.BackdropStyle.Transparent,
 _Color.Gray, Color.White, Chart.Graphics.GradientType.Vertical,
Drawing2D.HatchStyle.DottedGrid, Nothing,
 _Chart.Graphics.PicturePutStyle.Stretched)
legend1.Border = New GrapeCity.ActiveReports.Chart.Border(New Chart.Graphics.Line(Color.Navy,
2), _0, Color.Black)
legend1.DockArea = Me.ChartControl1.ChartAreas(0)
legend1.LabelsFont = New GrapeCity.ActiveReports.Chart.FontInfo(Color.White, New
System.Drawing.Font("Arial", 9.0F))
legend1.Header = lHeader
legend1.MarginX = 5
legend1.MarginY = 5

ActiveReports 14 660

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Me.ChartControl1.Legends.Add(legend1)

' Generate legend items
Dim legenditem As New GrapeCity.ActiveReports.Chart.LegendItem
Dim legenditem2 As New GrapeCity.ActiveReports.Chart.LegendItem

' Set properties of legend item
legenditem.Text = "High Range"
legenditem2.Text = "Low Range"
legenditem.Marker.Style = Chart.MarkerStyle.None
legenditem2.Marker.Style = Chart.MarkerStyle.None
legenditem.Border.Line.Style = Chart.Graphics.LineStyle.None
legenditem2.Border.Line.Style = Chart.Graphics.LineStyle.None
legenditem.Backdrop = New GrapeCity.ActiveReports.Chart.BackdropItem
(System.Drawing.Color.LightSteelBlue, Chart.Graphics.AntiAliasMode.Auto)
legenditem2.Backdrop = New GrapeCity.ActiveReports.Chart.BackdropItem
(System.Drawing.Color.LightGray, Chart.Graphics.AntiAliasMode.Auto)

' Add to legend collection
legend1.LegendItems.Add(legenditem)
legend1.LegendItems.Add(legenditem2)

' Set the legend property of the series to the legend you created
Me.ChartControl1.Series(0).Legend = legend1
Me.ChartControl1.Series(1).Legend = legend1
Me.ChartControl1.Series(2).Legend = legend1

To write code in C#

C# code. Paste INSIDE the section Format event

// create the legend and title for the legend
GrapeCity.ActiveReports.Chart.Legend legend1 = new GrapeCity.ActiveReports.Chart.Legend();
GrapeCity.ActiveReports.Chart.Title lHeader = new GrapeCity.ActiveReports.Chart.Title();

// set the properties for the legend title
lHeader.Backdrop = new GrapeCity.ActiveReports.Chart.Graphics.Backdrop
(GrapeCity.ActiveReports.Chart.Graphics.BackdropStyle.Transparent,System.Drawing.Color.White,
System.Drawing.Color.White, GrapeCity.ActiveReports.Chart.Graphics.GradientType.Vertical,
System.Drawing.Drawing2D.HatchStyle.DottedGrid, null, GrapeCity.ActiveReports.Chart.Graphics.
PicturePutStyle.Stretched);

lHeader.Border = new GrapeCity.ActiveReports.Chart.Border(new
GrapeCity.ActiveReports.Chart.Graphics.Line
(System.Drawing.Color.White, 2, GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None), 0,
 System.Drawing.Color.Black);

lHeader.Font = new GrapeCity.ActiveReports.Chart.FontInfo(System.Drawing.Color.White,
new System.Drawing.Font("Arial", 10.0F, System.Drawing.FontStyle.Bold));
lHeader.Text = "Series:";

ActiveReports 14 661

Copyright © 2020 GrapeCity, Inc. All rights reserved.

// set the properties for the legend and add it to the legends collection.
legend1.Alignment = GrapeCity.ActiveReports.Chart.Alignment.TopRight;
legend1.Backdrop = new GrapeCity.ActiveReports.Chart.BackdropItem
(GrapeCity.ActiveReports.Chart.Graphics.BackdropStyle.Transparent, System.Drawing.Color.Gray,
System.Drawing.Color.White, GrapeCity.ActiveReports.Chart.Graphics.GradientType.Vertical,
System.Drawing.Drawing2D.HatchStyle.DottedGrid, null, GrapeCity.ActiveReports.Chart.Graphics.
PicturePutStyle.Stretched);

legend1.Border = new GrapeCity.ActiveReports.Chart.Border
(new GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.Navy, 2),0,
System.Drawing.Color.Black);
legend1.DockArea = this.ChartControl1.ChartAreas[0];
legend1.LabelsFont = new GrapeCity.ActiveReports.Chart.FontInfo
(System.Drawing.Color.White, new System.Drawing.Font("Arial", 9F));
legend1.Header = lHeader;
legend1.MarginX = 5;
legend1.MarginY = 5;
this.ChartControl1.Legends.Add(legend1);

// Generate legend items
GrapeCity.ActiveReports.Chart.LegendItem legenditem = new
GrapeCity.ActiveReports.Chart.LegendItem();
GrapeCity.ActiveReports.Chart.LegendItem legenditem2 = new
GrapeCity.ActiveReports.Chart.LegendItem();

// Set properties of legend item
legenditem.Text = "High Range";
legenditem2.Text = "Low Range";
legenditem.Marker.Style = GrapeCity.ActiveReports.Chart.MarkerStyle.None;
legenditem2.Marker.Style = GrapeCity.ActiveReports.Chart.MarkerStyle.None;
legenditem.Border.Line.Style = GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None;
legenditem2.Border.Line.Style = GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None;
legenditem.Backdrop = new GrapeCity.ActiveReports.Chart.BackdropItem
(System.Drawing.Color.LightSteelBlue,
GrapeCity.ActiveReports.Chart.Graphics.AntiAliasMode.Auto);
legenditem2.Backdrop = new GrapeCity.ActiveReports.Chart.BackdropItem
(System.Drawing.Color.LightGray, GrapeCity.ActiveReports.Chart.Graphics.AntiAliasMode.Auto);

// Add to legend collection
legend1.LegendItems.Add(legenditem);
legend1.LegendItems.Add(legenditem2);

// set the legend property of the series to the legend you created.
this.ChartControl1.Series[0].Legend = legend1;
this.ChartControl1.Series[1].Legend = legend1;
this.ChartControl1.Series[2].Legend = legend1;

Markers
Use markers to show specific data series values in a chart. Markers are created by setting the Marker property of the series.

ActiveReports 14 662

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The following code demonstrates how to create a marker object at run time and assign it to the Marker property of the Series object. The results are shown
in the image above.

To write code in Visual Basic.NET

Visual Basic code. Paste INSIDE the section Format event

' create the marker object
Dim marker1 As New GrapeCity.ActiveReports.Chart.Marker

' set the marker properties.
marker1.Backdrop = New Chart.Graphics.Backdrop(Chart.Graphics.GradientType.Horizontal, Color.Navy, Color.Black)
marker1.Line = New Chart.Graphics.Line(Color.White)
marker1.Label = New Chart.LabelInfo(New Chart.Graphics.Line(Color.Transparent, 0, Chart.Graphics.LineStyle.None),
 New Chart.Graphics.Backdrop(Chart.Graphics.BackdropStyle.Transparent, Color.White, Color.White,
 _ Chart.Graphics.GradientType.Vertical, System.Drawing.Drawing2D.HatchStyle.DottedGrid, Nothing,
 _Chart.Graphics.PicturePutStyle.Stretched),
 New Chart.FontInfo(Color.White, New Font("Arial", 8.0F)), "{Value}", Chart.Alignment.Center)
marker1.Size = 24
marker1.Style = Chart.MarkerStyle.Diamond

' assign the marker to the series Marker property
Me.ChartControl1.Series(0).Marker = marker1

To write code in C#

C# code. Paste INSIDE the section Format event

// create the marker object
GrapeCity.ActiveReports.Chart.Marker marker1 = new GrapeCity.ActiveReports.Chart.Marker();

// set the marker properties
marker1.Backdrop = new
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(GrapeCity.ActiveReports.Chart.Graphics.GradientType.Horizontal,
 System.Drawing.Color.Navy, System.Drawing.Color.Black);
marker1.Line = new GrapeCity.ActiveReports.Chart.Graphics.Line(System.Drawing.Color.White);
marker1.Label = new GrapeCity.ActiveReports.Chart.LabelInfo(new GrapeCity.ActiveReports.Chart.Graphics.Line
(System.Drawing.Color.Transparent, 0, GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None),
new
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(GrapeCity.ActiveReports.Chart.Graphics.BackdropStyle.Transparent,
 System.Drawing.Color.White, System.Drawing.Color.White,
GrapeCity.ActiveReports.Chart.Graphics.GradientType.Vertical,
System.Drawing.Drawing2D.HatchStyle.DottedGrid, null,
GrapeCity.ActiveReports.Chart.Graphics.PicturePutStyle.Stretched),
 new GrapeCity.ActiveReports.Chart.FontInfo(System.Drawing.Color.White, new System.Drawing.Font("Arial", 8F)),
 "{Value}", GrapeCity.ActiveReports.Chart.Alignment.Center);
marker1.Size = 24;
marker1.Style = GrapeCity.ActiveReports.Chart.MarkerStyle.Diamond;

// assign the marker to the series Marker property
this.ChartControl1.Series[0].Marker = marker1;

ActiveReports 14 663

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Label Symbols
You can use Labels in Chart markers or legends.

By default, marker labels display Y value of data points, whereas legend labels display series name or data name.

Setting Strings
You can change a string (format string) displayed in a marker or legend label.

To change a string in a marker label

1. Display the Series collection editor of properties window.
2. Select the series that sets marker. (By default the first series (Series1) gets selected.
3. Expand the Properties property.
4. Expand the Marker property.
5. Expand the Label property.
6. Set the string to display in the Format property.

To change a string in a legend label

1. Display the Series collection editor of properties window.
2. Set the string you want to set in legend label using the LegendText property.

When the LegendItemMode property of Series is set to Series, series are displayed in legend. Data point will be displayed
when set to Point. By default, in each graph the common setting will get displayed. For example, in case of bar chart it is
series and in case of pie chart it is data point that gets displayed in legends.

Symbols
It is possible to easily display constant strings by simply performing the above mentioned settings. To display data, you
need to embed the section (placeholder) that displays the value within format string at run time.

A placeholder is a particular symbol enclosed within brackets {}.

The following symbols can be used. The sections enclosed within {} are changed by values.

Value

 Data Value（Y value）

Pct

 Percentage within series

PPct

 Percentage having 100% as sum of multiple series for data points.

Name

 X value of data

Index

 Index of data point

Total

Total number of series

ActiveReports 14 664

Copyright © 2020 GrapeCity, Inc. All rights reserved.

PTotal

Total number of multiple series for data points

When displaying numeric value, it is possible to set format specifying string similar to System.String.Format method used
when displaying numeric values. For example, when format string is {Value}, numeric value is displayed in default format
but when ":" (colon) format specifying string is added after Value, it is possible to insert comma or specify decimal place
digits.

For example, the format string for "inserting comma in numeric value and displaying 2 digits after decimal place" would
be as follows.

{Value:#,##0.00}

Please refer to the technical information posted on Microsoft site for details on format specifying string after continued
numeric value after comma.

[Format Function]
[User defined numeric value format (Format function)]

Sample Image
The following image displays a bar chart with the following values.

X Value abc def ghi

Y value of series 1（Red） 1 2 3

Y value of series 2（green） 4 3 2

String displayed below the image is a string set in Label.Format property of marker.

Value={Value}

ActiveReports 14 665

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Pct={Pct:0.0}

PPct={PPct:0.0}

ActiveReports 14 666

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name={Name}

Total={Total}

ActiveReports 14 667

Copyright © 2020 GrapeCity, Inc. All rights reserved.

PTotal={PTotal}

{Name}:{Value}

ActiveReports 14 668

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In case you wish to add a line break in between, as it is not possible to add a line break from Series collection editor, the
following format string needs to be set at run time.

To write code in Visual Basic.NET

Visual Basic

Private Sub rptLabelSymbol4_ReportStart(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.ReportStart

Dim m As GrapeCity.ActiveReports.Chart.Marker
m = CType(Me.ChartControl1.Series(0).Properties("Marker"),
GrapeCity.ActiveReports.Chart.Marker)
m.Label.Format = "{Name}" & vbCrLf & "{Value}"
End Sub

To write code in C#

C#

private void NewActiveReport1_ReportStart(object sender, EventArgs e)
{
GrapeCity.ActiveReports.Chart.Marker m;
m = (GrapeCity.ActiveReports.Chart.Marker)
this.ChartControl1.Series[0].Properties["Marker"];
m.Label.Format = "{Name}\n{Value}";
}

Specific symbols
The specific symbols that are used according to the chart type.

ActiveReports 14 669

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Bubble Charts

Value

Y2 value

Value0

Y value

Value1

Y2value

Bubble XY Chart

Value0

X value

Value1

Y value

Value2

Y2 value

Candle or Hilo Chart

For a Candle chart or HiLo chart, symbols are not enabled for legend or marker labels.

Constant Lines and Stripes
The Chart control supports constant lines and stripes through the use of the WallRanges collection. It allows you to
display horizontal or vertical lines or stripes in a chart to highlight certain areas. For example, you could draw a stripe in a
chart to draw attention to a high level in the data or draw a line to show the average value of the data presented.

Note: The Chart control does not aggregate average values. Please aggregate the average values beforehand and
then render the line.

Important properties

StartValue Sets the start value on the primary axis for the wall range.

ActiveReports 14 670

Copyright © 2020 GrapeCity, Inc. All rights reserved.

EndValue Sets the end value on the primary axis for the wall range.
PrimaryAxis Sets the axis on which the wall range appears.

The following code demonstrates how to create wall ranges, set their properties, and assign them to a chart area at run
time. The results are shown in the image above.

To write code in Visual Basic.NET

Visual Basic code. Paste INSIDE the section Format event

' Create the WallRange objects
Dim wallRange1 As New GrapeCity.ActiveReports.Chart.WallRange
Dim wallRange2 As New GrapeCity.ActiveReports.Chart.WallRange
Dim wallRange3 As New GrapeCity.ActiveReports.Chart.WallRange

' Set WallRange property
With wallRange1
 .Backdrop = New GrapeCity.ActiveReports.Chart.Graphics.Backdrop(Color.White)
 .Border = New GrapeCity.ActiveReports.Chart.Border(New
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Transparent, 0,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None), 0, Color.Black)
 .EndValue = 40
 .PrimaryAxis = ((CType(Me.ChartControl1.ChartAreas(0).Axes("AxisY"),
GrapeCity.ActiveReports.Chart.Axis)))
 .StartValue = 30
End With
With wallRange2
 .Backdrop = New GrapeCity.ActiveReports.Chart.Graphics.Backdrop(Color.Lime)
 .Border = New GrapeCity.ActiveReports.Chart.Border(New
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Transparent, 0,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None), 0, Color.Black)
 .EndValue = 34
 .PrimaryAxis = ((CType(Me.ChartControl1.ChartAreas(0).Axes("AxisY"),
GrapeCity.ActiveReports.Chart.Axis)))
 .StartValue = 33
End With
With wallRange3
 .Backdrop = New GrapeCity.ActiveReports.Chart.Graphics.Backdrop(Color.DarkGreen,
CType(150, Byte))
 .Border = New GrapeCity.ActiveReports.Chart.Border(New
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Transparent, 0,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None), 0, Color.Black)
 .EndValue = 40
 .PrimaryAxis = ((CType(Me.ChartControl1.ChartAreas(0).Axes("AxisZ"),
GrapeCity.ActiveReports.Chart.Axis)))
 .StartValue = 20
End With

' Add the WallRange to the chart area and set wall and Z axis properties to show lines.

ActiveReports 14 671

Copyright © 2020 GrapeCity, Inc. All rights reserved.

With ChartControl1.ChartAreas(0)
 .WallRanges.AddRange(New GrapeCity.ActiveReports.Chart.WallRange() {wallRange1,
wallRange2, wallRange3})
 .WallXY.Backdrop.Alpha = 100
 .WallXZ.Backdrop.Alpha = 100
 .WallYZ.Backdrop.Alpha = 100
 .Axes(4).MajorTick.Step = 20
 .Axes(4).Max = 60
 .Axes(4).Min = 0
 .Axes(4).Visible = True
End With

To write code in C#

C# code. Paste INSIDE the section Format event

// Create the WallRange objects
GrapeCity.ActiveReports.Chart.WallRange wallRange1 = new
GrapeCity.ActiveReports.Chart.WallRange();
GrapeCity.ActiveReports.Chart.WallRange wallRange2 = new
GrapeCity.ActiveReports.Chart.WallRange();
GrapeCity.ActiveReports.Chart.WallRange wallRange3 = new
GrapeCity.ActiveReports.Chart.WallRange();

// Set WallRange property
wallRange1.Backdrop = new
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.White);
wallRange1.Border = new GrapeCity.ActiveReports.Chart.Border(new
GrapeCity.ActiveReports.Chart.Graphics.Line
(System.Drawing.Color.Transparent, 0,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None),
0, System.Drawing.Color.Black);
wallRange1.EndValue = 40;
wallRange1.PrimaryAxis =
(GrapeCity.ActiveReports.Chart.Axis)this.ChartControl1.ChartAreas[0].Axes["AxisY"];
wallRange1.StartValue = 30;
wallRange2.Backdrop = new
GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.Lime);
wallRange2.Border = new GrapeCity.ActiveReports.Chart.Border(new
GrapeCity.ActiveReports.Chart.Graphics.Line
(System.Drawing.Color.Transparent, 0,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None),
0, System.Drawing.Color.Black);
wallRange2.EndValue = 34;
wallRange2.PrimaryAxis =
(GrapeCity.ActiveReports.Chart.Axis)this.ChartControl1.ChartAreas[0].Axes["AxisY"];
wallRange2.StartValue = 33;
wallRange3.Backdrop = new

ActiveReports 14 672

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.Chart.Graphics.Backdrop(System.Drawing.Color.DarkGreen);
wallRange3.Border = new GrapeCity.ActiveReports.Chart.Border(new
GrapeCity.ActiveReports.Chart.Graphics.Line
(System.Drawing.Color.Transparent, 0,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.None),
0, System.Drawing.Color.Black);
wallRange3.EndValue = 40;
wallRange3.PrimaryAxis =
(GrapeCity.ActiveReports.Chart.Axis)this.ChartControl1.ChartAreas[0].Axes["AxisZ"];
wallRange3.StartValue = 20;

// Add the WallRange to the chart area and set wall and Z axis properties to show lines.
this.ChartControl1.ChartAreas[0].WallRanges.AddRange(
new GrapeCity.ActiveReports.Chart.WallRange[] {wallRange1,wallRange2,wallRange3});
this.ChartControl1.ChartAreas[0].WallXY.Backdrop.Alpha = 100;
this.ChartControl1.ChartAreas[0].WallXZ.Backdrop.Alpha = 100;
this.ChartControl1.ChartAreas[0].WallYZ.Backdrop.Alpha = 100;
this.ChartControl1.ChartAreas[0].Axes[4].MajorTick.Step = 20;
this.ChartControl1.ChartAreas[0].Axes[4].Max = 60;
this.ChartControl1.ChartAreas[0].Axes[4].Min = 0;
this.ChartControl1.ChartAreas[0].Axes[4].Visible = true;

Chart Axes and Walls
This section explains about the axis and walls of the Chart data region.

Standard Axes
This section explains about standard axis properties or special characteristics.

Custom Axes
This section explains about the method to create custom axis.

Gridlines and Tick Marks
This section explains about the usage of grid lines and ticks.

Standard Axes
The Chart control provides the means to change axis settings at design time or at run time. Chart axes make it possible to
view and understand the data plotted in a graph.

ActiveReports 14 673

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Axis Types
Most 2D charts contain a numerical axis (AxisY) and a categorical axis (AxisX). 3D charts include another numerical axis
(AxisZ). These axes are accessible at run time from the ChartArea object and allow you to control the settings for each,
including scaling, labels, and various formatting properties. For any of the scaling or labeling properties you set to show
up at run time, you will need to set the Visible property of the axis to True.

Changing Axis Settings
Axis settings can be changed at design time by clicking on a Chart control and using the Properties Window or at run time
in code from the chart's ChartArea object.

Scaling

For normal linear scaling on a numeric axis, set the Max and Min properties for the axis, which correspond to the
numerical values in the chart's data series. Also, set the Step property of the MajorTick to show the major numerical unit
values. The Step property controls where labels and tick marks are shown on the numerical axis.

To write code in Visual Basic.NET

Visual Basic code. Paste INSIDE the section Format event

With Me.ChartControl1.ChartAreas(0).Axes("AxisY")
 .Max = 100
 .Min = 0
 .MajorTick.Step = 10
End With

To write code in C#

C# code. Paste INSIDE the section Format event

this.ChartControl1.ChartAreas[0].Axes["AxisY"].Max = 100;
this.ChartControl1.ChartAreas[0].Axes["AxisY"].Min = 0;
this.ChartControl1.ChartAreas[0].Axes["AxisY"].MajorTick.Step = 10;

The Chart control also supports logarithmic scaling which allows you to show the vertical spacing between two points that
corresponds to the percentage of change between those numbers. You can set your numeric axis to scale logarithmically
by setting the IsLogarithmic property on the axis to True and setting the Max and Min properties of the axis.

Labeling
To show labels on an axis, you will need to specify the value for the LabelsGap property, set your LabelsFont properties,
and set LabelsVisible to True. These properties can be set in the AxisBase Collection editor, which is accessed at design
time by clicking the ellipsis button next to the ChartAreas (Collection) property, then the Axes (Collection) property of
the ChartArea.

Tip: Labels render first, and then the chart fills in the remaining area, so be sure to make the chart large enough if
you use angled labels.

You can specify strings to be used for the labels instead of numerical values on an axis by using the Labels collection

ActiveReports 14 674

Copyright © 2020 GrapeCity, Inc. All rights reserved.

property at design time or assigning a string array to the Labels property at run time. You can also specify whether you
want your axis labels to appear on the outside or inside of the axis line using the LabelsInside property. By default, labels
appear outside the axis line.

Format for numeric value axis label
You can use the LabelFormat property to set the label format of numeric value axis. The LabelFormat property can be
referenced from the AxisBase collection editor.

For example, if you want to display a digit separator as shown in the image above, you should specify "{0:c}" in the
LabelFormat property to output the "\1,213" value. When "{0:#,###円}" is specified, the output value is "1,213円". The
LabelFormat property uses the same format as the ListControl.DataFormatString property of .NET Framework standard
control.

Tip: To set a specific tick interval using the LabelFormat property, the SmartLabels property should be set to False.

Secondary Axes
By default, a Chart object includes secondary X and Y axes (AxisX2 and AxisY2). At design time or run time, you can specify
a secondary axis to plot data against by setting all of the appropriate properties for AxisX2 or AxisY2, including the Visible
property.For example, if you want to use two axes to show the same data as it appears on two different scales, you can set
the primary axis to show the actual data value scale, for example, and set the secondary axis to show a logarithmic scale.

To write code in Visual Basic.NET

Visual Basic code. Paste INSIDE the section Format event

' set properties for AxisY (primary axis)
With Me.ChartControl1.ChartAreas(0).Axes("AxisY")
 .Max = 25
 .Min = 0
 .MajorTick.Step = 5
End With

' set properties for AxisY2 (secondary Y axis)
With Me.ChartControl1.ChartAreas(0).Axes("AxisY2")
 .Max = 1000
 .Min = 0
 .MajorTick.Step = 200
' set the scaling for the secondary axis to logarithmic
 .AxisType = GrapeCity.ActiveReports.Chart.AxisType.Logarithmic
 .Visible = True
End With

To write code in C#

C# code. Paste INSIDE the section Format event

// set properties for AxisY (primary axis)
this.ChartControl1.ChartAreas[0].Axes["AxisY"].Max = 25;
this.ChartControl1.ChartAreas[0].Axes["AxisY"].Min = 0;

ActiveReports 14 675

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.ChartControl1.ChartAreas[0].Axes["AxisY"].MajorTick.Step = 5;

// set properties for AxisY2 (secondary Y axis)
this.ChartControl1.ChartAreas[0].Axes["AxisY2"].Max = 1000;
this.ChartControl1.ChartAreas[0].Axes["AxisY2"].Min = 0;
this.ChartControl1.ChartAreas[0].Axes["AxisY2"].MajorTick.Step = 200;

// set the scaling for the secondary axis to logarithmic
this.ChartControl1.ChartAreas[0].Axes["AxisY2"].AxisType =
GrapeCity.ActiveReports.Chart.AxisType.Logarithmic;
this.ChartControl1.ChartAreas[0].Axes["AxisY2"].Visible = true;

Custom Axes
The Chart control supports the creation of additional custom axes through the use of the chart's CustomAxes collection.
Once a custom axis has been added to the collection, in addition to setting the normal axis properties, you will need to set
the following properties:

Parent - The Parent property allows you to choose the primary or secondary axis on which your custom axis
resides.
PlacementLength - The PlacementLength property allows you to set the length of the custom axis in proportion to
the Min and Max property values you have already set for the parent axis.
PlacementLocation - The PlacementLocation property allows you to set the starting location value for the custom
axis to appear in relation to the parent axis.

The following code sample demonstrates creating a custom axis, adding it to the Axes collection for the ChartArea, and
setting its properties.

To write code in Visual Basic.NET

Visual Basic code. Paste INSIDE the section Format event

' create the custom axis and add it to the ChartArea's Axes collection
Dim customAxisY As New GrapeCity.ActiveReports.Chart.CustomAxis
Me.ChartControl1.ChartAreas(0).Axes.Add(customAxisY)

' set the basic axis properties for customAxisY
customAxisY.LabelFont = New GrapeCity.ActiveReports.Chart.FontInfo(Color.Red, New
Font("Arial", 7.0!))
customAxisY.LabelsGap = 1
customAxisY.LabelsVisible = True

ActiveReports 14 676

Copyright © 2020 GrapeCity, Inc. All rights reserved.

customAxisY.Line = New GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Red, 1,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.Solid)
customAxisY.Max = 100
customAxisY.Min = 0
customAxisY.MaxDerived = False
customAxisY.Visible = True

' set major tick
customAxisY.MajorTick = New GrapeCity.ActiveReports.Chart.Tick(New
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Red, 1), New
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Red, 1), 20, 5, True)
customAxisY.MajorTick.Visible = True

' set minor tick
customAxisY.MinorTick.Visible = False
customAxisY.MinorTick.GridLine.Style = Chart.Graphics.LineStyle.None

' set custom axis property
customAxisY.Parent = ((CType(Me.ChartControl1.ChartAreas(0).Axes("AxisY"),
GrapeCity.ActiveReports.Chart.Axis)))
customAxisY.PlacementLength = 20
customAxisY.PlacementLocation = 45

To write code in C#

C# code. Paste INSIDE the section Format event

// create the custom axis and add it to the ChartArea's Axes collection
GrapeCity.ActiveReports.Chart.CustomAxis customAxisY = new
GrapeCity.ActiveReports.Chart.CustomAxis();
this.ChartControl1.ChartAreas[0].Axes.Add(customAxisY);

// set the basic axis properties for customAxisY
customAxisY.LabelFont = new GrapeCity.ActiveReports.Chart.FontInfo(Color.Red, new
Font("Arial", 7F, FontStyle.Regular, GraphicsUnit.Point, ((System.Byte)(0))));
customAxisY.LabelsGap = 1;
customAxisY.LabelsVisible = true;
customAxisY.Line = new GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Red);
customAxisY.MajorTick = new GrapeCity.ActiveReports.Chart.Tick(new
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Red, 1), new
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Red, 1), 1, 2F, true);
customAxisY.MajorTick.GridLine = new
GrapeCity.ActiveReports.Chart.Graphics.Line(Color.Red, 1,
GrapeCity.ActiveReports.Chart.Graphics.LineStyle.Solid);
customAxisY.MajorTick.Visible = true;
customAxisY.Max = 5;
customAxisY.MaxDerived = false;
customAxisY.Min = 0;

ActiveReports 14 677

Copyright © 2020 GrapeCity, Inc. All rights reserved.

customAxisY.Visible = true;

// set the special custom axis properties
customAxisY.Parent =
(GrapeCity.ActiveReports.Chart.Axis)this.ChartControl1.ChartAreas[0].Axes["AxisY"];
customAxisY.PlacementLength = 20;
customAxisY.PlacementLocation = 30;

Gridlines and Tick Marks
Gridlines and tick marks are generally used to help increase the readability of a chart.

Types
There are two kinds of gridlines and tick marks in the Chart control: major and minor. The properties for the major
gridlines and tick marks are set on the MajorTick object of the particular axis and the properties for minor gridlines and
ticks are set on the MinorTick object of the axis. The location for any labels shown for the axis are determined by the Step
property of the MajorTick object.

Step and TickLength
For either the MajorTick or MinorTick objects, you can define where the tick marks and gridlines will appear by setting the
Step property. The TickLength property allows you to set the region the tick mark will extend outside of the axis line.

Tip: To set a specific tick interval using the Step property, you should set the SmartLabels property to False.

Visible
To make any defined major or minor tick marks to show up at design time or run time, the Visible property of the
MajorTick or MinorTick object must be set to True. To show major or minor gridlines at design time or run time, the
Visible property of the WallXY object as well as that of the MajorTick or MinorTick object must be set to True.

Report Info
In ActiveReports, the ReportInfo control allows you to quickly display page numbers, page counts, and report dates. The
ReportInfo control is a text box with a selection of preset FormatString options. You can set page counts to count the
pages for the entire report, or for a specified group.

You can customize the preset values by editing the string after you select it. For example, if you want to display the total

ActiveReports 14 678

Copyright © 2020 GrapeCity, Inc. All rights reserved.

number of pages in the ReportHeader section, you can enter a value like:

Total of {PageCount} pages.

Caution: With large reports using the CacheToDisk property, placing page counts in header sections may have an
adverse effect on memory as well as rendering speed. Since the rendering of the header is delayed until
ActiveReports determines the page count of the following sections, CacheToDisk is unable to perform any
optimization. For more information on this concept, see Optimizing Section Reports.

For more information on creating formatting strings, see the Date, Time, and Number Formatting topic.

Important Properties

Property Description

FormatString Gets or sets the string used to display formatted page numbering or report date and time values in the
control.

Style Gets or sets the style string for the control. This property reflects any settings you choose in the Font
and ForeColor properties.

SummaryGroup Gets or sets the name of the GroupHeader section that is used to reset the number of pages when
displaying group page numbering.

Displaying page numbers and report dates

1. From the toolbox, drag the ReportInfo control to the desired location on the report.

2. With the ReportInfo control selected in the Properties window, drop down the FormatString property and select
the preset value that best suits your needs.

Displaying group level page counts

1. From the toolbox, add the ReportInfo control to the GroupHeader or GroupFooter section of a report and set the
FormatString property to a value that includes PageCount.

2. With the ReportInfo control still selected, in the Properties window, drop down the SummaryGroup property and
select the group for which you want to display a page count.

ReportInfo Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the control that is unique within the report. This name is displayed in the Document Outline and
in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

DataField: Select a field name from the data source to which to bind the control.

ActiveReports 14 679

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Appearance

Background Color: Select a color to use for the background of the control.

Font

Name: Select a font family name or a theme font.

Size: Choose the size in points for the font.

Style: Choose Normal or Italic.

Weight: Choose from Normal or Bold.

Color: Choose a color to use for the text.

Decoration: Select check boxes for Underline and Strikeout.

GDI Charset: Enter a value to indicate the GDI character set to use. For a list of valid values, see MSDN Font.GDICharSet
Property.

GDI Vertical: Select this checkbox to indicate that the font is derived from a GDI vertical font.

Format

Format string: Select a formatted page numbering or report date and time value to display in the control. You may also
type in this box to change or add text to display along with the formatted date and page number values.

Multiline: Select this check box to allow text to render on multiple lines within the control.

ReportInfo height
Can increase to accommodate contents: Select this check box to set CanGrow to True.

Can decrease to accommodate contents: Select this check box to set CanShrink to True.

Text direction
RightToLeft: Select this check box to reverse the text direction.

Alignment

Vertical alignment: Choose Top, Middle, or Bottom.

Horizontal alignment: Choose Left, Center, Right, or Justify.

Wrap mode: Choose NoWrap, WordWrap, or CharWrap to select whether to wrap words or characters to the next line.

Summary

SummaryGroup: Select a GroupHeader section in the report to display the number of pages in each group when
using the PageCount.

SummaryRunning: Select None, Group, or All to display a summarized value.

Cross Section Controls
In section reports, you can use the CrossSectionLine and CrossSectionBox report controls to display a frame,

ActiveReports 14 680

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font.gdicharset?view=netframework-4.8

borders, and vertical lines that run from a header section through its related footer section, spanning all details that come
between. You can specify line appearance using properties on the report controls, and even round the corners of the
CrossSectionBox.

You can only place the cross section controls in header sections in the designer. They automatically span intervening
sections to end in the related footer section. (You can also place them in footer sections, but they automatically associate
themselves with the related header section in the Report Explorer.)

CrossSectionLine

The CrossSectionLine control draws a vertical line from a header section to the corresponding footer section. At run time,
this vertical line stretches through any intervening sections. You can change the appearance of CrossSectionLine by
changing the following properties.

Property Description

LineColor Allows you to get or set color of the line.

LineStyle Allows you to select the line style from solid, dash, dotted, or double.

LineWeight Allows you to specify the thickness of the line.

CrossSectionBox

The CrossSectionBox control draws a rectangle from a header section to its corresponding footer section. To change the
appearance of the rectangle, you can use the following properties in addition to the ones mentioned above.

Property Description

Radius Sets the radius of each corner for the RoundRect shape type. You can select Default, TopLeft, TopRight,
BottomLeft or BottomRight. Selecting Default sets the radius of all the corners of the CrossSectionBox
control to a specified percentage. Default value = 0 (point).

ActiveReports 14 681

Copyright © 2020 GrapeCity, Inc. All rights reserved.

BackColor Sets the back color.

Note: At run time, the BackColor property renders first and the LineColor property renders last.

Caution:

The CrossSectionBox and CrossSectionLine controls do not render properly in multi-column reports, that is,
those in which a GroupHeader section has the ColumnLayout property set to True.
The CrossSection control (CrossSectionBox and CrossSectionLine) is drawn across multiple sections. Therefore,
it is not possible to change its appearance etc. in the event of a section. The appearance of the CrossSection
control can be dynamically changed only in the ReportStart event.

CrossSectionLine Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the control that is unique within the report. This name is displayed in the Document Outline and
in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

Appearance

Line style: Select a line style to use for the control. You can set it to Transparent, Solid, Dash, Dot, DashDot, DashDotDot,
or Double.

Line weight: Enter the width for the line.

Line color: Select a color to use for the line.

CrossSectionBox Dialog
With the control selected on the report, in the Commands section at the bottom of the Properties window, you can click
the Property dialog command to open the dialog.

General

Name: Enter a name for the control that is unique within the report. This name is displayed in the Document Outline and
in XML exports. You can only use underscore (_) as a special character in the Name field. Other special characters such as
period (.), space (), forward slash (/), back slash (\), exclamation (!), and hyphen (-) are not supported.

Tag: Enter a string that you want to persist with the control. If you access this property in code, it is an object, but in the
Properties window or Property dialog, it is a string.

Visible: Clear this check box to hide the control.

Appearance

Line style: Select a line style to use for the border line. You can set it to Transparent, Solid, Dash, Dot, DashDot,

ActiveReports 14 682

Copyright © 2020 GrapeCity, Inc. All rights reserved.

DashDotDot, or Double.

Line weight: Enter the width for the border line.

Line color: Select a color to use for the border line.

Background color: Select a color to use for the background of the picture control.

CloseBorder: Select the checkbox to close the borders.

Note: The CloseBorder property is only available for CrossSectionBox control placed in Section report's Group
Header and Group Footer.

Rounded Rectangle: Specify the radius for each corner of the CrossSectionBox individually. Drag the handlers available
at each corner of the CrossSectionBox to set the value of the radius at each corner.

Note: To enable specific corners, check the CheckBox available near each corner of the CrossSectionBox control.

Use the same radius on specified corners: Select this option to apply the same radius to all selected corners of
the CrossSectionBox.

Use different radius on specified corners: Select this option to apply a different radius to each selected corner of
the CrossSectionBox.

Section Report Structure
By default, a section report is composed of three banded sections: a PageHeader, a Detail section, and a PageFooter. You
can right-click the report and select Insert and choose other section pairs to add: ReportHeader and Footer, or
GroupHeader and Footer.

All sections except the detail section come in pairs, above and below the detail section. You can hide any section that you
are not using by setting the Visible property of the section to False.

ActiveReports defines the following section types:

Report Header

A report can have one report header section that prints at the beginning of the report. You generally use this section to
print a report title, a summary table, a chart or any information that only needs to appear once at the report's start. This
section has a NewPage ('NewPage Property' in the on-line documentation) property that you can use to add a new
page before or after it renders.

The Report Header does not appear on a section report by default. In order to add this section, right-click the report and
select Insert > Report Header/Footer to add a Report Header and Footer pair.

ActiveReports 14 683

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Page Header

A report can have one page header section that prints at the top of each page. Unless the page contains a report header
section, the page header is the first section that prints on the page. You can use the page header to print column headers,
page numbers, a page title, or any information that needs to appear at the top of each page.

Group Header

A report can include single or nested groups, with each group having its own header and footer sections. You can insert
and print the header section immediately before the detail section. For more information on grouping, see Add Groups.

In Columnar Reports, you can use ColumnGroupKeepTogether, and select whether to start a NewColumn before or after a
group.

You can also specify whether to print a NewPage before or after the section, and have the section print on every page
until the group details complete with the RepeatStyle property. The UnderlayNext property allows you to show group
header information inside the group details, so long as you keep the BackColor property of the Detail section set to
Transparent.

See GroupHeader ('GroupHeader Class' in the on-line documentation) for further information on properties.

Detail

A report has one detail section. The detail section is the body of the report and one instance of the section is created for
each record in the report. You can set the CanShrink property to True to eliminate white space after controls, and you can
set up Columnar Reports using ColumnCount, ColumnDirection, ColumnSpacing and NewColumn properties.

The KeepTogether property attempts to keep the section together on a single page, and the RepeatToFill ('RepeatToFill
Property' in the on-line documentation) property allows you to fill each page with the same number of formatted rows,
regardless of whether there is enough data to fill them. This is especially useful for reports such as invoices in which you
want consistent formatting like lines or green bars or back colors to fill each page down to the Footer section at the
bottom.

See Detail ('Detail Class' in the on-line documentation) for further information on properties.

Note: You cannot use the RepeatToFill property if you are using the PageBreak or SubReport control in the Detail
section, or if you have set the NewPage or NewColumn property to any value other than None. When you use this
property in a report where two groups are present, the ReportFooter section prints on the next page. This property
processes correctly only with single grouping.

Group Footer

A report can include single or nested groups, with each group having its own header and footer sections. You can insert
and print the footer section immediately after the detail section. For more information on grouping, see Add Groups.

Page Footer

A report can have one page footer section that prints at the bottom of each page. You can use the page footer to print
page totals, page numbers, or any other information that needs to appear at the bottom of each page.

Report Footer

A report can have one report footer section that prints at the end of the report. Use this section to print a summary of the
report, grand totals, or any information that needs to print once at the end of the report.

The Report Footer does not appear on a section report by default. In order to add this section, right-click the report and

ActiveReports 14 684

Copyright © 2020 GrapeCity, Inc. All rights reserved.

select Insert > Report Header/Footer to add a Report Header and Footer pair.

Note: If the report contains a Page Footer on the last page, the Report Footer appears above the Page Footer.

Section Report Events
Section reports use events to allow you to control report behavior.

Single-Occurrence Events
The following events are all of the events that are raised only once during a Section report's processing. These events are
raised at the beginning or at the end of the report processing cycle.

Events raised once

ReportStart

Use this event to initialize any objects or variables needed while running a report. This event is also used to set any
Subreport control objects to a new instance of the report assigned to the Subreport control.

Caution: Be sure to add dynamic items to the report before this event finishes.

DataInitialize

This event is raised after ReportStart. Use it to add custom fields to the report's Fields collection. Custom fields can be
added to a bound report (one that uses a Data Control to connect and retrieve records) or an unbound report (one that
does not depend on a data control to get its records). In a bound report the dataset is opened and the dataset fields are
added to the custom fields collection, then the DataInitialize event is raised so new custom fields can be added. The
DataInitialize event can also be used to make adjustments to the DataSource or to set up database connectivity.

ReportEnd

This event is raised after the report finishes processing. Use this event to close or free any objects that you were using
while running a report in unbound mode, or to display information or messages to the end user. This event can also be
used to export reports.

Multiple-Occurrence Events
The following events are raised multiple times during a Section report's processing.

Events raised more than once

FetchData

This event is raised every time a new record is processed. The FetchData has an EOF parameter indicating whether the
FetchData event should be raised. This parameter is not the same as the Recordset's EOF property and is defaulted to
True. When working with bound reports (reports using a DataControl), the EOF parameter is automatically set by the

ActiveReports 14 685

Copyright © 2020 GrapeCity, Inc. All rights reserved.

report; however, when working with unbound reports this parameter needs to be controlled manually.

Use the FetchData event with unbound reports to set the values of custom fields that were added in the DataInitialize
event or with bound reports to perform special functions, such as combining fields together or performing calculations.
The FetchData event should not have any references to controls on the report.

If you need to use a value from a Dataset with a control in the Detail section, set a variable in the FetchData event and use
the variable in the section's Format event to set the value for the control. Please note that this method of setting a
variable in the FetchData event and using it to set a control's value is only supported in the Detail_Format event.

Also use the FetchData event to increment counters when working with arrays or collections.

PageStart

This event fires before a page is rendered. Use this event to initialize any variables needed for each page when running an
unbound report.

PageEnd

This event is raised after each page in the report is rendered. Use this event to update any variables needed for each page
when running an unbound report.

When Bound and Unbound Data Values Are Set
1. The Fields collection is populated from the dataset that is bound to the report after the DataInitialize event is

raised. (In an unbound report, the Fields collection values are not set to anything at this point.)
2. The FetchData event is raised, giving the user a chance to modify the Fields collection.
3. Any fields that are bound have the values transferred over.
4. The Format event is raised.

Events that Occur for Each Instance of Each Section
In a Section report, regardless of the type or content of the various sections, there are three events for each
section: Format, BeforePrint and AfterPrint.

Section Events

Because there are many possible report designs, the event-raising sequence is dynamic in order to accommodate
individual report demands. The only guaranteed sequence is that a section's Format event is raised before the BeforePrint
event, which in turn occurs before the AfterPrint event but not necessarily all together. Reports should not be designed to
rely on these events being raised in immediate succession.

Important: Never reference the report's Fields collection in these section events. Only reference the Fields collection
in theDataInitialize and FetchData events.

Format

ActiveReports raises this event after the data is loaded and bound to the controls contained in a section, but before the
section is rendered to a page.

The Format event is the only event in which you can change the section's height. Use this section to set or change the

ActiveReports 14 686

Copyright © 2020 GrapeCity, Inc. All rights reserved.

properties of any controls or the section itself.

Also use the Format event to pass information, such as an SQL String, to a Subreport.

If the CanGrow or CanShrink property is True for the section or any control within the section, all of the growing and
shrinking takes place in the Format event. Because of this, you cannot obtain information about a control or section's
height in this event.

Because a section's height is unknown until the Format event finishes, it is possible for a section's Format event to be
raised while the report is on a page to which the section is not rendered. For example, the Detail Format event is raised
but the section is too large to fit on the page. This causes the PageFooter events and the PageEnd event to be raised on
the current page, and the PageStart, any other Header events, and possibly the FetchData event to be raised before the
section is rendered to the canvas on the next page.

BeforePrint

ActiveReports raises this event before the section is rendered to the page.

The growing and shrinking of the section and its controls have already taken place. Therefore, you can use this event to
get an accurate height of the section and its controls. You can modify values and resize controls in the BeforePrint event,
but you cannot modify the height of the section itself.

Also use this event to do page-specific formatting since the report knows which page the section will be rendered to
when this event is raised. Once this event has finished, the section cannot be changed in any way because the section is
rendered to the canvas immediately after this event.

Note: If a section contains the SubReport control that occupies more than one page, the SubReport gets split into
smaller parts at rendering. In this case, you can use the BeforePrint event - it will fire multiple times to get the height
of each part of the rendered SubReport.

AfterPrint

ActiveReports raises this event after the section is rendered to the page.

Although AfterPrint was an important event prior to ActiveReports Version 1 Service Pack 3, it is rarely used in any of the
newer builds of ActiveReports. This event is still useful, however, if you want to draw on the page after text has already
been rendered to it.

Event Sequence
Multi-threaded, single-pass processing enables Section reports to surpass other reports in processing and output
generation speed. ActiveReports processes and renders each page as soon as the page is ready. If a page has unknown
data elements or its layout is not final, it places the page in cache until the data is available.

Sequence of Events

Summary fields and KeepTogether constraints are two reasons why a page might not render immediately. The summary
field is not complete until all the data needed for calculation is read from the data source. When a summary field such as a
grand total is placed ahead of its completion level, such as in the report header, the report header and all following
sections are delayed until all of the data is read.

There are ten report events in the code behind a Section report, or seven in a ActiveReport script.

ActiveReports 14 687

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Because there are so many ways in which you can customize your reports, not all reports execute in the same way.
However, when you run a report, this is generally what happens:

1. ActiveReports raises the ReportStart event. The report validates any changes made to the report structure in
ReportStart. In some cases, data source properties raise the DataInitialize event.

2. Printer settings are applied. If none are specified, the local machine's default printer settings are used.
3. If the DataInitialize event was not already raised, ActiveReports raises it and opens the data source.
4. If the data source contains Parameters with unset values and the ShowParameterUI property is set to True,

ActiveReports displays a parameters dialog to request values from the user.
5. Closing the dialog raises the ParameterUIClosed event. If the report is a subreport that requires parameters,

ActiveReports binds the subreport parameters to any fields in the parent report.
6. ActiveReports raises the FetchData event.
7. If there is no data, the NoData event is raised.
8. The PageStart event raises, and then raises again after each PageEnd event until the final page.
9. Group sections are bound and sections begin rendering on pages.

10. ActiveReports raises Section Events to process sections in (roughly) the following order:
Report header
Page header
Group header
Detail
Group footer
Page footer
Report footer

11. After each event, ActiveReports checks the Cancel flag to ensure that it should continue.
12. Other events may raise, depending on the report logic.
13. The PageEnd event raises after each page becomes full, and the PageStart raises if the report has not finished.
14. Finally, ActiveReports raises the ReportEnd event.

Events that May Occur
These events occur in response to user actions, or when there is no data for a report.

Other Events

DataSourceChanged

This event occurs if the report's data source is changed. This is mainly useful with the end-user designer control.

ActiveReports 14 688

Copyright © 2020 GrapeCity, Inc. All rights reserved.

NoData

This event occurs if the report's data source returns no records.

ParameterUIClosed

This event occurs when the user closes the parameter dialog.

PrintAborted

This event occurs when the user cancels a print job.

PrintProgress

This event occurs once for each page while the report document is printing.

Designing Code-based Section Reports in .NET Core
The existing limitation in .NET Core 3.1 does not allow the ActiveReports Integrated Designer to be used for designing Code-based
Section Reports in WinForms applications in Visual Studio.
As workaround, you need to use Visual Studio's option to link report files from .NET Core project in the .NET Framework project, and use
the .NET Framework WinForms Designer.

The steps to enable design-time report creation in .NET Core project for Code-Based Section reports are as follows:

1. Create a new Windows Forms .NET Core project.

ActiveReports 14 689

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. Add the code-based section report item to the .NET Core project. To do so, right-click the project and go to Add > New Item.

ActiveReports 14 690

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Select ActiveReports 14 Section Report (code-based) report item. All the required dependencies will be installed
automatically.

4. Add a new .NET Framework project using built-in Section Report (code-based) template.

1. In the Solution Explorer, right-click the solution node and go to Add > New Project.

ActiveReports 14 691

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. Select ActiveReports 14 Section Report Application (code-based) template and configure the project for the target
.NET Framework version.

ActiveReports 14 692

Copyright © 2020 GrapeCity, Inc. All rights reserved.

5. Remove the code-based report (SectionReport1.cs) from the .NET Framework project, which was added automatically in
the previous step.

6. Add report from the .NET Core project to the .NET Framework project as link.

1. In the Solution Explorer, right-click the .NET Framework project, go to Add > Add Existing Item.
2. Navigate to the .NET Core project and select report files: 'SectionReport1.cs', 'SectionReport.Designer1.cs', and

'SectionReport1.resx'.
3. Select Add As Link option to add the report files as link.

ActiveReports 14 693

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveReports 14 694

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Update the .csproj file of the .NET Framework project.

You need to add the dependency information in the .csproj file of the .NET Framework project. The instruction to do so are as
follows:

1. In the Solution Explorer, right, right-click the .NET Framework project node and select Edit Project File.
2. In the .csproj file that opens, find the line

<Compile Include="..\WindowsFormsAppCore\SectionReport1.Designer.cs">

and insert

<DependentUpon>SectionReport1.cs</DependentUpon> as follows:

<Compile Include="..\WindowsFormsAppCore\SectionReport1.Designer.cs">
 <Link>SectionReport1.Designer.cs</Link>
 <DependentUpon>SectionReport1.cs</DependentUpon>
</Compile>

Note: If you do not find the .csproj file, you will need to first unload the project:

1. In the Solution Explorer, right-click the .NET Framework project node and select Unload Project.

2. Again, right-click the project, select Edit projectname.csproj, and modify the project file as described before.

8. Double-click the linked SectionReport1.cs (in .Net Framework project) to open the ActiveReports Integrated Designer for the
report.

9. Now design the report. The following gif shows how the modification of a report in .NET Framework project leads to modification
of the report in the .NET Core project.

ActiveReports 14 695

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Scripting in Section Reports
In a section report, ActiveReports allows you to use VB.NET or C# script to port your custom logic to report layouts. This
permits layouts saved to report XML (RPX) files to serve as stand-alone reports. By including scripting before you save the
report layout as an RPX file, you can later load, run, and display the report directly to the viewer control without using the
designer. In conjunction with report files, scripting allows you to update distributed reports without recompiling your
project.

Script Editor
To access the script editor, click the script tab below the report design surface. The script tab contains two drop-downs
(Object and Event).

Object: Drop down the list and select one of the report sections, or the report itself.
Event: Drop down the list and select from the list of events generated based on your selection in the Object drop
down. If you select a report section as the Object, there are three events: Format, BeforePrint, and AfterPrint. If you
select ActiveReport as the Object, there are seven events. See Section Report Events for further information.

Add script to the events in the same way that you add code to events in the code view of the report. When you select an
event, the script editor generates a method stub for the event.

Using the ScriptLanguage ('ScriptLanguage Property' in the on-line documentation) property of the report, you can
set the script language that you want to use.

Select the scripting language to use

ActiveReports 14 696

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In design view of the report, click in the grey area below the report to select it.
In the Properties window, drop down the ScriptLanguage property and select C# or VB.NET.

You can also add scripts at run time using the Script ('Script Property' in the on-line documentation) property.

Caution: Since the RPX file can be read with any text editor, use the AddCode ('AddCode Method' in the on-line
documentation) or AddNamedItem ('AddNamedItem Method' in the on-line documentation) method to add
secure information such as a connection string.

Tips for Using Script
Keep the section report class public: If the Section Report class is private, the script cannot recognize the items in
your report. The Section Report class is public by default.
Set the Modifiers property of any control referenced in script to Public: If the control's Modifiers property is
not set to Public, the control cannot be referenced in script and an error occurs when the report is run. The
Modifiers property has a default value of Private, so you must set this property in the designer.
Use "this" (as in C# code-behind) or "Me" (as in VB code-behind) to reference the report. Using "rpt" to
reference the report is also possible but it is recommended to use the "this" and "Me" keywords.

Note: The basic approach of using the "this/Me" and "rpt" keywords is as follows - use "this/Me" to access the
properties and controls added to the sections of the report, whereas use "rpt" within the instance of the
ActiveReports class only to access its public properties, public events and public methods.

Use Intellisense support: The script tab supports IntelliSense that helps in inserting the language elements and
provides other helpful options when adding script to a report.

Use Run-time error handling: When run-time errors occur, a corresponding error message is displayed in the
Preview tab stating the problem.

Note: A declared variable is not static by default. Use the static keyword to declare static variables.

Difference in script and code-behind event handler
Code-behind and the script tab require a different syntax for the event handler method definition. Use the Private
modifier in code-behind and the Public modifier in the script editor.

See the following examples of the ReportStart event handler definition in Visual Basic and C#:

ActiveReports 14 697

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Script and code-behind examples in Visual Basic

The ReportStart event handler definition in the script editor:

Visual Basic.NET

Sub ActiveReport_ReportStart End Sub

The ReportStart event handler definition in code-behind:

Visual Basic.NET

Private Sub SectionReport1_ReportStart(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.ReportStart End Sub

Script and code-behind examples in C#

The ReportStart event handler definition in the script editor:

CS

public void ActiveReport_ReportStart() { }

The ReportStart event handler definition in code-behind:

CS

private void SectionReport1_ReportStart(object sender, EventArgs e) { }

Report Settings Dialog
With ActiveReports, you can modify facets of your report, such as the page setup, printer settings, styles, and global
settings at design time, as well as at run time. To make changes at design time, access the Report Settings dialog through
any of the following:

With the report selected, go to the Visual Studio toolbar select Report menu > Settings.
In the Report Explorer, right-click the Settings node and select Show or double-click the Settings node.
Click the gray area outside the design surface to select the report and in the Commands section at the bottom of
the Properties Window, click the Property dialog command.

The Report Settings dialog provides the following pages where you can set or modify various settings of your report.

Page Setup

ActiveReports 14 698

Copyright © 2020 GrapeCity, Inc. All rights reserved.

On the Page Setup page, you can make changes to the report margins (left, right, top, and bottom), specify a gutter, and
select the Mirror margins option. This page also shows a preview of how each setting appears on the report page.

Top margin: Set the Top margin for report pages.
Bottom margin: Set the Bottom margin for report pages.
Left margin: Set the Left margin for report pages.
Right margin: Set the Right margin for report pages.
Gutter: Set Gutter to give extra space between the edge of the page and the margins. This allows reports to be
bound.
Mirror Margins: Select this option to set same inner and outside margins for opposite pages in the report.

By setting a gutter and selecting Mirror margins, you can easily set up reports for publishing.

Printer Settings

On the Printer Settings page, you can make changes to the printer paper size and orientation.

Paper Size: Select a paper size from the list of pre-defined paper sizes or choose Custom paper from the list to
enable the Width and Height options for defining your own custom paper size.
Width: Set the width of your custom paper size.
Height: Set the height of your custom paper size.
Orientation: Select one among Default, Portrait or Landscape as your paper orientation.
Collate: Select whether to use collation or not.
Duplex: Select whether the report should be printed in Simplex, Horizontal or Vertical duplex.
Paper Source: Set the location of the paper source from the dropdown list.

Important: For items set to Printer Default, default printer settings are used from the printer installed on the
environment where the report is being created. The paper size might also change based on the run time environment
so in case the paper size of your report is fixed, please specify it beforehand.

Styles

On the Styles page, you can change the appearance of text associated with controls, either by creating a new style sheet,
or by modifying and applying an existing style.

New: Use this button to create a new style.
Delete: Use this button to delete an existing style.
Export styles to file: Use this button to export an existing style to an external XML *.reportstyle file.
Import styles from file: Use this button to import styles a *.reportstyle file.
Font name: Set or modify the font in your new or existing style.
Font size: Set or modify the font size in your new or existing style.
Bold: Enable or disable Bold text for your new or existing style.
Italic: Enable or disable Italic text in your new or existing style.
Underline: Enable or disable Underlined text in your new or existing style.
Strikethrough: Enable or disable Strikethrough text in your new or existing style.
BackColor: Set the Backcolor to use in your new or existing style.
ForeColor: Set the Forecolor to use in your new or existing style.
Horizontal Alignment: Set the horizontal alignment to Left, Center, Right, Justify for your new or existing style.
Vertical Alignment: Set the vertical alignment to Top, Middle, Bottom for your new or existing style.
Script: Select the script to use in your new or existing style.

Global Settings

ActiveReports 14 699

Copyright © 2020 GrapeCity, Inc. All rights reserved.

On the Global Settings page, you can change the design layout of your report.

Snap Lines: Select whether to use snap lines at design time or not.
Snap to Grid: Select whether the control moves from one snap line to another at design time.
Show Grid: Select whether to show or hide the grid at design time.
Grid Columns: Set the count of columns in a grid.
Grid Rows: Set the count of rows in a grid.
Dimension Lines: Set whether to use dimension lines at design time or not.
Grid Mode: Select whether to show gridlines as Dots or Lines.
Show Delete Prompt: Select this option to get a warning when you try to delete a parameter or calculated field
from the Report Explorer.
Ruler Units: Set the ruler units in Inches or Centimeters.
Preview Pages: Set the number of pages to display in the Preview tab. Minimum values is 1 and maximum is
10000 pages. By default, the Preview tab displays 10 pages.

Note: This property allows you to set number of pages to display in the Preview tab only. To set the number
of pages for viewer/export, you can use MaxPages ('MaxPages Property' in the on-line documentation)
property.

Date, Time, and Number Formatting
In Section Reports, you can set formatting strings for date, time, currency, and other numeric values using the
OutputFormat property on the TextBox control. The OutputFormat dialog also allows you to select international currency
values and select from various built-in string expressions. In addition to the built-in string expressions, you may use any
.NET standard formatting strings. You can find information about these strings (Numerics and Date/Time formats) on
MSDN.

Note: The ReportInfo control has many preformatted options in the FormatString property for RunDateTime and
Page Numbers. For more information, see Display Page Numbers and Report Dates.

Caution:

The format from the OutputFormat property is applied to the value set in the DataField property of the Value
property. It is not applied when a string is set in the Text property.
OutputFormat property settings are valid only for Double or DateTime type values. In case of a String or when
no data type is set, the format is automatically applied to only those values that can be converted to Double
or DateTime, otherwise no format is applied.

The OutputFormat property allows four sections delimited by a semicolon. Each section contains the format specifications
for a different type of number:

The first section provides the format for positive numbers.
The second section provides the format for negative numbers.
The third section provides the format for Zero values.
The fourth section provides the format for Null or System.DBNull values.

For example: $#,#00.00; ($#,#00.00_); $0.00; #

Dates:

ActiveReports 14 700

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/dwhawy9k(v=vs.100)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/az4se3k1(v=vs.100)?redirectedfrom=MSDN

dddd, MMMM d, yyyy = Saturday, December 25, 2012
dd/MM/yyyy = 25/12/2012
d or dd = day in number format
ddd = day in short string format (for example, Sat for Saturday)
dddd = day in string format (for example, Saturday)
MM = month in number format
MMM = month in short string format (for example, Dec for December)
MMMM = month in string format (for example, December)
y or yy = year in two digit format (for example, 12 for 2012)
yyyy or yyyy = year in four digit format (for example, 2012)

Times:
hh:mm tt = 09:00 AM
HH:mm = 21:00 (twenty-four hour clock)
HH = hours in 24 hour clock
hh = hours in 12 hour clock
mm = minutes
ss = seconds
tt = AM or PM

Currency and numbers:
$0.00 = $6.25
$#,#00.00 = $06.25
0 = digit or zero
= digit or nothing
% = percent-multiplies the string expression by 100

Note: Underscore (_) keycode can be used in OutputFormat property to skip the width of the next character. This
code is commonly used as _) to leave space for a closing parenthesis in a positive number format when the negative
number format includes parentheses. This allows both positive and negative values to line up at the decimal point.

Optimizing Section Reports
Optimization can be crucial for large reports (i.e. over 100 pages). Here is some information which will help you to achieve
the best possible results for such reports. To optimize ActiveReports for the web, please refer to the memory
considerations section.

Memory Considerations

Images: Limit the use of large images when exporting to RTF and TIFF formats. Note that even one image uses a
lot of memory if it's repeated on every page of a very long report exported to TIFF or RTF. If you are not exporting,
or if you are exporting to Excel, PDF, or HTML, repeated images are stored only once to save memory, but the
comparison necessary to detect duplicate images slows the processing time for the report.
SubReports: Limit the use of subreports in repeating sections because each subreport instance consumes memory.
For example, consider that a subreport in the Detail section of a report in which the Detail section is repeated 2,000
times will have 2,000 instances of the subreport. Nested subreports will compound the number of instances. If you
need to use subreports in repeating sections, instantiate them in the ReportStart event instead of the Format event

ActiveReports 14 701

Copyright © 2020 GrapeCity, Inc. All rights reserved.

of the repeating section so that they will be instantiated only once and use less memory.
CacheToDisk: Set the CacheToDisk property of the Document object to True. Although it slows down the
processing time, this allows the document to be cached to disk instead of loading the whole report in memory. The
PDF export also detects this setting and exports the cached report. Please note that only the PDF export is affected
by the CacheToDisk property; other exports may run out of memory with very large reports. By
default, CacheToDisk uses IsolatedStorage, which requires IsolatedStorageFilePermission.
It is recommended that you use the CacheToDiskLocation property to specify the physical path instead of using
isolated storage so that you do not run into the size limit.
Summary: Placing summaries (primarily page count and report totals) in header sections will have an adverse
effect on memory as well as rendering speed with large reports using the CacheToDisk property. Since the
rendering of the header is delayed until ActiveReports determines the total or page count of the following sections,
CacheToDisk is unable to perform any optimization. The greater the number of affected sections, the longer
rendering is delayed and the less optimization CacheToDisk will offer. Therefore, a group total in a group header
section does not affect performance and memory as much as a report total in the report header.

Speed Considerations

Image: An image repeated on every page of a very long report is stored only once to improve memory, but the
comparison necessary to detect duplicate images slows performance. This is not only the case with the report
document itself, but also with the Excel, PDF, and HTML exports as they perform their own comparisons.
Summaries: Placing summaries (primarily page count and report totals) in header sections will slow report
processing. ActiveReports must determine the total or page count of the following sections before it can render
the header section. The greater the number of affected sections, the longer rendering is delayed. Therefore, a
group total in a group header section does not affect performance and memory as much as a report total in the
report header.
CacheToDisk: Be sure that the CacheToDisk property of the Document object is not set to True. Setting it to True
increases the amount of time the report takes to load, and should only be used with very large reports that use a
lot of memory. If this is used with smaller reports of less than 100 pages, it may actually cause more memory to be
used.
SELECT *：Using the SELECT * statement is only recommended when you actually want to use all of the data
returned by this statement. Contact your database administrator for other methods to speed up your queries.

Printing Considerations

Virtual Printer：We recommend use of virtual printer in case report generate environment differs from the
environment in which the report is viewed or printed like in the case of Web applications.
Line：Please be careful as Line control has been used to draw borders within a report. An issue has been observed
that spool size is increased (when comparing with Solid) during printing in case LineStyle property is set to an any
value e.g. Dash or Dot etc. other than Solid that is the default value. As a result, time is taken for spooling by the
report thus hindering the performance while printing. Same issue is observed when rendering a line using GDI+ in
PrintDocument of .NET Framework.

CacheToDisk and Resource Storage
The CacheToDisk property of the SectionDocument object tells ActiveReports whether to hold resources in memory, or
cache them somewhere on your disk. Caching resources slows processing time, but can save you from running out of
memory with very large reports.

Isolated Storage

ActiveReports 14 702

Copyright © 2020 GrapeCity, Inc. All rights reserved.

If you use the CacheToDisk property without setting a CacheToDiskLocation, the default location in which it caches
resources is IsolatedStorage, so you must have IsolatedStorageFilePermission in order to use it. The cache capacity for
IsolatedStorage may depend on your configuration, but does not exceed 3 GB.

Important: Temporary files and folders created in IsolatedStorage are not deleted automatically.

Cache to Disk Location
To avoid using IsolatedStorage, you can specify a folder in the CacheToDiskLocation property. The cache capacity for
a disk location is 3 GB.

For an example of the code used to turn on CacheToDisk and specify a folder, see the CacheToDiskLocation
('CacheToDiskLocation Property' in the on-line documentation) property in the Class Library documentation.

Visual Query Designer
Visual Query Designer is a graphical interface that simplifies data binding by allowing users to interactively build queries and
view the results. With the Visual Query Designer's interactive interface, users who are unfamiliar with SQL can easily design,
edit and preview queries.

Visual Query Designer supports the following SQL capabilities:

Selecting fields
Custom expression
Inner, left outer and right outer joins
Filtering Data
Grouping and aggregate functions
Sorting
Setting aliases for the selected fields and tables

For more information on how to use these capabilites in Visual Query Designer, refer to Query Building With Visual Query
Designer.

Note: You need to have Microsoft Internet Explorer 11 or higher installed on the system to run the Visual Query Designer.

See the graphic below to understand how a simple SQL query is generated in the Visual Query Designer.

ActiveReports 14 703

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Limitations

2. Queries for XML, Object, DataSet Provider or any other specific data providers cannot be created in Visual Query

Designer.
3. Unions, nested queries and stored procedures are not supported in Design Tab.
4. Crosses, full joins, provider-specific joins, and other SQL-specific implementation capabilities are not supported in the

Design Tab.

Accessing the Visual Query Designer

1. Connect a Page/RDL Report to a data source. See Connect to a Data Source for details on how to connect to a data
source in Page/Rdl Reports and Bind Reports to a Data Source for Section Reports.

2. Right-click the data source node (DataSource1 by default) and select the Add Data Set option or select Data Set from
the Add button on the Report Explorer toolbar to add a data set to the report.

3. In the DataSet Dialog that appears, select the Query page and then select the edit with visual query designer button

.

ActiveReports 14 704

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This opens the Visual Query Designer in a Page Report or Rdl Report.

In a Section Report

1. Connect a Section Report to a data source through the Report Data Source dialog. The Query Designer button is
disabled until the report connects to a data source. For more information see, Bind Reports to a Data Source.

ActiveReports 14 705

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. Once enabled, click the button.

This opens the Visual Query Designer in a Section Report.

Elements of Visual Query Designer

Database View

Database View contains the structure of a database including namespaces, tables, views and columns. You can drag and drop

ActiveReports 14 706

Copyright © 2020 GrapeCity, Inc. All rights reserved.

or double click the elements in the Database View to add them to the Design tab. Alternatively, you can double click the
crossed arrows icon on the right hand side of each element in the Database View to add it to the Design tab.

This is the first step in query building through the Visual Query Designer. A SQL query is generated as you add the database
elements to the Design tab.

Query Tools

The Visual Query Designer provides several tools to generate a query. The Query Tools section is divided into three major
areas: Design tab, SQL tab and Toolbar buttons.

Design Tab

The Design tab is the area of the Visual Query Designer where you set up queries. It provides a visual interface for the SQL
query you want to generate.

Selected Fields panel

Displays the fields, tables or any other element selected from the Database view. Each field in the Selected Fields
panel has its own set of editable options.

Option Description

Output Checkbox to determine whether the field is included in the result set. The checkbox is selected
by default when a field is added to the Selected Fields panel. You can clear this checkbox if you
do not want the field to be displayed in the Results panel.

Table Displays the name of the table the selected field belongs to.

Alias Allows the user to provide an alternative name for the field.

Total Applies grouping or aggregates on a field. Total (expression) is used to perform a calculation,
retrieve the value of a control, define regulations, create calculated fields, and define a group
level for a report.

Expression - Allows selection of fields from a table. Custom expressions can also be
specified here.
GroupBy - Groups data based on the selected field.
Count - Returns the number of items in a group. Implements the SQL COUNT aggregate.
Avg - Returns the average of the values in a group. Implements the SQL AVG aggregate.
Sum - Returns the sum of all the values in the group. Implements the SQL SUM
aggregate.
Min - Returns the minimum value in a group. Implements the SQL MIN aggregate.
Max - Returns the maximum value in a group. Implements the SQL MAX aggregate.
StDev - Returns the statistical standard deviation of all values in a group. Implements the
SQL STDEV aggregate.
Var - Returns the statistical variance of all values in the group. Implements the SQL VAR
aggregate.

Sort Arranges data in a prescribed sequence i.e. in Ascending or Descending order.

Sort Order Allows the user to set the order of sorting in case multiple fields are to be sorted.

Where Allows the user to set a filtering condition for the column data. The WHERE clause can be used
when you want to fetch any specific data from a table omitting other unrelated data.

Note: When you add a table to the Selected Fields panel, all the fields in that table are added to the query. In effect

ActiveReports 14 707

Copyright © 2020 GrapeCity, Inc. All rights reserved.

you get a query like Select * from Customers.

Tables and Relationships

The Tables and Relationships panel displays a list of all the tables with fields in the Selected Fields panel. In case the
Selected Fields panel has fields from multiple tables, a Relations button appears at the bottom of the related table's
name to show the relationship between two tables.

Tables and Relationships panel provides the following options for each table:

Option Description

Table Displays the names of all the tables with fields in the Selected Fields panel.

Alias Allows the user to provide an alternative name for the table.

SQL Tab

The SQL Tab displays the SQL statement for the current query. Users can edit the query directly in the SQL Tab.

When you switch to the SQL Tab, the Visual Query Designer automatically formats your query in the correct syntax with
highlighted keywords.

In the SQL Tab you can:

Add new queries by directly typing SQL statements.
Modify the SQL statement created by Visual Query Designer.

Tool Bar Buttons

Option Description

Distinct Checkbox Distinct Checkbox is used to remove duplicates from the result set of a SELECT statement. If checked, it
allows users to display only distinct values.

Execute Allows users to execute their query and display the result in Results panel.

Save Allows users to save the query to a DataSet dialog.

Clear Allows users to clear all the panels in the Visual Query Designer and the SQL tab along with it.

The Query Tools section also has a dropdown on the top right corner with two options:

1. Toggle Panels: To expand or collapse the Selected Fields and the Tables and Relationships panel.
2. Show Hints: To show or hide hints on how to use the Visual Query Designer effectively.

Example: "Double click the table or field name in the database view or drag and drop it here." appears at the top of the
Selected Fields panel.

Result panel

Displays the result of the query set in the Visual Query Designer.

This panel is populated when you click the Execute button on the Visual Query Designer toolbar after adding the required

ActiveReports 14 708

Copyright © 2020 GrapeCity, Inc. All rights reserved.

fields or tables in the Selected Fields panel.

Query Building With Visual Query Designer
The topic takes you through the query building process in the Visual Query Designer. Query building in Visual Query
Designer can be accomplished in a few simple steps:

Step 1: Adding fields from a table to generate a simple query

Step 2: Setting relationships (only applicable to queries using multiple tables)

Step 3: Setting options for individual fields or tables

Step 4: Executing a query

Step 5: Previewing a query

Create and Execute a Query (Single Table)
Create and Execute a Query (Multiple Tables)
Preview a Query
Save a Query
Edit a Query
Clear a Query
Access the Visual Query Designer
Delete a field
Sort data
Display Distinct Values
Aggregate Functions and Grouping
Hide Fields from a Query
Set filter condition
Create a parameterized query

The following steps assume that you have already added a Page Report or an Rdl Report template and connected it to a
data source. See Quick Start and Connect to a Data Source for further information.
For more information on how to access Visual Query Designer, see Accessing Visual Query Designer.

Note: This topic uses the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.

Create and Execute a Query (Single Table)

Go to Top

In the Visual Query Designer, you get a visual interface to assist you in quickly designing simple queries that reference a
single table.

Query Result in SQL

SQL Query

select Movie.MovieID, Movie.Title
from Movie

ActiveReports 14 709

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Steps to create the Query in Visual Query Designer

1. From the Movie table in the Database view, drag and drop the field MovieID to the Selected Fields panel.

2. Add another field, Movie.Title from the same table, to the Selected Fields panel.
3. On the Toolbar of the Visual Query Designer, click the Execute button.

Result data similar to the following appears in Results panel.

Create and Execute a Query (Multiple Tables)

Go to Top

In the Visual Query Designer, you get a visual interface to reference multiple tables and set up relationships between
them.

The following example shows how to implement a right outer join using the tables Movie and MovieCrew from Reels
database and apply a filter condition to your result set using the WHERE clause. For more information about table
relationships and joins in Visual Query Designer, see Tables and Relations.

ActiveReports 14 710

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Query Result in SQL

SQL Query

select Movie.MovieID, Movie.Country, Movie.Title, MovieCrew.CastID,
MovieCrew.TitleID from Movie right join MovieCrew on
MovieCrew.MovieID = Movie.MovieID
where (Movie.Country = 'USA' and MovieCrew.CastID =1)

Steps to create the Query in Visual Query Designer

1. From the Movie table in the Database view, drag and drop the fields MovieID, Country and Title to the Selected
Fields panel.

2. From the MovieCrew table in Database view, drag and drop the fields CastID and TitleID to the Selected Fields
panel.

3. When you add the first field in step 2, a Tables relations dialog automatically appears on the screen.
In Tables relations dialog, you can also select any other field from MovieCrew table which matches the related
table's field to form a join between the both.

4. In Tables relations dialog, select the Right Outer Join Type for joining the two tables Movie and Movie Crew. The
Right Outer tab is highlighted.
Refer to Tables And Relations for more information on types of joins.

5. In Tables relations dialog, click OK to save the relationship between tables.
Once the relationship has been set up between tables, you may also access the Tables relations dialog from the
Relations button in the Tables and Relationships panel.

6. In the Selected Fields panel, under the Where option, add a filter condition for the Country field of the Movie

ActiveReports 14 711

Copyright © 2020 GrapeCity, Inc. All rights reserved.

table. Set the value to "= 'USA'".
7. Again, in the Selected Fields panel, under the Where option, add a filter condition for the CastID field of the

MovieCrew table. Set the value to "= 1".
8. On the Toolbar of the Visual Query Designer, click the Execute button.

Result data similar to the following appears in Results panel.

Preview a Query

Go to Top

When you have finished designing your query, you can execute it and then preview the result in the Visual Query
Designer.

1. In the Query Tools section of the Visual Query Designer, go to the Toolbar.
2. Click the button.

You can preview the result in the Results panel at the bottom of the Visual Query Designer dialog.

Note: When previewing a query, Visual Query Designer shows only a part of the data from the database.

Save a Query

ActiveReports 14 712

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Go to Top

Page Report/Rdl Report

Once a query is created in the Visual Query Designer, the Save button allows you to save the query into the DataSet
dialog.

1. Once your query is created in Visual Query Designer, in the Query Tools section of the Visual Query Designer, go
to the Toolbar.

2. Click the button. Your query appears in Query field of the Query page in the DataSet dialog.
3. Click OK to close the dialog.

Your data set and queried fields appear as nodes in the Report Explorer.

Section Report

Once a query is created in the Visual Query Designer, the Save button allows you to save the query into the Report Data
Source dialog.

1. Once the query is created in Visual Query Designer, in the Query Tools section of the Visual Query Designer, go to
the Toolbar.

2. Click the button.
Your query appears in Query field of the Report Data Source dialog.

3. Click OK to close the dialog. Your queried fields appear as bound field nodes in the Report Explorer.

Clear a Query

Go to Top

Once a query is created, the Selected Fields panel is populated with fields and Tables and Relationship panel displays
the tables to which the fields used in the query belong.

1. In the Query Tools section of the Visual Query Designer, go to the Toolbar.

2. Click the button.

This clears the Query Tools section completely including Selected Fields and Tables and Relationships panel. It
also removes the SQL query from the SQL tab and any data appearing in the Results panel.

Edit a Query

Go to Top

There are two ways to edit a query in the Visual Query Designer:

Edit a query created in the Visual Query Designer directly in the SQL tab.

Follow the steps below to edit a query created in the Visual Query Designer manually in the SQL:

1. From the Movie table in Database view, drag and drop the fields MovieID and Title onto the Selected Fields
panel.

2. Under Query Tools, switch to the SQL tab to edit the query manually.

ActiveReports 14 713

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Enter the field name Movie.Length in the SQL tab.

SQL Query

select Movie.MovieID, Movie.Title, Movie.Length
from Movie

4. On the Toolbar of the Visual Query Designer, click the Execute button.

The additional Length column appears in Results panel.

Edit an existing SQL query in the Visual Query Designer.

This approach has some limitations based on the type of queries that can be handled in the Visual Query Designer.

Assuming that a query like the following already exists in the Data Set dialog of a Page/Rdl Report or the Report
Data Source dialog of a Section Report, follow the steps below to edit it in the Visual Query Designer.

SQL Query

select Movie.MovieID, Movie.Title
from Movie

1. Open the Visual Query Designer and under Query Tools, go to the SQL tab. Notice that the SQL query is already
present in the this tab.

2. Go to the Design tab and notice that the Selected Fields panel already contains the fields MovieID and Title.
3. From the Database view, drag and drop a field, Length from the Movie table onto the Selected Fields panel.
4. Go to the SQL tab again and see that the query now appears as follows:

SQL Query

select Movie.MovieID, Movie.Title, Movie.Length
from Movie

5. On the Toolbar of the Visual Query Designer, click the Execute button.

ActiveReports 14 714

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Result data similar to the following appears in Results panel.

Delete a field

Go to Top

You can delete any field from a query in the Visual Query Designer. When you delete a field from a query, the field
remains in the database, but is no longer used in the query.

1. From the Movie table in the Database view, drag and drop the fields MovieID, Country and Title onto the Selected
Fields panel.

2. Hover your mouse over the MovieID field in Selected Fields panel to display the Delete icon.
3. Click the Delete icon to delete the field.

Please note that once you delete a field, it is also removed from the SQL query in the SQL tab.

Sort data

Go to Top

You can sort the records in a table, query, form, or a report on one or more fields in the Visual Query Designer. For
example, you can sort the Movie table by Title in ascending order and Country in descending order. In case multiple fields
are being sorted, you can also determine which field is sorted first and which is sorted later.

Query Result in SQL

SQL Query

ActiveReports 14 715

Copyright © 2020 GrapeCity, Inc. All rights reserved.

select Movie.MovieID, Movie.Title, Movie.Countryfrom Movieorder by Movie.Country desc,
Movie.Title asc

Steps to create the Query in Visual Query Designer

1. In the Database view, from the Movie table, drag and drop the fields MovieID, Title and Country onto the
Selected Fields panel.

2. In the Selected Fields panel, go to the Title field and set the Sort option to ascending. Sort Order option is
automatically set to 1.

3. Go to the Country field next and set the Sort option to ascending. Sort Order option is automatically set to 2.
Based on steps 2 and 3, the table values sort on the Title field first and then on the Country field in ascending
order.

4. In Country field, change the Sort Order value to 1. Sort Order value of the Title field automatically changes to 2.
The table values now sort on the Country field first in and then on the Title field in ascending order.

5. In the Toolbar of the Visual Query Designer, click the Execute button.

Result data similar to the following appears in Results panel.

Display Distinct Values

Go to Top

When retrieving data from a table, you may get duplicate records. Use the Distinct operator in the Select statement of
your query to remove such values.

In the Visual Query Designer, you can use the Distinct checkbox available in the Toolbar to eliminate duplicate records. For
example, you can retrieve unique records from YearReleased field of the Movie table.

Query Result in SQL

SQL Query

select DISTINCT Movie.Title, Movie.YearReleased
from Movie

Steps to create the Query in Visual Query Designer

1. From the Movie table in the Database view, drag and drop the Title and YearReleased fields onto the Selected

ActiveReports 14 716

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Fields panel.

2. In the Toolbar of the Visual Query Designer, check the checkbox to display unique values from the
YearReleased field.

3. Click the Execute button.

Result data similar to the following appears in Results panel.

Aggregate Functions and Grouping

Go to Top

You can group data on a field and create an aggregate query that involves a function such as Sum or Avg in the Visual
Query Designer. For example, you can group the movies in the Movie table by Country and calculate the average movie
ratings for different countries using the Visual Query Designer.

Query Result in SQL

SQL Query

select Movie.Country, Avg(Movie.UserRating) as [Average Ratings]
from Movie group by Movie.Country

Steps to create the Query in Visual Query Designer

1. From the Movie table in the Database view, drag and drop the Country and UserRating fields onto Selected Fields
panel.

2. In the Selected Fields panel, under the Country field, select GroupBy from the Total dropdown list. This groups
the data by country name.

3. In the Selected Fields panel under the UserRating field, select the option Alias and set its alternate name to
Average Ratings.

4. Under the UserRating field again, select Avg from a list of pre-defined aggregate functions in the Total dropdown
list. This provides average user ratings for movies.

5. In the Toolbar of the Visual Query Designer, click the Execute button.

Result data similar to the following appears in Results panel.

ActiveReports 14 717

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Hide Fields from a Query

Go to Top

The Hide option in the Visual Query Designer allows you to hide part of the data that a query retrieves. For example, you
can hide the MovieID field in the Movie table, from the result set of your query.

Follow the steps below to hide a field through the Visual Query Designer:

1. From the Movie table in the Database view, drag and drop the fields Title, UserRating and Country onto the
Selected Fields panel.

2. In the Selected Fields panel, go to the Country field and select the Where option and set it's value to " = 'USA' "
3. In the Selected Fields panel, go to the Title field and set the value of the Alias option to Movies from USA.
4. Clear the Output check box for the Country field as shown in the image below to hide the field from the result set.

5. In the Toolbar of the Visual Query Designer, click the Execute button.

The data for the Country field does not appear in the in the Results panel anymore.

ActiveReports 14 718

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Set filter condition

Go to Top

The SQL Where clause is used to filter results that match a given criteria. The Where clause can be used when you want to
fetch any specific data from a table omitting other unrelated data.

For example if you want to display UserRating of only those movies where the MovieID is either 1 or 2, you can use the
Where clause with an '=' operator in the Visual Query Designer.

Query Result in SQL

SQL Query

select Movie.MovieID, Movie.UserRating
from Movie
where (Movie.MovieID = 1 or Movie.MovieID = 2)

Steps to create the Query in Visual Query Designer

1. Form the Movie table in Database view, drag and drop the MovieID and UserRating fields onto the Selected
Fields panel.

2. In the Selected Fields panel under the MovieID field, select the Where option and set the value to "=1".

3. Add an OR condition in MovieID field and set the value to "=2".

Rows which have either have MovieID = 1 or MovieID = 2 are displayed in the Result set.
4. In the Toolbar of the Visual Query Designer, click the Execute button.

Result data similar to the following appears in Results panel.

Create a parameterized query

ActiveReports 14 719

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Go to Top

You can set parameters in your query using the Visual Query Designer. A parameterized query generally prompts the user
to enter a value before the query is executed, to determine the type of data to be displayed in the result set.

As an example of a simple parameterized query, you can create a query parameter that prompts a user for a Movie ID and
displays the Title, UserRating and Length of the movie based on the ID entered.

Query Result in SQL

SQL Query

select Movie.MovieID, Movie.Title, Movie.Country, Movie.UserRating
from Movie
where Movie.Country = ?

Steps to create the Query in Visual Query Designer

1. From the Movie table in the Database view, drag and drop the MovieID, Title, UserRating and Country fields onto
the Selected Fields panel.

2. In the Selected Fields panel under the Country field, select the option Where and set its value to "= @Country".
This creates a parameter Country.

3. In the Toolbar of the Visual Query Designer, click the Execute button. The Parameters dialog automatically
appears on the screen.

4. Enter the parameter value USA in the dialog box and click OK.

Result data similar to the following appears in Results panel.

ActiveReports 14 720

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Go to Top

Tables And Relations
Queries can incorporate fields from different tables. It is the relationship you set up between the data in these tables that
determines how the data appears in the result set.

Users can set up these relationships between tables using SQL Joins like Inner Join, Left Join and Right Join in the Visual
Query Designer.

1. Inner Join (simple join) - Inner Join matches rows from Table1 with rows in Table2, and allows the user
to retrieve records that show a relationship in both the tables. Inner join produces a set of data that matches both
Table1 and Table2.

Syntax for the SQL Inner Join:
SELECT columns
FROM table1
INNER JOIN table2
ON table1.column = table2.column;

Visual Illustration

SQL Inner Join returns the records where table1 and table2 intersect.
2. Left Outer Join (left join) - Left Outer Join allows users to select rows that match from both the left and right

tables, plus all the rows from the left table (table 1). This means only those rows from table2 that intersect with
table1 appear in the result set.

Syntax for SQL Left Outer Join:
SELECT columns
FROM table1
LEFT [OUTER] JOIN table2

ActiveReports 14 721

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ON table1.column = table2.column;

Visual Illustration

SQL Left Outer Join returns the records from table1 and only those records from table2 that intersect with table1.
3. Right Outer Join (right join) - Right outer join allows users to select rows that match from the both the left and

right tables, plus all the rows from right table (table 2). This means that only those rows from table 1 that intersect
with table 2. appear in the result set

Syntax for SQL Right Outer Join:
SELECT columns
FROM table1
RIGHT [OUTER] JOIN table2
ON table1.column = table2.column;

Visual Illustration

SQL Right Outer Join returns the records from table 2 and only those records from table 1 that intersect with
table2.

Tables relations dialog

The Tables relations dialog allows users to set up a relationship between two different tables with at least one common
field.

Complete the following steps to access the Tables relations dialog:

1. In the Visual Query Designer, drag and drop a field or fields from a table in the Database view to the Selection
Fields panel.

2. Add another field from a different table in the Database tab to the Selected Fields panel. Make sure that at least
one field between these two tables' matches i.e. the second table contains a foreign key.

3. When the field in step 2 is added, the Tables relations dialog automatically pops up on the screen.

Once the relationship has been set up between tables, you may also access the Tables relations dialog from the
Relations button in the Tables and Relationships panel.

ActiveReports 14 722

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Option Description

Join Type Enables selection of an appropriate Join type out of Inner Join, Left Outer Join and Right Outer
Join.
Example: Inner Join tab is highlighted in the image above.

<Table Name> Field Displays the name of the field that is common between tables i.e. the foreign key name in the
second table.
Example: "Products" Field contains the 'Category ID' field in the image above.

Related Table Displays the name of the table to which the relationship has been set up.
Example: 'Categories' table is listed in the image above.

Related Table's Field Displays the name of the field from the table to which the relationship has been set up.
Example: 'Category ID' is the field from the Categories tables listed in the image above.

Delete Icon adjacent to the Related Table's Field to delete the currently added relation.

Add Relation Button that allows users to add another relationship to the table.

Cancel Closes the Tables relations window.

OK Saves the relationship between tables as a SQL query in the SQL tab.

Go to Top

Using the Visual Query Designer
The following walkthrough shows how to implement an Inner Join using the tables Categories and Products from the
Nwind database. It also explains how to use a parameter and sort data in a Visual Query Designer. You may also see
Tables and Relations for more information on table relationships and joins in Visual Query Designer.

Note:

This walkthrough uses the Products and Categories table from the NWIND database. By default, in
ActiveReports, the NWIND.mdb file is located in [User Documents folder]\GrapeCity Samples\ActiveReports
14\Data\NWIND.mdb.
This walkthrough uses Page Reports, but the same steps can be used to generate queries in Rdl or Section
reports also. See Accessing the Visual Query Designer, for more information on how to access the Visual Query
Designer in Rdl and Section reports.

ActiveReports 14 723

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Add an ActiveReport to a Visual Studio Project
Access the Visual Query Designer
Create a Query
Save a Query
View the Report

Add an ActiveReport to a Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as VisualQueryDesigner.
4. Click the Add button to open a new Page Report in the designer.

See Quick Start for information on adding different report layouts.

Access the Visual Query Designer

1. Connect a Page Report to a data source. See Connect to a Data Source for details on how to connect to a data
source in Page Reports.

2. Right-click the data source node (DataSource1 by default) and select the Add Data Set option or select Data Set
from the Add button on the Report Explorer toolbar to add a data set to the report.

3. In the DataSet Dialog that appears, select the Query page and then select the Edit with visual query designer

button .
This opens the Visual Query Designer.

Create a Query

Visual Query Designer provides you with an interface to reference multiple tables, set up relationships, sort the data and
add parameters to your query.
Follow the steps below to create a query like the following using the Visual Query Designer.

Query Result in SQL

SQL Query

select Products.ProductName, Products.UnitPrice, Categories.CategoryName
from Products inner join Categories on Products.CategoryID = Categories.CategoryID
where Categories.CategoryName = ?
order by Products.UnitPrice desc

Steps to create a Query in Visual Query Designer

1. From the Products table in the Database view, drag and drop the fields ProductName and UnitPrice to the
Selected Fields panel.

2. From the Categories table in Database view, drag and drop the field CategoryName to the Selected Fields panel.
3. When you add the field in step 2, a Tables relations dialog automatically appears on the screen.

In the Tables relations dialog, you can also select any other field from Categories table which matches the related
table's field to form a join between the both.

ActiveReports 14 724

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. In Tables relations dialog, select the Inner Join Type for joining the two tables Products and Categories. The Inner
Join tab is selected by default.
Refer to Tables And Relations for more information on types of joins.

5. In Tables relations dialog, click OK to save the relationship between tables.

Once the relationship has been set up between tables, you may also access the Tables relations dialog from the
Relations button in the Tables and Relationships panel under the Query Tools section.

6. In the Selected Fields panel under the CategoryName field, select the option Where and set its value to "=
@CategoryName". This creates a parameter on the CategoryName field.

7. In the Selected Fields panel, go to the UnitPrice field and set the Sort option to descending. This sorts the data in
descending order on UnitPrice.

8. On the Toolbar of the Visual Query Designer, click the Execute button. A Parameters dialog appears on the
screen.

ActiveReports 14 725

Copyright © 2020 GrapeCity, Inc. All rights reserved.

9. Enter any parameter value, for example, Produce in the dialog box and click OK.

Result data similar to the following appears in Results panel.

Save a Query

1. Once your query is created in Visual Query Designer, go to the Toolbar in the Query Tools section of the Visual
Query Designer.

2. Click the button. Your query appears in the Query field of the Query page in the DataSet dialog.

Note: On clicking the Save button, your query is automatically validated by the Visual Query Designer.

View the Report

1. Place a data region like a Table onto the design surface and add fields to it. For more information on how to add
fields to a table, see the Adding Data on the Table data region page.

2. Click the preview tab to view the report with the Parameters panel displayed in the sidebar.

ActiveReports 14 726

Copyright © 2020 GrapeCity, Inc. All rights reserved.

OR

Open the report in the Viewer to view the report with the Parameters panel displayed in the sidebar. See Windows
Forms Viewer for further information.

Interactive Features
ActiveReports supports features like parameters, filters, drill-down, links, document map and sorting to provide an
interactive look to your report at run time.

Parameters
ActiveReports allows you to set parameters in your report to filter the data displayed. Parameters make navigation of the
report easier for the user at run time. See Parameters for further details.

Filters
The filtering feature is only available with page layout reports. By using filters in your page report or RDL report you can
limit the information you want to display on your report. See Filtering for further details.

Drill-Down Reports
When you open a report with drill-down features, part of the data is hidden so that you only see high-level data until you
request more detail. See Drill-Down Reports for more information.

Bookmark, Hyperlinks and Drill-Through Links
Bookmark Links

When you click a bookmark link, the viewer navigates to a bookmarked item within the current report.

Hyperlinks

When you click a hyperlink, your machine's default internet browser opens to display a Web page.

Drill-Through

ActiveReports 14 727

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Using the drill-through link feature in your report you can navigate to another report for details about the item you
clicked.

See Linking in Reports for further details.

Document Map
The Document Map (Table of Contents) feature allows you to navigate to a particular item in a report. See Document Map
for further details.

Sorting
The sorting feature allows you to organize your data and present it in a logical order at run-time. Using this feature you
can sort the data alphabetically or numerically in ascending or descending order. See Sorting for further details.

Note: You cannot use the interactive features in the following cases:

With Adobe Acrobat Reader and RawHTML types of the WebViewer.
With reports that use the collation feature, i.e. reports that have two or more themes.

Annotations
The annotations feature allows you to add floating text bars or images to call attention to specific items or values or to
add notes and special instructions directly to the reports. These annotations are accessible through the Annotation button
present on the Viewer toolbar which is hidden by default. Annotations added via the viewer's toolbar are temporary and
are destroyed when the report closes. See Annotations for further details.

Parameters
ActiveReports allows you to use parameters to filter or add the data to display in reports at run time. You can either prompt users for parameters so that they control the output, or
supply the parameters behind the scenes.

Adding parameter for different data sources
A query parameter can get its value from the Report Parameters collection (entered by the user or from a value you supply), a field in another dataset, or an expression. Syntax for
adding a parameter in your query might differ depending upon the data source that you are using. Use the syntax specific to your data source type to create a parameter.

Parameterized query for different data sources are as follows:

Data Source Parameter Syntax Example

OleDB (?) SELECT * FROM Customer WHERE (CustomerID = ? AND AccountNumber = ?)

ODBC @ParameterName SELECT * FROM Customer WHERE (CustomerID = @CustomerID AND AccountNumber = @AccountNumber)

SQL Client @ParameterName SELECT * FROM Customer WHERE (CustomerID = @CustomerID AND AccountNumber = @AccountNumber)

OracleDB :ParameterName SELECT * FROM Customer WHERE CustomerID = :CustomerID AND AccountNumber = :AccountNumber

Page Report/RDL Report
In a page report or a RDL report, the easiest way to build queries with parameters is to use the Visual Query Designer, as it automatically sets up each parameter.

In the DataSet dialog, click on to access Visual Query Designer for creating SQL queries. See Query Building With Visual Query Designer for further information on how to create a
parameterized query using the interactive query designer.

However, if you would like to do it manually, you must enter each parameter in three locations: the Report Parameters dialog (for filtering data at run time), the Parameters page of the
DataSet dialog, and the Query page of the DataSet dialog.

Report - Parameters dialog

ActiveReports 14 728

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Report - Parameters dialog allows you to control how and whether a user interface is presented to your users for each parameter. You have to set the following properties in the
dialog to create a parameter:

Enter a report parameter name. Each report parameter in the collection must have a unique name, and the name must match the name you call in the Parameters page of the
DataSet dialog. In the example above, the name is MPAA.
Set the data type, the text used to prompt the user, whether to allow null, blank, multiple values or multiline text, and whether to hide the user interface.
Select the default value or populate a list of available values from which users can choose.

Parameter values are collected in the order they appear in the Report Parameters collection. You can change the order using the arrows in the Report - Parameters dialog.

General Tab

Name: Set the name for the parameter in this field. The value you supply here appears in the parameters list and must match the corresponding query parameter.
Data type: Set the data type for your parameter which must match the data type of the field that it filters. The interface presented might also differ depending on the data type.

Boolean: Presents the user with two options True or False
Date: Presents the user with a calendar picker to select a date if you do not supply a default value or a drop-down selection of available values
DateTime: Presents the user with a calendar picker to select a date and a time picker to select the time in cases where you do not supply a default value or a drop-down
selection of available values
Integer: Presents the user with a text box or a drop-down selection of available values
Float: Presents the user with a text box or a drop-down selection of available values
String: Presents the user with a text box or a drop-down selection of available values

Text for prompting users for a value: Enter the text you want to see on the user interface to request information from the user in this field. By default this is the same as the
Name property.
Allow null value: Select this check box if you want to allow null values to be passed for the parameter. It is not selected by default.
Allow blank value: Select this check box if you want to allow blank values to be passed for the parameter. It is not selected by default.
Multivalue: Select this check box to allow the user to select multiple items in the available values list.
For a multi-value parameter, you can also allow user to specify special value for 'Select all' option in the Value for 'Select All' property.
Multiline: Select this check box to allow multiline values in the parameter. The control will automatically adjust to accommodate multiple lines.
Hidden: Select this check box to hide the parameter interface from the user and instead provide a default value or pass in values from a subreport or drill-through link. Please
note that if you hide the user interface and do not provide a default value, the report will not run.

Available Values

These values are used to fill a drop-down list from which the end user can choose.

Non-queried: You can supply Labels and Values by typing in static values or using expressions.
From query: You can select a Dataset from which to select a Value field and Label field.

Default Values

This is the value that you give for the parameter if the user does not supply one, or if you hide the parameter user interface.

Non-queried: You can supply a default Value by entering a static value or using an expression.
From query: You can select a Dataset from which to select a Value field.
None: You can have your users provide a value for the parameter.

Note: In the Available Values tab the Value is what is passed to the query parameter, and the Label is what is shown to the user. For example, if the Value is an Employee Number,
you might want to supply a more user-friendly Label showing Employee Names.

To access the Report - Parameters Dialog

You can access the Report - Parameters dialog through any one of the following:

In the Report Explorer, click the Add (+) icon and select the Parameter option.
In the Report Explorer, right-click the Parameters node and select Add Parameter.
In the Report Explorer, right-click the Report node and select Report Parameters.
From the Report Menu, select Report Parameters.

The Report Parameters dialog contains a parameters page with a list of parameters and three tabs to set parameter properties. To add a parameter to the list, click the Add (+) icon and
set the parameter properties in the three tabs described below.

Parameters page of the DataSet dialog

On the Parameters page of the DataSet Dialog, pass a Report Parameter into the parameter in your query. You can click the Add (+) icon at the top of the parameters list, enter
parameter name, and supply a value like:

=Parameters!MPAA.Value

Query page of the DataSet dialog

On the Query page of the DataSet Dialog, enter the parameter in the SQL query. Use the syntax specific to your data source type to create a parameter. For example, with an OleDB
data source, add a query like the following for a multi-value Movie Rating parameter:

SELECT * FROM Movie WHERE (MPAA = ? AND YearReleased = ?)

If you want to run a report without prompting the user for a value at run time, you need to set a default value for each parameter and the Hidden check box should be selected in the
Report - Parameters dialog, General tab.

Subreport parameters are also considered as hidden parameters as a user can easily synchronize a subreport's data with that of the parent report. See Subreports in Page/RDL Reports
for further details.

Drill-Through parameters are also hidden parameters as drill-through links are used to navigate from one report to another. When you select Jump to report for the action, the
parameters list is enabled.

ActiveReports 14 729

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Section Report
In section report, you can use the Parameters collection to pass values directly into a control at run time, or you can also use it to display a subset of data in a particular instance of a
report.

There are several ways for setting up parameters in a report:

You can enter syntax like the following in your SQL query to filter the data displayed in a report at run time: <%Name | PromptString | DefaultValue | DataType |
PromptUser%>
You can add parameters through the Report Explorer and place them on the report as TextBox controls to pass values in them at run time.
You can also add parameters through the code behind the report, inside the ReportStart event. See Add Parameters for more information.

Prompting for Parameter Values

In order to prompt the user for parameter values, all of the following must be in place:

At least one parameter should exist in the Parameters collection of the report.
The PromptUser property for at least one parameter must be set to True.
On the report object, the ShowParameterUI property must be set to True.

When there are parameters in the collection and the ShowParameterUI property is set to True, the user prompt automatically displays when the report is run. When the user enters the
requested values and clicks the OK button, the report gets displayed using the specified values.

Values of a parameter added through the Report Explorer can be applied to a parameter in the SQL query by specifying the param: prefix for a parameter in the SQL query. This prefix
relates the current parameter to the one in the Report Explorer.

For e.g., select * from CUSTOMERS where CustomerName = '<%param:Parameter1%>'. In this case, the parameter with the param: prefix in the SQL query is updated
with values of the corresponding parameter in the Report Explorer.

Note: Within the same report, you can prompt users for some parameters and not for others by setting the PromptUser property to True on some and False on others. However,
if the report object's ShowParameterUI property is set to False, the user prompt does not display for any parameters regardless of its PromptUser setting.

Adding Parameters to the Parameters Collection via the SQL Query

When you add a single parameter to a report's Parameters collection via the SQL query, the query looks like this:

SQL Query.

SELECT * FROM Products
INNER JOIN Categories ON Products.CategoryID = Categories.CategoryID
WHERE Products.SupplierID = <%SupplierID|Enter a Supplier ID|1|S|True%>

You can also create a parameterized query from the Visual Query Designer. See Query Building With Visual Query Designer for further information on how to create a parameterized
query using the interactive query designer.

There are five values in the parameter syntax, separated by the pipe character: |

Only the first value (Name) is required, but if you do not specify the third value (DefaultValue), the field list is not populated at design time. You can provide only the Name value and
no pipes, or if you wish to provide some, but not all of the values, simply provide pipes with no space between them for the missing values. For example, <%ProductID||||False%>

Name: This is the unique name of the parameter, and corresponds to the Key property in parameters entered via code.
PromptString: This string is displayed in the user prompt to let the user know what sort of value to enter.
DefaultValue: Providing a default value to use for the parameter allows ActiveReports to populate the bound fields list while you are designing your report, enabling you to drag fields
onto the report. It also populates the user prompt so that the user can simply click the OK button to accept the default value.
DataType: This value, which defaults to S for string, tells ActiveReports what type of data the parameter represents. It also dictates the type of control used in the user prompt. The type
can be one of three values.

S (string) provides a textbox into which the user can enter the string.
Depending on your data source, you may need to put apostrophes (single quotes) or quotation marks around the parameter syntax for string values.
For example, '<%MyStringParameter%>'
Also, if you provide a default value for a string parameter that is enclosed in apostrophes or quotation marks, ActiveReports sends the apostrophes or quotation marks along
with the string to SQL.
For example, <%MyStringParameter||"DefaultValue"|S|False%>
D (date) provides a drop-down calendar picker from which the user can select a date.
Depending on your data source, you may need to put number signs around the parameter syntax.
For example, #<%MyDateParameter%>#
B (Boolean) provides a checkbox which the user can select or clear.
If you provide a default value of True or False, or 0 or 1 for a Boolean parameter, ActiveReports sends it to SQL in that format.

Note: In case of Microsoft Access Database, the default value for boolean parameter is specified as -1(true) or 0(false).

PromptUser: This Boolean allows you to tell ActiveReports whether to prompt the user for a value. This can be set to True for some parameters and False for others. If you set the
report's ShowParameterUI property to False, users are not prompted for any parameters, regardless of the PromptUser value set for any parameter in the report.

Filtering

ActiveReports 14 730

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In page layout, ActiveReports allows you to set filters on a large set of data that has already been retrieved from the data
source and use them with datasets or data regions to limit the information you want to display on your report.

Although not as efficient performance-wise as query parameters which filter data at the source, there are still scenarios
which demand filters. The obvious case is when the data source does not support query parameters. Another case for
using filters is when users who require different sets of data view the same report.

You can set filters on a Filters page or a tab similar to the one in the following image.

There are three major elements that constitute a filter:

Expression: Type or use the expression editor to provide the expression on which to filter data.
Operator: Select the operator to compare the expression results with the Value.
Value: Enter the value with which to compare the expression results.

For example, in the filter =Fields!YearReleased.Value = 1997 applied on a dataset from the Movies table of the
Reels.mdb database, =Fields!YearReleased.Value is set under expression, = is the operator and 1997 is the value on
which filter is set. See Set Filters for further instructions on adding filters in reports.

You can also use multiple values with the In and Between operators. Two fields with an And in the middle appear for the
Between operator, and another Expression field is available at the bottom of the Filters page or tab for the In operator.
The following table lists all available filtering operators.

Filtering Operators

Filter Description

Equal Select this operator if you want to choose data for which the value on the left is equal to the
value on the right.

Like Select this operator if you want to choose data for which the value on the left is similar to the
value on the right. See the MSDN Web site for more information on the Like operator.

NotEqual Select this operator if you want to choose data for which the value on the left is not equal to the
value on the right.

GreaterThan Select this operator if you want to choose data for which the value on the left is greater than the
value on the right.

GreaterThanOrEqual Select this operator if you want to choose data for which the value on the left is greater than or
equal to the value on the right.

LessThan Select this operator if you want to choose data for which the value on the left is less than the

ActiveReports 14 731

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/swf8kaxw(v=vs.100)

value on the right.

LessThanOrEqual Select this operator if you want to choose data for which the value on the left is less than or
equal to the value on the right.

TopN Select this operator if you want to choose items from the value on the left which are the top
number specified in the value on the right.

BottomN Select this operator if you want to choose items from the value on the left which are the bottom
number specified in the value on the right.

TopPercent Select this operator if you want to choose items from the value on the left which are the top
percent specified in the value on the right.

BottomPercent Select this operator if you want to choose items from the value on the left which are the bottom
percent specified in the value on the right.

In Select this operator if you want to choose items from the value on the left which are in the array
of values on the right. This operator enables the Values list at the bottom of the Filters page.

Between Select this operator if you want to choose items from the value on the left which fall between
pair of values you specify on the right. This operator enables two Value boxes instead of one.

Drill-Down Reports
The drill-down feature helps in temporarily hiding a part of your report. That hidden part can be controls, groups, columns
or rows. When you open a drill-down report, part of the data is hidden so that you can only see high-level data until you
request for more detail. In such reports you find an expand icon (plus-sign image) next to the toggle item in the report.
Clicking the toggle image, or plus sign, expands hidden content into view and the expand icon changes to a collapse icon
(minus-sign). When you click the minus-sign image, it hides the content and returns the report to its previous state.

To create a drill-down report, use the Visibility properties of controls, groups, columns, or rows. Simply set the Visibility-
hidden property to True and set the toggle item to the name of another item in the report, usually a text box in the group
containing the hidden item. At run time, this puts a plus sign next to the toggle item which the user can click to display
the hidden data.

If you export a drill-down report or render it through rendering extensions, any content which is hidden at the time of
export remains hidden in the exported file. If you want all of the content to appear in the exported file, you must first
expand all hidden data.

Only when you render a report using the XML using the XmlRenderingExtension ('XmlRenderingExtension Class' in
the on-line documentation), all hidden data is exported regardless of whether it is hidden at the time of export.

Linking in Reports
You can enhance the interactivity in your report by adding different types of links to it. ActiveReports provides the ability
to add bookmarks, hyperlinks, drill-through links to reports.

The following topic explains the links you can create in page and section reports.

Page Report/RDL Report

ActiveReports 14 732

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Hyperlinks

Hyperlinks take you to a web page that opens in the default browser of the system. You can set hyperlinks in the Textbox,
Image, Chart, and Map controls to access a Web page from your report. See Add Hyperlinks for further information.

Hyperlinks are displayed when you preview a page report or a RDL report in the Viewer, export a report in HTML , PDF,
RTF, and Excel formats. You can also see hyperlinks in Word, HTML, and PDF formats when you render reports using
rendering extensions.

Bookmarks

A bookmark link is similar to a hyperlink, except that it moves the viewer to another area in the report instead of linking to
a web page. You can create these links on a control using a Bookmark ID that connects to another target control. See
Adding Bookmarks for further information.

Bookmarks are displayed when you preview a page report/RDL report in the Viewer or render a report through rendering
extensions in Word, HTML, and PDF formats.

Drill through links

A drill-through link takes you to another report with more detail. Drill-through links appear as a hyperlink that you can
click to move to a completely different report. You can also create more complex links where you pass parameters to the
report called by the link.

Drill-through links are displayed when you preview a page report/RDL report in the Viewer or render a report through
rendering extensions in HTML format.

Note: While rendering a report to HTML, drill-through links are broken unless the target report is also exported to
the same directory with the same name as the original.

Section Layout

Hyperlinks

Hyperlinks take you to a web page that opens in the default browser of the system. You can set the HyperLink property
available with the Label, Textbox, Picture and OleObject controls that allow you to add hyperlinks that connect to a Web
page. You can also use the HyperLink property to open an e-mail or jump to a bookmark. See Add Hyperlinks for further
details.

Hyperlinks are supported when you preview a section report in the Viewer, export a report in HTML , PDF, RTF and Excel
formats.

Bookmarks

Bookmark links take you to a location where the bookmark is set on your report. Unlike hyperlinks, these links take you
within the report. Bookmarks and nested bookmarks appear in the document map for fields, groups and subreports. You
can also add special bookmarks at run-time. You can use hyperlinks for simulating a drill through like feature similar to
Page Layout. See Add Bookmarks for further details.

Bookmarks are supported when you preview a section report in the Viewer, export a report in HTML and PDF formats.

ActiveReports 14 733

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: When you export a report to HTML, a*.TOC file is created in the folder where you export the report. Use this
file to reach the bookmarked locations.

Document Map
When you click an item in the document map, the viewer jumps to that item in the report.

A document map functions as a table of contents for a page report or a RDL report and as a bookmarks panel for a
section report. It provides a convenient way to navigate a lengthy report.

Page Reports/RDL Reports
In a page report or a RDL Report, you can add report controls, data regions, groups and detail groups to the document
map by:

Assigning a value to the Document map label on the Navigation page of the corresponding dialog.
Setting the value of the Label property in the properties window.
Setting the value of the HeadingLevel property in the properties window.

See Add Items to the Document Map for more information.

Section Reports
In a section report, when you add a bookmark on any control it appears in the document map while viewing the report. In
order to navigate to a bookmark you need to open the document map and click that bookmark.

See Add Bookmarks for more information.

Viewing the Document Map in the Viewer
1. On the Viewer toolbar, click the Toggle sidebar button to display the sidebar.

2. At the bottom of the sidebar pane, click the Document map button to display the document map.

If there is no document map associated with the report, the button does not appear at the bottom of the sidebar
pane.

3. In the Document map that appears, click the item you want to view in the report.

Note: You can also access the Document map from the Toggle sidebar button on the preview tab toolbar.

Exporting document maps
In the Viewer, the document map appears in a sidebar to the left of the report, but when you export your page or section
report to various file formats, they handle document maps differently.

ActiveReports 14 734

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Export Filter Effect on Document Map

HTML A .toc file containing the document map is exported along with the HTML report.

PDF Document map appears in the bookmarks panel.

Text Document map does not appear in the exported report.

Rich Text Format Document map does not appear in the exported report.

TIFF Document map does not appear in the exported report.

Excel Document map does not appear in the exported report.

In a page report or a RDL report, if you use rendering extensions to export your report, the document map is not available
in any rendering type except PDF where it appears in the bookmarks panel.

Note: For printing and rendering purposes use Table of Contents control in your page report and RDL report.

Sorting
In order to better organize and present data in your report, you can sort it alphabetically or numerically in ascending or
descending order. You can also use sorting effectively with grouped data to present an easy to understand,
comprehensive view of report data.

Sorting in Page Reports/RDL Reports
In a page report or a RDL report, you can sort data in the data region, along with grouping, on a fixed page in Page report
or sort data directly in the SQL query. You can also set interactive sorting for your data on a TextBox control.

Sorting at different levels in a Report

You can apply sorting at different levels on your report data. ActiveReports provides a Sorting page in the dialogs of a
data region, grouped data and fixed page to determine where you want to display sorted data.

Sorting data in a Data Region

In Table and List data regions, you can sort data within the data region. To sort data within these data regions, set sorting
in the Sorting page of the specific data region's dialog.

In Tablix, BandedList and Chart data regions, sorting is only possible on grouped data therefore there is no independent
Sorting page available in their specific dialogs.

Sorting grouped data

A Sorting tab is available inside the Groups page of all the data region dialogs and the Detail Grouping page of the List
dialog. It allows you to set the sort order of grouped data. This tab is enabled once grouping is set inside the data region.

Sorting on a Fixed Page

In a Page report, sorting is also possible on a fixed page grouped on a dynamic value. Sorting data on a fixed page is
similar to sorting grouped data in a data region. The only difference is when you sort data on the fixed page you apply
sorting to all the data regions that are placed on the design surface. See, Sort Data for more information.

Sorting data through SQL Query

When you connect to a data source and create a data set to fetch data for your report, you define a query. Set the ORDER

ActiveReports 14 735

Copyright © 2020 GrapeCity, Inc. All rights reserved.

BY keyword in the query to sort data in ascending or descending order.

By default, the ORDER BY keyword usually sorts the data in ascending order, but you can include the DESC keyword in
your query to sort data in descending order. For example, if you want to fetch data from the Movie table of the Reels
database and sort it on the Title field, your query looks like the following:
SELECT * FROM Movie ORDER BY Title
OR
SELECT * FROM Movie ORDER BY Title ASC

In case you want the Title field sorted in descending order, your query looks like the following:
SELECT * FROM Movie ORDER BY Title DESC

Interactive Sorting

You can add interactive sorting on a TextBox control to allow users to sort columns of data within a data region on a
published report.

The interactive sorting feature is set through the Interactive Sort page which available in the TextBox dialog.

Once you set interactive sorting on a TextBox control, while viewing the report in the Viewer or in the Preview Tab the
textbox control displays a sort icon inside it. A user can sort data that appears inside the textbox in ascending or
descending order by clicking the icons.

On the Interactive Sort page of the TextBox dialog you can find following fields available for entering values:

Sort Expression: An expression specifying the sort value for data contained in the column.
Data region or group to sort: Select the grouping level or data region within the report to sort. The default value
is Current scope, but you may also choose an alternate data region or grouping.
Evaluate sort expression in this scope: Select the grouping level within the report on which to evaluate an
aggregate sorting expression. The default value is Current scope, but you may also choose an alternate data region
or grouping.

See Allow Users to Sort Data in the Viewer for more information.

Sorting in Section Reports
In a section report, sorting is not explicitly available. However, you can modify the SQL Query to order your data while
fetching it from the database.

Sorting data through SQL Query

When you connect the report to a data source and enter a query to fetch data, you can include the ORDER BY keyword in
your query to get sorted data.

By default, the ORDER BY keyword usually sorts data in ascending order, but you can include the DESC keyword in your
query to sort data in descending order. For example, if you want to fetch data from the Customers table of the NWind
database and sort it on the CompanyName field, your query looks like the following:
SELECT * FROM Customers ORDER BY CompanyName
OR
SELECT * FROM Customers ORDER BY CompanyName ASC

In case you want the CompanyName field sorted in descending order, your query looks like the following:
SELECT * FROM Customers ORDER BY CompanyName DESC

ActiveReports 14 736

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Annotations
Annotations are floating text bars or images to call attention to specific items or values or to add notes and special
instructions directly to the reports. Annotations added via the viewer's toolbar are temporary and are destroyed when the
report closes.

These annotations are accessible through the Annotation button present on the Viewer toolbar which is hidden by
default. You can make the Annotations toolbar visible by setting the AnnotationDropDownVisible
('AnnotationDropDownVisible Property' in the on-line documentation) property to True in the viewer's properties
window.

Available Annotations

Each annotation type allows you to change the colors, transparency, border, font, and alignment, plus other properties
specific to the type of annotation. Available annotations include:

Annotation Name Description

AnnotationText A rectangular box to enter text using the Text property.

AnnotationCircle A circle without text. You can change the shape to an oval by
dragging its corners.

AnnotationRectangle A rectangular box without text. You can change the shape to
a square by dragging its corners.

AnnotationArrow A 2D arrow to enter text using the Text property. You can
also change the arrow direction using the ArrowDirection
property.

AnnotationBalloon A balloon caption to enter text using its Text property. You
can also point the balloon's tail in any direction using its
Quadrant property.

AnnotationLine A line to enter text above or below it using its Text
and LineLocation properties. You can also add arrow caps to
one or both ends and select different dash styles using
DashCap, DashStyle, and ShowArrowCaps properties.

AnnotationImage A rectangle with a background image and text. You can select
an any image inside it using the BackgroundImage property.
You can also place text on the image using the Text property.

To add annotations using the Viewer
These steps assume that you have already placed the Viewer control onto a Windows Form and loaded a report in it. See
Windows Forms Viewer for more information.

1. In your Visual Studio project, on the Form where the Viewer control is placed, select the Viewer control an right-
click to choose Properties.

ActiveReports 14 737

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the Properties Window that appears, set the AnnotationDropDownVisible property to True to get an additional
toolbar in the viewer control.

3. Run the report application and select the annotation you want use from the Annotation toolbar on the Viewer.
4. Drag the annotation to the desired location on the report design surface. The annotation appears with a

Delete and a Properties button on the top left corner.

5. Inside the annotation, click the Properties button to view its properties in the Properties Window and use those
properties to enter text, change color or transparency, set border or font, alignment etc.

6. Close the Properties Window to apply changes to the annotation.
7. Drag the corners to resize the annotation as needed. You can also select entire annotation to move it to another

location on the report.
8. Right-click the annotation to display the annotation context menu. The context menu includes the Properties and

Delete commands.

Note: You can print a page, RDL or section report that contains annotations. In a section report, you can also save a
report with annotations in RDF format. See Add and Save Annotations for further details.

Report Parts

What are Report Parts?

Report parts are groups of controls (with data and settings) in a report that you can reuse in other reports. Report parts are
supported in Page, RDL, and Section reports. For example, you can use Chart and Tablix data regions from Report1, and a
Table data region from Report2 to create a new report.

Note: The Report Parts feature is only available with the Professional Edition license.

Why use report parts?

Enhanced reusability: With Report Parts, you can reuse report controls along with their associated data resources such as
data sets and data source connections. In earlier versions, you could copy controls from one report to another, but not the
resources associated with them. Using report parts, you can add everything that is required for that control to work.

Automatic conflict resolution: ActiveReports automatically resolves name conflicts for report parts. For example, if a report
already contains a Tablix1 data region and you add a report part named Tablix1, it automatically changes the new report
part's name to Tablix2.

Zero dependency: After adding a report part to a report, you can modify it independent of the original report part. For
example, if you add Table1 as a report part in your current report, you can modify its properties without impacting the Table1
settings in your original report.

ActiveReports 14 738

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Here is some guidance on how to work with Report Parts

Show or hide the Reports Library
Add report parts from local reports
Hide report parts from the Reports Library
Clear report parts from the Reports Library
Use report parts in your reports
Limitations

Show or Hide the Reports Library

When ActiveReports is installed on your system, a View Reports Library button is automatically added to the Visual Studio
toolbar. It appears every time you create a new application.

1. Right-click the Visual Studio toolbar and select ActiveReports 14 to display the report designer toolbar. See Toolbar
for further details.

2. On the report designer toolbar, click the View Reports Library button. The Reports Library 14 window appears.

3. Click the View Reports Library button again to hide the Reports Library 14 window.

Note:

If the Reports Library window does not appear automatically in your application, select View > Other Windows
> Reports Library 14 in Visual Studio.
The stand-alone designer application (GrapeCity.ActiveReports.Designer.exe) also contains a Reports Library
window. See Standalone ActiveReports Designer for more information.
Report authors can place reports in the GrapeCity Reports Library folder to show them as report parts in the
Reports Library window. By default, the GrapeCity Reports Library folder is located in the User Documents folder.

Add report parts

1. In the stand-alone designer, click the File menu and select Open. Alternatively, to add a report part from the Reports
Library window, right-click the Reports Library node and select Add.

2. In the Open dialog that appears, navigate through the folder hierarchy and select the report you want to use for
report parts.

ActiveReports 14 739

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Click the dropdown arrow next to the Open button and select Open As Library to add report parts to the Reports
Library 14 window. Once the report parts are added to your Report Library, you can use them to design new or
existing reports.

Hide report parts from the Reports Library

1. Open the Reports Library window. For more information on how to open Reports Library window, see Show or Hide
the Reports Library

2. In the Reports Library window, select the report part that you want to hide.

ActiveReports 14 740

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Right-click on the selected report part and then select Hide option from the context menu to hide the selected report
part from Reports Library window.

Clear report parts from the Reports Library

1. Right-click anywhere inside the Reports Library window and select the Clear option from the context menu to
completely clear the Reports Library window.

Use report parts in your reports

1. Once you have added the Report Parts to the Reports Library window, you can drag and drop the control from the
Reports Library window onto the design surface. The report part is added to your report along with its dependencies
such as data sources, data sets, and parameters.

Note: If you are working with a Page or RDL report, Section report parts are disabled in the Reports Library

ActiveReports 14 741

Copyright © 2020 GrapeCity, Inc. All rights reserved.

window and vice versa.

Limitation

Page and RDL reports: CheckBox, Shape, Line, Subreport, OverflowPlaceHolder and ContentPlaceHolder controls are
not supported as report parts.
Section reports: Picture, RichTextBox, Barcode, and Chart are the only controls that you can add as report parts. The
rest of the controls are not supported as report parts.

Create report using Report Parts
This topic illustrates a step-by-step implementation for creating a report using Report Parts to display annual sales of an
organization.

Note:

This topic uses the SalesReport.rdlx report file. The SalesReport.rdlx file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.
Although this topic uses Page reports, you can also implement report parts in RDL and Section reports.

When you complete these steps, you will have a layout that looks similar to the following at design time and at run time.

Design Time Layout

Run-Time Layout

ActiveReports 14 742

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.

2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,
name the file as rptReportParts.

3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the
project.

See Quick Start for information on adding different report layouts.

Create a layout for the report

1. Select PageReport1.rdlx from the Solution Explorer.
2. Open the Reports Library window. For more information on how to open the Reports Library window, see Show or

Hide the Reports Library.
3. To add a report part from the Reports Library window, right-click the Library node and select Add.
4. In the Open dialog that appears, navigate to SalesReport.rdlx file. Controls from SalesReport.rdlx are added as

Report parts to your Report Library 14 window.
5. Drag and drop the salesOverTime chart control from the Reports Library window onto the design surface. The

report part is added to your report along with its data sources, data sets and parameters.
6. Drag and drop the Image1 image from the Reports Library window onto the design surface.
7. From the Visual Studio toolbox, drag and drop a Table data region onto the design surface.
8. Hover over TextBox4 to reveal the field selection adorner, click it to display a list of available fields, and select the

SaleDate field.
9. Hover over TextBox5 to reveal the field selection adorner, click it to display a list of available fields, and select the

ActiveReports 14 743

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Quantity field.
10. Hover over TextBox6 to reveal the field selection adorner, click it to display a list of available fields, and select the

Profit field.
11. From the Visual Studio toolbox, drag and drop a Textbox control onto the design surface.
12. Select the Textbox to view its properties in the Properties window and enter the text Annual Sales Report (2004-

2005) in the Value property.

Enhance the appearance of the report

When you preview the report at this point, you will notice the data from the fields is displayed in the Table data region.
Let us now work on the report appearance to further enhance the layout.

1. From the designer, select the Image control and then go to Properties Window to set the following properties.

Property Name Property Value

Location 0.095in, 0.156in

Size 1.3in, 1.1in

2. From the designer, select TextBox10 and then go to Properties Window to set the following properties.

Property Name Property Value

Location 1.5in, 0.5in

Size 4.3in, 0.3in

BorderStyle Solid

FontWeight Bold

TextAlign Center

FontSize 16pt

3. From the designer, select the Chart data region and then go to Properties Window to set the following properties.

Property Name Property Value

Location 0.1in, 1.3in

Size 6in, 4.125in

4. From the designer, select the Table data region and then go to Properties Window to set the following properties.

Property Name Property Value

Location 1.25in, 5.5in

Size 4.25in, 1in

FixedSize 4.25in, 3.35in

RepeatHeaderOnNewPage True

5. In the Table data region, select the textbox that contains the following fields and go to the Properties window to
set the following properties.

Cell Property Name Property Value

Sale Date BackgroundColor LightCyan

BorderStyle Solid

ActiveReports 14 744

Copyright © 2020 GrapeCity, Inc. All rights reserved.

FontWeight Bold

TextAlign Center

=[SaleDate] BorderStyle Solid

TextAlign Center

Quantity BackgroundColor LightCyan

BorderStyle Solid

FontWeight Bold

TextAlign Center

=[Quantity] BorderStyle Solid

TextAlign Center

Profit BackgroundColor LightCyan

BorderStyle Solid

FontWeight Bold

TextAlign Center

=[Profit] BorderStyle Solid

TextAlign Center

Format Currency

View the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Common Concepts
Some common concepts related to text appearance in report controls are discussed in following topics:

Text Justification
Multi Line in Report Controls
Line Spacing and Character Spacing
Shrink Text to Fit in a Control
Condense Characters to Fit in a Control

Text Justification
The TextJustify Property (on-line documentation) of a Textbox control provides you justification options for aligning

ActiveReports 14 745

Copyright © 2020 GrapeCity, Inc. All rights reserved.

your text within a control. It is important that the TextAlign property (Alignment property in a Section Report) must be
set to Justify' for TextJustify property to affect the text layout.

Note: In section layout, the TextJustify property is also available in the Label control.

You can choose from the following values of the TextJustify property:

Auto

Results in Standard MSWord like justification where space at the end of a line is spread across other words in that line.
This is the default value.

Distribute

Spaces individual characters within a word, except for the last line.

DistributeAllLines

Spaces individual characters within words and also justifies the last line according to the length of others lines.

To set Text Justification
1. On design surface, select the control to view it's properties in Properties window.
2. In the properties window, set the TextAlign property (Alignment property in a Section Report) to Justify.
3. Go to the TextJustify property and from the drop down list select any one option.

Text justification is supported when you preview a report in the Viewer, print a report or export a page, RDL or
section report in PDF and TIFF formats. In page reports and RDL reports, it is also supported while rendering a report in
Word, HTML, PDF and Image formats using rendering extensions. See Rendering Extensions for more information on
rendering extensions.

Multi Line in Report Controls
ActiveReports allows you to display text within a control on multiple lines.

Multiline in Section Reports
In a section report, to enable multiline display in your report control, you need to set the Multiline Property (on-line
documentation) to True. Then, with your control in edit mode, insert line breaks at the desired location using the Enter
key or Ctrl + Enter keys to create multiline text. However, when the MultiLine property is set to False, text entered into the
control is displayed on a single line.

You can display multiline text in TextBox, RichTextBox and Label controls.

Multiline in Page Reports/RDL Reports
In a page report or a RDL Report, with your control in edit mode, insert line breaks at the desired location using the Enter
key or Ctrl + Enter key to create multiline text. You can also insert line breaks in the Expression Editor through the Value
property of the control.

You can display multiline text in the TextBox and CheckBox controls.

Note: In edit mode, scrollbars appear automatically to fit multiline content within a control. However, these are not
displayed in the preview tab, so you may need to adjust the Size property of the control to display all of the text.

ActiveReports 14 746

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Line Spacing and Character Spacing
In ActiveReports, in order to make your report output clearly visible during export or printing you can set character and
line spacing. In order to use line spacing you must first set the MultiLine property for the control to True.

The CharacterSpacing ('CharacterSpacing Property' in the on-line documentation) and LineSpacing ('LineSpacing
Property' in the on-line documentation) properties are available in the following controls for this purpose:

Page Report/RDL Report

TextBox

Section Report

TextBox
Label

To set line or character spacing
1. On the design surface, click the control to display it in the Properties Window.
2. In the Properties window, click the Property Dialog command at the bottom to open the control dialog.
3. In the TextBox dialog, go to the Format page and set the Line Spacing or Character Spacing values in points.

Note: You can also set the CharacterSpacing and LineSpacing property directly in the Properties Window.

Line and character spacing is supported when you preview a report in the Viewer, print a report or export a section report
in HTML , PDF and TIFF formats.

In page reports and RDL reports, it is also supported while rendering a report through rendering extensions in Word,
HTML, PDF and Image formats. See Rendering Extensions for further information on rendering extensions.

Shrink Text to Fit in a Control
In ActiveReports, when working with the Textbox control in a page report and RDL report or a TextBox or Label control in
a section report, you can use the GrapeCity.ActiveReports.PageReportModel.Style.ShrinkToFit property to reduce the
size of the text so that it fits within the bounds of the control. The text shrinks at run time, so you can see the reduced font

ActiveReports 14 747

Copyright © 2020 GrapeCity, Inc. All rights reserved.

size when you preview, print or export the report.

The following image illustrates the result when the ShrinkToFit property is set to True on Title.

You can use other text formatting properties in combination with the ShrinkToFit property.

Caution:

When both CanGrow and ShrinkToFit are set to True, CanGrow setting is ignored and only ShrinkToFit is
applied to the report.
When ShrinkToFit is set to True and Angle is set to a value other than 0, the ShrinkToFit property is ignored.
ShrinkToFit property does not work in following conditions:

VerticalText property (in Section Report) or WritingMode property (in Page/RDL report) is set for a
control.
Multiline property in Section report is set to False.

Common value with Page number (in data region or report header/footer) appears clipped in exported files
(HTML, MHT, Word, and Excel) even when ShrinkToFit property for the TextBox is set to True.

Export Support
While exporting a report, various file formats handle ShrinkToFit differently.

ShrinkToFit gets exported in all formats except Text. While rendering a page report or RDL report using rendering
extensions, ShrinkToFit is not supported in XML. However, all other rendering extensions allow ShrinkToFit display as it is.
See Rendering Extensions for more on rendering extensions.

Condense Characters to Fit in a Control
The MinCondenseRate ('MinCondenseRate Property' in the on-line documentation) property for Label and TextBox
controls in Section and Page/RDL reports allows users to shrink the width of the text so that it fits within the width of the
control. With MinCondenseRate property, the size of the text is compressed horizontally and all characters and character-
spacing in the text shrink with the same ratio; and with ShrinkToFit property, both height and width of a text are
compressed.

When the text is multi-line, the width of the text shrinks based on the longest line. If the text cannot fit the width of the
control even after the width of the text is compressed with the minimum ratio, line breaks are inserted in the middle of the
text depending on the setting of the WrapMode property.

The default value of the MinCondenseRate property is 100 (percentage) and the available range is from 10 to 100 (only
natural number).

The following image illustrates how the text "ABCDEFGHIJ0123456789abcdefghij+-/*%#$&" is compressed when the
MinCondenseRate property for a TextBox is set from 10 to 100.

ActiveReports 14 748

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Caution: When MinCondenseRate property is specified, the following properties are ignored:

Angle (Label control in Section report and TextBox control in Page/RDL report)
ShrinkToFit
VerticalText (Label control in Section report, and TextBox control in Section and Page/RDL reports)
WritingMode (TextBox control in Page/RDL report)

Export Support

The Condensed character feature is supported in PDF, HTML, and MHT export formats when exporting Page/RDL reports
using Rendering Extensions.

Caution: The Condensed characters are NOT supported when exporting Page/RDL reports using PDF and HTML

ActiveReports 14 749

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Export Filters.

Viewer Support

The Condensed character feature is supported in the WinForms, WPF, and Web viewers.

Localization
ActiveReports uses the Hub and Spoke model for localizing resources. The hub is the main executing assembly and the
spokes are the satellite DLLs that contain localized resources for the application.

For example, if you want to localize the Viewer Control, the hub is GrapeCity.ActiveReports.Viewer.Win.dll and the
spoke is GrapeCity.ActiveReports.Viewer.Win.resources.dll.

In your Program Files folder, the Localization folder is in a path like\GrapeCity\ActiveReports 14\Localization, and
contains all of the ActiveReports components that you can localize.

There are 16 ActiveReports components in the Localization folder and most have two files.

A .bat file that is used to set the Cultures to which you want to localize.
A .zip file that contains the resource files (.resx) in which you update or change the strings.

There is one application in the Localization folder: NameCompleter.exe. When you run your .bat file after updating your
culture, it runs this application to create a SatelliteAssembly folder with a language sub-folder containing the localized
GrapeCity.ActiveReports.AssemblyName.resources.dll file.

Place the language folder containing the *.resources.dll file inside your main executing assembly folder to implement
changes.

Note: Before you can distribute or put your localization in the Global Assembly Cache (GAC), you must first send the
localized GrapeCity.ActiveReports.AssemblyName.resources.dll file to Support Team by opening a support ticket, and
get it signed with a strong name. Once you receive the signed DLL file, you can drag the language subfolder with the
signed DLL file into C:\WINDOWS\ASSEMBLY, or distribute it with your solution.

When the main executing assembly needs a resource, it uses a ResourceManager object to load the required resource.
The ResourceManager uses the thread's CurrentUICulture property.

The common language run time sets the CurrentUICulture property or you can set it in code to force a certain UI
Culture so that you can test whether your satellite DLL is loading properly. The ResourceManager class uses the
CurrentUICulture property to locate subdirectories that contain a satellite DLL for the current culture. If no subdirectory
exists, the ResourceManager uses the resource that is embedded in the assembly. US English ("en-US") is the default
culture for ActiveReports.

Tip: For more detailed information about how the Framework locates satellite DLLs, please refer to the help system in
Visual Studio® or the book Developing International Software, 2nd edition by MS Press that contains information on
localizing applications using the .NET Framework.

Cultures
For your convenience, here is a list of predefined System.Globalization cultures. (Source: MSDN.) For ActiveReports

ActiveReports 14 750

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/support/contact
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo?view=netframework-4.8

localization purposes, use the Culture and Language Name value in the first column.

Culture and Language Name Culture Identifier Culture

"" (empty string) 0x007F Invariant culture

af 0x0036 Afrikaans

af-ZA 0x0436 Afrikaans (South Africa)

sq 0x001C Albanian

sq-AL 0x041C Albanian (Albania)

ar 0x0001 Arabic

ar-DZ 0x1401 Arabic (Algeria)

ar-BH 0x3C01 Arabic (Bahrain)

ar-EG 0x0C01 Arabic (Egypt)

ar-IQ 0x0801 Arabic (Iraq)

ar-JO 0x2C01 Arabic (Jordan)

ar-KW 0x3401 Arabic (Kuwait)

ar-LB 0x3001 Arabic (Lebanon)

ar-LY 0x1001 Arabic (Libya)

ar-MA 0x1801 Arabic (Morocco)

ar-OM 0x2001 Arabic (Oman)

ar-QA 0x4001 Arabic (Qatar)

ar-SA 0x0401 Arabic (Saudi Arabia)

ar-SY 0x2801 Arabic (Syria)

ar-TN 0x1C01 Arabic (Tunisia)

ar-AE 0x3801 Arabic (U.A.E.)

ar-YE 0x2401 Arabic (Yemen)

hy 0x002B Armenian

hy-AM 0x042B Armenian (Armenia)

az 0x002C Azeri

az-Cyrl-AZ 0x082C Azeri (Azerbaijan, Cyrillic)

az-Latn-AZ 0x042C Azeri (Azerbaijan, Latin)

eu 0x002D Basque

eu-ES 0x042D Basque (Basque)

be 0x0023 Belarusian

ActiveReports 14 751

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo?view=netframework-4.8

be-BY 0x0423 Belarusian (Belarus)

bg 0x0002 Bulgarian

bg-BG 0x0402 Bulgarian (Bulgaria)

ca 0x0003 Catalan

ca-ES 0x0403 Catalan (Catalan)

zh-HK 0x0C04 Chinese (Hong Kong SAR, PRC)

zh-MO 0x1404 Chinese (Macao SAR)

zh-CN 0x0804 Chinese (PRC)

zh-Hans 0x0004 Chinese (Simplified)

zh-SG 0x1004 Chinese (Singapore)

zh-TW 0x0404 Chinese (Taiwan)

zh-Hant 0x7C04 Chinese (Traditional)

hr 0x001A Croatian

hr-HR 0x041A Croatian (Croatia)

cs 0x0005 Czech

cs-CZ 0x0405 Czech (Czech Republic)

da 0x0006 Danish

da-DK 0x0406 Danish (Denmark)

dv 0x0065 Divehi

dv-MV 0x0465 Divehi (Maldives)

nl 0x0013 Dutch

nl-BE 0x0813 Dutch (Belgium)

nl-NL 0x0413 Dutch (Netherlands)

en 0x0009 English

en-AU 0x0C09 English (Australia)

en-BZ 0x2809 English (Belize)

en-CA 0x1009 English (Canada)

en-029 0x2409 English (Caribbean)

en-IE 0x1809 English (Ireland)

en-JM 0x2009 English (Jamaica)

en-NZ 0x1409 English (New Zealand)

en-PH 0x3409 English (Philippines)

ActiveReports 14 752

Copyright © 2020 GrapeCity, Inc. All rights reserved.

en-ZA 0x1C09 English (South Africa)

en-TT 0x2C09 English (Trinidad and Tobago)

en-GB 0x0809 English (United Kingdom)

en-US 0x0409 English (United States)

en-ZW 0x3009 English (Zimbabwe)

et 0x0025 Estonian

et-EE 0x0425 Estonian (Estonia)

fo 0x0038 Faroese

fo-FO 0x0438 Faroese (Faroe Islands)

fa 0x0029 Farsi

fa-IR 0x0429 Farsi (Iran)

fi 0x000B Finnish

fi-FI 0x040B Finnish (Finland)

fr 0x000C French

fr-BE 0x080C French (Belgium)

fr-CA 0x0C0C French (Canada)

fr-FR 0x040C French (France)

fr-LU 0x140C French (Luxembourg)

fr-MC 0x180C French (Monaco)

fr-CH 0x100C French (Switzerland)

gl 0x0056 Galician

gl-ES 0x0456 Galician (Spain)

ka 0x0037 Georgian

ka-GE 0x0437 Georgian (Georgia)

de 0x0007 German

de-AT 0x0C07 German (Austria)

de-DE 0x0407 German (Germany)

de-LI 0x1407 German (Liechtenstein)

de-LU 0x1007 German (Luxembourg)

de-CH 0x0807 German (Switzerland)

el 0x0008 Greek

el-GR 0x0408 Greek (Greece)

ActiveReports 14 753

Copyright © 2020 GrapeCity, Inc. All rights reserved.

gu 0x0047 Gujarati

gu-IN 0x0447 Gujarati (India)

he 0x000D Hebrew

he-IL 0x040D Hebrew (Israel)

hi 0x0039 Hindi

hi-IN 0x0439 Hindi (India)

hu 0x000E Hungarian

hu-HU 0x040E Hungarian (Hungary)

is 0x000F Icelandic

is-IS 0x040F Icelandic (Iceland)

id 0x0021 Indonesian

id-ID 0x0421 Indonesian (Indonesia)

it 0x0010 Italian

it-IT 0x0410 Italian (Italy)

it-CH 0x0810 Italian (Switzerland)

ja 0x0011 Japanese

ja-JP 0x0411 Japanese (Japan)

kn 0x004B Kannada

kn-IN 0x044B Kannada (India)

kk 0x003F Kazakh

kk-KZ 0x043F Kazakh (Kazakhstan)

kok 0x0057 Konkani

kok-IN 0x0457 Konkani (India)

ko 0x0012 Korean

ko-KR 0x0412 Korean (Korea)

ky 0x0040 Kyrgyz

ky-KG 0x0440 Kyrgyz (Kyrgyzstan)

lv 0x0026 Latvian

lv-LV 0x0426 Latvian (Latvia)

lt 0x0027 Lithuanian

lt-LT 0x0427 Lithuanian (Lithuania)

mk 0x002F Macedonian

ActiveReports 14 754

Copyright © 2020 GrapeCity, Inc. All rights reserved.

mk-MK 0x042F Macedonian (Macedonia, FYROM)

ms 0x003E Malay

ms-BN 0x083E Malay (Brunei Darussalam)

ms-MY 0x043E Malay (Malaysia)

mr 0x004E Marathi

mr-IN 0x044E Marathi (India)

mn 0x0050 Mongolian

mn-MN 0x0450 Mongolian (Mongolia)

no 0x0014 Norwegian

nb-NO 0x0414 Norwegian (Bokmål, Norway)

nn-NO 0x0814 Norwegian (Nynorsk, Norway)

pl 0x0015 Polish

pl-PL 0x0415 Polish (Poland)

pt 0x0016 Portuguese

pt-BR 0x0416 Portuguese (Brazil)

pt-PT 0x0816 Portuguese (Portugal)

pa 0x0046 Punjabi

pa-IN 0x0446 Punjabi (India)

ro 0x0018 Romanian

ro-RO 0x0418 Romanian (Romania)

ru 0x0019 Russian

ru-RU 0x0419 Russian (Russia)

sa 0x004F Sanskrit

sa-IN 0x044F Sanskrit (India)

sr-Cyrl-CS 0x0C1A Serbian (Serbia, Cyrillic)

sr-Latn-CS 0x081A Serbian (Serbia, Latin)

sk 0x001B Slovak

sk-SK 0x041B Slovak (Slovakia)

sl 0x0024 Slovenian

sl-SI 0x0424 Slovenian (Slovenia)

es 0x000A Spanish

es-AR 0x2C0A Spanish (Argentina)

ActiveReports 14 755

Copyright © 2020 GrapeCity, Inc. All rights reserved.

es-BO 0x400A Spanish (Bolivia)

es-CL 0x340A Spanish (Chile)

es-CO 0x240A Spanish (Colombia)

es-CR 0x140A Spanish (Costa Rica)

es-DO 0x1C0A Spanish (Dominican Republic)

es-EC 0x300A Spanish (Ecuador)

es-SV 0x440A Spanish (El Salvador)

es-GT 0x100A Spanish (Guatemala)

es-HN 0x480A Spanish (Honduras)

es-MX 0x080A Spanish (Mexico)

es-NI 0x4C0A Spanish (Nicaragua)

es-PA 0x180A Spanish (Panama)

es-PY 0x3C0A Spanish (Paraguay)

es-PE 0x280A Spanish (Peru)

es-PR 0x500A Spanish (Puerto Rico)

es-ES 0x0C0A Spanish (Spain)

es-ES_tradnl 0x040A Spanish (Spain, Traditional Sort)

es-UY 0x380A Spanish (Uruguay)

es-VE 0x200A Spanish (Venezuela)

sw 0x0041 Swahili

sw-KE 0x0441 Swahili (Kenya)

sv 0x001D Swedish

sv-FI 0x081D Swedish (Finland)

sv-SE 0x041D Swedish (Sweden)

syr 0x005A Syriac

syr-SY 0x045A Syriac (Syria)

ta 0x0049 Tamil

ta-IN 0x0449 Tamil (India)

tt 0x0044 Tatar

tt-RU 0x0444 Tatar (Russia)

te 0x004A Telugu

te-IN 0x044A Telugu (India)

ActiveReports 14 756

Copyright © 2020 GrapeCity, Inc. All rights reserved.

th 0x001E Thai

th-TH 0x041E Thai (Thailand)

tr 0x001F Turkish

tr-TR 0x041F Turkish (Turkey)

uk 0x0022 Ukrainian

uk-UA 0x0422 Ukrainian (Ukraine)

ur 0x0020 Urdu

ur-PK 0x0420 Urdu (Pakistan)

uz 0x0043 Uzbek

uz-Cyrl-UZ 0x0843 Uzbek (Uzbekistan, Cyrillic)

uz-Latn-UZ 0x0443 Uzbek (Uzbekistan, Latin)

vi 0x002A Vietnamese

vi-VN 0x042A Vietnamese (Vietnam)

Section 508 Compliance
Section 508 requires that when Federal agencies develop, procure, maintain, or use electronic and information technology,
Federal employees with disabilities have access to and use of information and data that is comparable to the access and
use by Federal employees without disabilities, unless an undue burden would be imposed on the agency. Section 508 also
requires that individuals with disabilities seeking information or services from a Federal agency have access to and use of
information and data that is comparable to that provided to the general public, unless an undue burden would be
imposed on the agency.

Summary

Guideline Applicable ActiveReports Area

Section 1194.21 Software Applications and
Operating Systems

Applicable End User Designer, Windows Viewer,
WPF Viewer, Web controls (HTML
Viewer).

Section 1194.22 Web-Based Intranet and
Internet Information and
Applications

Applicable Web controls (HTML Viewer).

Section 1194.23 Telecommunications
Products

Not applicable none

Section 1194.24 Video and Multimedia
Products

Not applicable none

Section 1194.25 Self-Contained, Closed
Products

Not applicable none

ActiveReports 14 757

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Section 1194.26 Desktop and Portable
Computers

Not applicable none

Section 1194.31 Functional Performance
Criteria

Applicable End User Designer, Windows Viewer,
WPF Viewer, Web controls, HTML
Viewer).

Section 1194.41 Information,
Documentation and
Support

Applicable Documentation and Support.

Accessibility Summary:
All major features of ActiveReports software are accessible via keyboard navigation.

DISCLAIMER:
GRAPECITY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. The following information reflects the
general accessibility features of GrapeCity software components as related to the Section 508 standards. If you find that
the information is not accurate, or if you have specific accessibility needs that our products do not meet, please contact us
and we will attempt to rectify the problem, although we cannot guarantee that we will be able to do so in every case.

Software Applications and Operating Systems
Section 1194.21

Criteria Status Remarks

(a) When software is designed to run on a system that has a keyboard,
product functions shall be executable from a keyboard where the function
itself or the result of performing a function can be discerned textually.

Supported
with
exceptions

ActiveReports partially
supports keyboard
navigation. Users cannot
execute
report functions completely
using the keyboard.

(b) Applications shall not disrupt or disable activated features of other
products that are identified as accessibility features, where those features
are developed and documented according to industry standards.
Applications also shall not disrupt or disable activated features of any
operating system that are identified as accessibility features where the
application programming interface for those accessibility features has been
documented by the manufacturer of the operating system and is available
to the product developer.

Supported The controls do not disrupt
or disable industry
standard accessibility
features of other products.

(c) A well-defined on-screen indication of the current focus shall be
provided that moves among interactive interface elements as the input
focus changes. The focus shall be programmatically exposed so that
Assistive Technology can track focus and focus changes.

Supported
with
exceptions

Some elements in
ActiveReports cannot track
focus. Focus is not exposed
to screen readers like
NVDA.

ActiveReports 14 758

Copyright © 2020 GrapeCity, Inc. All rights reserved.

(d) Sufficient information about a user interface element including the
identity, operation and state of the element shall be available to Assistive
Technology. When an image represents a program element, the information
conveyed by the image must also be available in text.

Supported
with
exceptions

The images representing
program elements do not
support alternative text.
Partial support for Assistive
Technology is provided for
some interface elements.

(e) When bitmap images are used to identify controls, status indicators, or
other programmatic elements, the meaning assigned to those images shall
be consistent throughout an application's performance.

Supported Any image used to identify
a programmatic element
has a consistent meaning
throughout an application's
performance.

(f) Textual information shall be provided through operating system
functions for displaying text. The minimum information that shall be made
available is text content, text input caret location, and text attributes.

Supported Textual information such as
text content, caret location,
and any text attribute (i.e.
bold, italic, size, color, etc.)
is available for all the
viewer elements.

(g) Applications shall not override user selected contrast and color
selections and other individual display attributes.

Supported
with
exceptions

User selected contrast and
color settings are not
overridden, except for
some minor exceptions in
End User Designer.

(h) When animation is displayed, the information shall be displayable in at
least one non-animated presentation mode at the option of the user.

Supported Animated image is only
used when a report is
being loaded in the viewer.
The users can provide
a static text for the
animation
using the loadCompleted
event of the Viewer.

(i) Color coding shall not be used as the only means of conveying
information, indicating an action, prompting a response, or distinguishing a
visual element.

Supported Any interface element that
uses color to indicate an
action, prompt a response,
or distinguish a visual
element also provides a
textual cue.

(j) When a product permits a user to adjust color and contrast settings, a
variety of color selections capable of producing a range of contrast levels
shall be provided.

Supported ActiveReports supports
a variety of colors, themes
and styles that can be
applied to controls in a
report.

(k) Software shall not use flashing or blinking text, objects, or other
elements having a flash or blink frequency greater than 2 Hz and lower than
55 Hz.

Supported The controls do not use
flashing or blinking text or
objects.

ActiveReports 14 759

Copyright © 2020 GrapeCity, Inc. All rights reserved.

(l) When electronic forms are used, the form shall allow people using
Assistive Technology to access the information, field elements, and
functionality required for completion and submission of the form, including
all directions and cues.

Supported Any form-type dialogs or
windows associated with
the controls provide
Assistive Technology with
access to information on all
directions, cues, field
elements, and functionality
required for completion.

Web-based Internet Information and Applications
Section 1194.22

Criteria Status Remarks

(a) A text equivalent for every non-text element shall be
provided (e.g., via "alt", "longdesc", or in element content).

Supported Each non-text element has a
text equivalent.

(b) Equivalent alternatives for any multimedia presentation shall
be synchronized with the presentation.

Not applicable ActiveReports web controls do
not include multimedia.

(c) Web pages shall be designed so that all information
conveyed with color is also available without color, for example
from context or markup.

Not applicable ActiveReports web controls do
not provide any information
using color.

(d) Documents shall be organized so they are readable without
requiring an associated style sheet.

Supported with
exceptions

Toolbar icons in some web
controls are not visible when
the associated styles are
disabled.

(e) Redundant text links shall be provided for each active region
of a server-side image map.

Not applicable There are no server-side image
maps in ActiveReports web
controls.

(f) Client-side image maps shall be provided instead of server-
side image maps except where the regions cannot be defined
with an available geometric shape.

Not applicable ActiveReports does not
use client-side image maps in
ActiveReports web controls.

(g) Row and column headers shall be identified for data tables. Not applicable By default, there are no data
tables associated with the
ActiveReports web controls.

(h) Markup shall be used to associate data cells and header cells
for data tables that have two or more logical levels of row or
column headers.

Not applicable By default, there are no data
tables associated with the
ActiveReports web controls.

(i) Frames shall be titled with text that facilitates frame
identification and navigation.

Not applicable By default, there are no frames
associated with ActiveReports
web controls.

(j) Pages shall be designed to avoid causing the screen to flicker
with a frequency greater than 2 Hz and lower than 55 Hz.

Supported ActiveReports Web controls do
not contain any feature that

ActiveReports 14 760

Copyright © 2020 GrapeCity, Inc. All rights reserved.

causes page flickering.

(k) A text-only page, with equivalent information or functionality,
shall be provided to make a web site comply with the provisions
of this part, when compliance cannot be accomplished in any
other way. The content of the text-only page shall be updated
whenever the primary page changes.

Not applicable Text-only page is
not available in ActiveReports
WebViewer or Web controls.

(l) When a web page requires that an applet, plug-in or other
application be present on the client system to interpret page
content, the page must provide a link to a plug-in or applet that
complies with §1194.21(a) through (l).

Not applicable Not applicable

(m) When electronic forms are designed to be completed on-
line, the form shall allow people using Assistive Technology to
access the information, field elements, and functionality required
for completion and submission of the form, including all
directions and cues.

Supported with
exceptions

The components used in
ActiveReports have been
configured for maximum
compliance. Some form controls
may not support Assistive
Technology.

(n) A method shall be provided that permits users to skip
repetitive navigation links.

Not applicable ActiveReports does not support
repetitive navigation links.

(o) When a timed response is required, the user shall be alerted
and given sufficient time to indicate more time is required.

Not applicable Timed response is not required.

Performance Criteria
Section 1194.31

Criteria Status Remarks

(a) At least one mode of operation and information retrieval
that does not require user vision shall be provided, or support
for assistive technology used by people who are blind or visually
impaired shall be provided.

Supported with
exceptions

Partial support is provided
for assistive technologies like
screen readers.

(b) At least one mode of operation and information retrieval
that does not require visual acuity greater than 20/70 shall be
provided in audio and enlarged print output working together
or independently, or support for assistive technology used by
people who are visually impaired shall be provided.

Supported ActiveReports does not require
visual acuity greater than 20/70. It is
exposed to magnification tools like
the Screen Magnifier that can be
used for magnifying the screen.

(c) At least one mode of operation and information retrieval
that does not require user hearing shall be provided, or support
for assistive technology used by people who are deaf or hard of
hearing shall be provided.

Not applicable ActiveReports does not use any
sound output. Hearing is not
necessary to use the product.

(d) Where audio information is important for the use of a
product, at least one mode of operation and information
retrieval shall be provided in an enhanced auditory fashion, or
support for assistive hearing devices shall be provided.

Not applicable ActiveReports does not provide
functionalities that require audio or
video aids.

ActiveReports 14 761

Copyright © 2020 GrapeCity, Inc. All rights reserved.

(e) At least one mode of operation and information retrieval
that does not require user speech shall be provided, or support
for assistive technology used by people with disabilities shall be
provided.

Not applicable ActiveReports does not provide any
functionality that make use of user
speech.

(f) At least one mode of operation and information retrieval that
does not require fine motor control or simultaneous actions and
that is operable with limited reach and strength shall be
provided.

Supported ActiveReports does not provide any
functionality that requires fine
motor control or simultaneous
action.

Information, Documentation and Support
Section 1194.41

Criteria Status Remarks

(a) Product support documentation provided to end-users
shall be made available in alternate formats upon request, at
no additional charge.

Supported Documentation is available in four formats:
HTML(Web), *.chm, *.PDF, and Help3(Visual
Studio help content)

(b) End-users shall have access to a description of the
accessibility and compatibility features of products in alternate
formats or alternate methods upon request, at no additional
charge.

Supported ActiveReports provides information about
accessibility and compatibility features in
the documentation. The documentation is
exposed to screen readers.

(c) Support services for products shall accommodate the
communication needs of end-users with disabilities.

Supported Support services such as telephone, email
and forum support are provided to the
customers.

How To
Learn to perform common tasks with ActiveReports with quick how-to topics.

Topic Content

Page Report/RDL
Report How To

Learn how to work with both Page report and RDL report, and perform various page report tasks.

Section Report How
To

Learn how to work with Section reports and perform various reporting tasks specific to this type
of report.

Localize and Deploy Learn how to localize each of the Windows and Web controls, how to localize reports and
controls, and how to deploy Windows and Web applications.

Page Report/RDL Report How To
Learn to perform common tasks in Page Reports and RDL Reports with quick how-to topics.

Report Data

ActiveReports 14 762

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Learn how to connect to different data sources and add a data set in a Page report or a RDL report.
Report Controls

Learn how to use controls like the TextBox, Map or Image, and data regions like the Tablix or Table on Page
Reports/RDL reports.

Manage Data
Learn how to manage data in both Page report and RDL report.

Page/RDL Report Scenarios
Learn how to work with both Page report and RDL report, and perform various report tasks.

Interactivity
Learn how to add parameters, hyperlinks, bookmarks and perform other report operations.

Common Tasks
Learn how to execute common report tasks.

Report Data
See step-by-step instructions for performing common tasks in Page Reports and RDL Reports.

In this section

Connect to a Data Source
Learn how to bind reports to various data sources.

Add a Dataset
Learn how to add a dataset in a report.

Work with Local Shared Data Sources
Learn how to create and edit a local shared data source, and connect to a local shared data source.

Bind Reports to a Data Source at Run Time
Learn how to bind a page report to a data source at run time.

Use Dynamically Built JSON Data Source
Learn how to dynamically build JSON Data Source by using expressions.

Connect to a Data Source
In a Page report or an RDL report, you can connect to a data source at design time through the Report Explorer. Use the
following instructions to connect to various data providers supported in ActiveReports.

These steps assume that you have already added a Page Report/RDL Report in a Visual Studio project. See Quick Start for
further information.

To connect to SQL, OLEDB, DataSet, ODBC, and Object data sources

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the add button.

2. In the Report Data Source dialog that appears, select the General page and enter the name of the data source. By
default, the data source name is set to DataSource1. This name appears as a child node to the Data Sources node
in the Report Explorer.

3. Under Type, select the type of data source you want to use.
4. Under Connection, enter a Connection String. If you select SQL or OleDBas the data source Type, Connection

ActiveReports 14 763

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Properties, Connection String and Advanced Settings pages appear under Connection. If you select DataSet, ODBC,
and Object data source Type, Connection Properties and Connection String pages appear. See Report Data Source
Dialog for further details.

5. Click the Validate Data Source icon to confirm the connection string. This icon becomes inactive to indicate
success, while an error message indicates an invalid connection string.

6. On the Credentials page, you can specify password, credentials, or Windows authentication.
7. Click the OK button on the lower right corner to close the dialog. You have successfully connected the report to a

data source.

To connect to an XML data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the add button.

2. In the Report Data Source dialog that appears, select the General page and enter the name of the data source. By
default, the data source name is set to DataSource1. This name appears as a child node to the Data Sources node
in the Report Explorer.

3. Under Type, select XML Provider.
4. In the Connection Properties tab, select the type of XML data from the following options:

External file or URL: Enter the path of an external XML source such as a local file or the http location of a
file.
Embedded: Enter the path of the XML file to embed in the report. You can also enter the data manually or
edit the data in selected XML file.
Expression: Enter the path expression. User can enter expression in Connection String or in Expression field
in Connection Properties.

5. Click the Connection String tab. The connection string generated must include xmldoc or xmldata. You can
validate the connection string by clicking the Validate DataSource icon. For more information on XML connection
string, see topic XML Provider.

6. Click the OK button on the lower right corner to close the dialog. You have successfully connected the report to a
data source.

To connect to a CSV data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the add button.

2. In the Report Data Source dialog that appears, select the General page and enter the name of the data source. By
default, the data source name is set to DataSource1. This name appears as a child node to the Data Sources node
in the Report Explorer.

3. Under Type, select CSV Provider.
4. In the Connection String tab, click the Build icon to open the Configure CSV Data Source wizard.
5. Specify the Path by clicking the Open button and selecting the .csv file available locally, or via URL for centrally

located CSV data source. You can also enter a relative path to the csv file here.
6. Set other options in the wizard to generate the connection string. For more information on CSV connection

strings, see the CSV Provider topic.
7. To edit the Name and Data Type of columns shown in the Preview area, click the Get from preview button. With

Fixed data, you can also edit the Width.

ActiveReports 14 764

Copyright © 2020 GrapeCity, Inc. All rights reserved.

8. Click OK to save the changes and close the dialog. The Connection String tab displays the generated connection
string. You can validate the connection string by clicking the Validate DataSource icon.

9. Click OK on the lower right corner to close the dialog. You have successfully connected the report to a CSV data
source. Note that the dataset for the CSV data source is added automatically.

To connect to a JSON data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the add button.

2. In the Report Data Source dialog that appears, select the General page and enter the name of the data source. By
default, the data source name is set to DataSource1. This name appears as a child node to the Data Sources node
in the Report Explorer.

3. Under Type, select JSON Provider. See JSON Provider for further details.
4. In the Schema tab, specify the JSON schema file corresponding to your JSON data from the following options:

ActiveReports 14 765

Copyright © 2020 GrapeCity, Inc. All rights reserved.

External file or URL: Enter the path or URL of an external JSON schema file or select the file from the drop-
down which displays the JSON files available in the same folder as the report.
Embedded: Enter the path of the JSON schema file to embed in the report. You can enter the schema
manually or edit the schema in the selected JSON file.
For generating the JSON schema, use the JSON schema generator available at http://jsonschema.net/.

5. In the Content tab, specify the JSON data file from the following available options:
External file or URL: Enter the path or URL of an external JSON data file or select the file from the drop-
down which displays the JSON files available in the same folder as the report.
Embedded: Enter the path of the JSON data file to embed in the report. You can enter the data manually or
edit the data in the selected JSON file.
Expression: Enter an expression to bind to the JSON data.

6. Click the Connection String tab. The connection string generated must include jsondoc or jsondata and
schemadoc or schemadata, depending on the options selected in Content and Schema tabs. You can validate the
connection string by clicking the Validate DataSource icon. For more information on JSON connection string, see
topic JSON Provider.

7. Click the OK button on the lower right corner to close the dialog. You have successfully connected the report to
the JSON data source.

Add a Dataset
In a Page report or an RDL report, once you connect your report to a data source, in order to get a list of fields to use in
the report, you need to add a dataset. Use the following instructions to add a dataset to the report.

Note: The data set for a CSV data source is automatically created on adding the data source.

These steps assume that you have already added a Page Report/RDL Report template and connected it to a data source.
See Quick Start and Connect to a Data Source for further information.

1. In the Report Explorer, right-click the data source node (DataSource1 by default) and select the Add Data Set
option or select Data Set... from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset. This name appears
as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, select a Command Type from the dropdown list.

Text - Allows the user to enter a SQL query or XML path in the Query box. See Visual Query Designer for
further information on how to create a query using the interactive query designer.
StoredProcedure - Allows the user to enter the name of the stored procedure in the Query box.
TableDirect - Allows the user to enter the name of the table in the Query box.

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. The fields are automatically added to the Fields page in the DataSet dialog. For XML data, manually enter fields on

the Fields page using valid XPath expressions.

ActiveReports 14 766

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://jsonschema.net/login

6. You can also set parameters, filters, and data options on the other pages of the dialog.
7. Click the OK button to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

Note: In case you are using an XML or JSON data source provider, you have to provide an XML path or JSON path
using XPath or JSONPath expressions on the Query page, and generate fields on the Fields page of the DataSet
dialog. See the following examples for details.

Query and Field settings for XML Data

Connection String

Example of an xmldata connection string.
xmldata=<people>
 <person>
 <name>
 <given>John</given>
 <family>Doe</family>
 </name>
 </person>
 <person>
 <name>
 <given>Jane</given>
 <family>Smith</family>
 </name>
 </person>
</people>;

XMLPath on Query Page

An XMLPath expression returns a value from an XML data source when evaluated with the query. The XML path is
represented by slash (/) and the brackets ([]) represent iteration over collection of elements.

For example: /people/person/name

You can also build the XMLPath using XML DataSet Query Builder. Click the Edit with XML Query Designer icon

 to open XML DataSet Query Builder dialog and then choose the XPath from the tree nodes.

Fields

Once the query is set, build the Fields collection with two fields that contain the following name and value pairs:
Name: given; Value: given
Name: family; Value: family

See Add Fields in Reports to understand more about fields.

Query and Field settings for JSON Data

Connection String

Example of a JSON data connection string.
jsondoc=C:\Data\customers.json;schemadata={
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "address": {

ActiveReports 14 767

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 "type": "object",
 "properties": {
 "streetAddress": {
 "type": "string"
 },
 "city": {
 "type": "string"
 }
 },
 "required": [
 "streetAddress",
 "city"
]
 },
 "phoneNumber": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string"
 },
 "code": {
 "type": "integer"
 }
 },
 "required": [
 "location",
 "code"
]
 }
 }
 },
 "required": [
 "address",
 "phoneNumber"
]
}

JSONPath on Query Page

A JSONPath expression returns a value from a JSON data source when evaluated with the query. The JSON path is
usually represented by dot (.) notation, with the root object as '$'. The brackets ([]) represent the array of elements.

For example: $.Customers[*]

For more information, please see http://goessner.net/articles/JsonPath/.
You can also build the JSONPath using JSON Query Builder, which can be accessed from Edit with JSON Query

Designer icon . The JSON Query Builder displays the structure of the JSON data, obtained from the JSON

ActiveReports 14 768

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://goessner.net/articles/JsonPath/

schema. You can choose the JSONPath from the tree nodes. You can also choose to create multiple datasets - just
check-on the Select multiple nodes option and select the nodes that you want to add as datasets.

Fields

Once the query is set, build the Fields collection with two fields that contain the following name and value pairs:
Name: CompanyName; Value: CompanyName
Name: ContactName; Value: ContactName

Work with Local Shared Data Sources
You can save a data connection type such as an OleDb connection, Json connection, or an XML connection as a Shared
Data Source (RDSX). This topic provides the steps to create a shared data source with an OleDb data connection.

To create a shared data source

1. Create a new Visual Studio project or open an existing one.
2. In the Visual Studio project, add a Page Report or an RDL Report template to create a new report. See Quick Start

for further details.
3. In the Report Explorer, click the Add icon on the top left and select Data Source...

4. In the Report Data Source dialog that appears, go to the General page and set the following properties to create
a connection to an OleDb data source.

Name: Any Name
Type: Microsoft OleDB Provider

Under Connection, go to the Connection Properties tab and set:

OLE DB Provider: Microsoft.Jet.OLEDB.4.0
Server or file Name: Your .mdb file location

5. In the Report Data Source dialog, click the OK button to close the dialog. A data source node appears in the
Report Explorer.

6. In the Report Explorer, right-click the data source and select Share Data Source.
7. In the Save Shared Data Source File dialog that appears, enter the file name and click the Save button to save the

file in RDSX format. Notice that the data source icon changes to show sharing.

Data Source Icon Shared Data Source Icon

To connect to a shared data source

ActiveReports 14 769

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In ActiveReports, you can connect to most data sources using the steps in the Connect to a Data Source. However, you
need to follow the steps below to connect to a Shared Data Source.

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source dialog that appears, select the General page and enter the name of the data source.
This name appears as a child node to the Data Sources node in the Report Explorer.

3. Check the Shared Reference checkbox on.
4. Under Reference, from the drop-down list, select From File...
5. If you have selected the From File... option, in the Shared Data Source File dialog that appears, go to the folder

where your shared data source file is located and select it. A file path appears in the field adjacent to the Browse
button.

6. Click the OK button on the lower right corner to close the dialog. A shared data source node appears in the Report
Explorer.

To edit a shared data source

These steps assume that you have already connected your report to a shared data source.

1. To open the Report Data Source dialog, do one of the following:
In the Report Explorer, right-click a shared data source node and in the context menu that appears, select
Edit.
In the Report Explorer toolbar, click the Edit Shared Data Source button.

2. In the Report Data Source dialog that appears, edit the data connection information.

Bind a Page Report to a Data Source at Run Time
ActiveReports allows you to modify a data source at run time. See the following set of sample codes to connect your Page
report or RDL report to a data source at run time.

To connect to an OleDB data source
Use the API to set a data source and dataset on a report at run time. These steps assume that you have already added a
Page Report template and placed a Viewer control on a Windows Form in your Visual Studio project. See Quick Start and
Windows Forms Viewer for further information.

Note: You can use the code example below for the SQL, Odbc, or OleDB data source binding. To do that, modify the
Data Provider Type and Connection String according to the data source.

1. From the Visual Studio toolbox, drag and drop a Table data region onto the design surface of the report.
2. In the Table, select the following cells and go to Properties Window to set their Value property.

Cell Value Property

Left Cell =Fields!ProductID.Value

Middle Cell =Fields!InStock.Value

Right Cell =Fields!Price.Value

ActiveReports 14 770

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Go to the Visual Studio Report Menu, and select Save Layout.
4. In the Save As window that appears navigate to your project's folder and save the layout (like RuntimeBinding.rdlx)

inside the bin/debug folder.
5. Double-click the title bar of the Windows Form to create an event-handling method for the Form_Load event.
6. Add the following code to the handler to connect to a data source, add a dataset and to supply data in the report.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

'create an empty page report
Dim def As New PageReport
'load the report layout
def.Load(New System.IO.FileInfo(Application.StartupPath + "\RuntimeBinding.rdlx"))
'create and setup the data source
Dim myDataSource As New GrapeCity.ActiveReports.PageReportModel.DataSource
myDataSource.Name = "Example Data Source"
myDataSource.ConnectionProperties.DataProvider = "OLEDB"
myDataSource.ConnectionProperties.ConnectString =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
folder]\Samples14\Data\Reels.mdb"
'setup the dataset
Dim myDataSet As New GrapeCity.ActiveReports.PageReportModel.DataSet()
Dim myQuery As New GrapeCity.ActiveReports.PageReportModel.Query()
myDataSet.Name = "Example Data Set"
myQuery.DataSourceName = "Example Data Source"
myQuery.CommandType =
GrapeCity.ActiveReports.PageReportModel.QueryCommandType.TableDirect
myQuery.CommandText =
GrapeCity.ActiveReports.Expressions.ExpressionInfo.FromString("Product")
myDataSet.Query = myQuery
' add fields
Dim _field As New GrapeCity.ActiveReports.PageReportModel.Field("ProductID",
"ProductID", Nothing)
myDataSet.Fields.Add(_field)
_field = New GrapeCity.ActiveReports.PageReportModel.Field("InStock", "InStock",
Nothing)
myDataSet.Fields.Add(_field)
_field = New GrapeCity.ActiveReports.PageReportModel.Field("Price", "Price",
Nothing)
myDataSet.Fields.Add(_field)
'bind the data source and the dataset to the report
def.Report.DataSources.Add(myDataSource)
def.Report.DataSets.Add(myDataSet)
def.Run()
Viewer1.LoadDocument(def.Document)

To write the code in C#

ActiveReports 14 771

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C# code. Paste INSIDE the Form_Load event.

//create an empty page report
GrapeCity.ActiveReports.PageReport def = new GrapeCity.ActiveReports.PageReport();
//load the report layout
def.Load(new System.IO.FileInfo(Application.StartupPath + "\RuntimeBinding.rdlx"));
//create and setup the data source
GrapeCity.ActiveReports.PageReportModel.DataSource myDataSource = new
GrapeCity.ActiveReports.PageReportModel.DataSource();
myDataSource.Name = "Example Data Source";
myDataSource.ConnectionProperties.DataProvider = "OLEDB";
myDataSource.ConnectionProperties.ConnectString =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
folder]\\Samples14\\Data\\Reels.mdb";
//setup the dataset
GrapeCity.ActiveReports.PageReportModel.DataSet myDataSet = new
GrapeCity.ActiveReports.PageReportModel.DataSet();
GrapeCity.ActiveReports.PageReportModel.Query myQuery = new
GrapeCity.ActiveReports.PageReportModel.Query();
myDataSet.Name = "Example Data Set";
myQuery.DataSourceName = "Example Data Source";
myQuery.CommandType =
GrapeCity.ActiveReports.PageReportModel.QueryCommandType.TableDirect;
myQuery.CommandText =
GrapeCity.ActiveReports.Expressions.ExpressionInfo.FromString("Product");
myDataSet.Query = myQuery;
// add fields
GrapeCity.ActiveReports.PageReportModel.Field _field = new
GrapeCity.ActiveReports.PageReportModel.Field("ProductID", "ProductID", null);
myDataSet.Fields.Add(_field);
_field = new GrapeCity.ActiveReports.PageReportModel.Field("InStock", "InStock",
null);
myDataSet.Fields.Add(_field);
_field = new GrapeCity.ActiveReports.PageReportModel.Field("Price", "Price", null);
myDataSet.Fields.Add(_field);
//bind the data source and the dataset to the report
def.Report.DataSources.Add(myDataSource);
def.Report.DataSets.Add(myDataSet);
def.Run();
viewer1.LoadDocument(def.Document);

7. Press F5 to run the Application.

To connect to an unbound Data Source
To connect to unbound data sources at run time, you can use the DataSet provider or the Object provider with the
LocateDataSource event. The reporting engine raises the LocateDataSource event when it needs input on the data to
use.

DataSet provider

ActiveReports 14 772

Copyright © 2020 GrapeCity, Inc. All rights reserved.

With the DataSet provider, the ConnectionString and Query settings vary depending on how you connect to data.

To use the LocateDataSource event to bind the report to data, leave the ConnectionString blank.

If LocateDataSource returns a DataSet, the Query is set to the DataSet table name.
If LocateDataSource returns a DataTable or DataView, the Query is left blank.

To bind a report to a dataset located in a file, set the ConnectionString to the path of the file, and set the Query to the
DataSet table name.

Limitations of the Dataset Provider

Relationship names that have periods in them are not supported.
Fields in nested relationships only traverse parent relationships (e.g.
FK_Order_Details_Orders.FK_Orders_Customers.CompanyName).

Parent Table Fields

To request a field from a parent table, prefix the field name with the name of the relation(s) that must be traversed to
navigate to the appropriate parent table. Separate field names and relations with periods.

For example, consider a main table named OrderDetails which has a parent table named Orders. A relation named
Orders_OrderDetails defines the relationship between the two tables. Use a field with the syntax below to access the
OrderDate from the parent table:

Orders_OrderDetails.OrderDate

Use this same technique to traverse multiple levels of table relations. For example, consider that the Orders table used in
the prior example has a parent table named Customers and a relation binding the two called Customers_Orders. If the
CommandText specifies the main table as OrderDetails, use the following syntax to get the CustomerName field from the
parent table:

Customers_Orders.Orders_OrderDetails.CustomerName

Note: Ambiguity can occur if a field and a relation have the same name. This is not supported.

To use the Dataset Provider

You can use the API to set a dataset on a report at run time.

The Dataset provider returns a data table. All fields in the data table are available. To use the Dataset provider as a
report's data source, set up a report definition and run time, and attach the page document to a
LocateDataSourceEventHandler.

These steps assume that you have already added a Page Report template and placed a Viewer control on a Windows
Form in your Visual Studio project. See Quick Start and Windows Forms Viewer for further information.

1. In the Report Explorer, go to the DataSources node and right-click to select Add Data Source.
2. In the Report Data Source dialog that appears, set Type to DataSetProvider and close the dialog. A data source

node appears in the ReportExplorer.
3. Right-click the data source node and to select Add Data Set.
4. In the DataSet dialog that appears select the Fields page.
5. On the Fields page, add a fields like =Fields!ProductID.Value and =Fields!InStock.Value.
6. Click OK to close the dialog. Nodes with the field names appear under the dataset name.

ActiveReports 14 773

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. From the Visual Studio toolbox ActiveReports 14 Page Report tab, drag a Table data region onto the design surface
of the report.

8. From the ReportExplorer, add the newly added fields onto cells in the detail row of the Table and save the report.
9. In the Visual Studio Solution Explorer, right-click YourProjectName and select Add > Class.

10. In the Add New Item window that appears, rename the class to DataLayer.cs or .vb and click Add.
11. In the Solution Explorer, double-click the DataLayer.cs or .vb to open the code view of the class and paste the

following code inside it.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste inside the DataLayer class.

Imports GrapeCity.ActiveReports.Expressions.ExpressionObjectModel
Imports System.Globalization
Imports System.Data.OleDb

Friend NotInheritable Class DataLayer
 Private _datasetData As System.Data.DataSet

 Public Sub New()
 LoadDataToDataSet()
 End Sub

 Public ReadOnly Property DataSetData() As System.Data.DataSet
 Get
 Return _datasetData
 End Get
 End Property

 Private Sub LoadDataToDataSet()
 Dim connStr As String = "Provider=Microsoft.Jet.OLEDB.4.0;Persist Security
Info=False;
 Data Source=[User folder]\\Samples14\\Data\\Reels.mdb"
 Dim productSql As String = "SELECT top 100 * FROM Product"

 _datasetData = New DataSet()
 Dim conn As New OleDbConnection(connStr)
 Dim cmd As OleDbCommand = Nothing
 Dim adapter As New OleDbDataAdapter

 cmd = New OleDbCommand(productSql, conn)
 adapter.SelectCommand = cmd
 adapter.Fill(_datasetData, "Products")
 End Sub

End Class

To write the code in C#

ActiveReports 14 774

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C# code. Paste inside the DataLayer class.

using System;
using System.Data;
using System.Data.OleDb;

internal sealed class DataLayer
{
 private DataSet dataSetData;
 public DataLayer()
 {
 LoadDataToDataSet();
 }

 public DataSet DataSetData
 {
 get { return dataSetData; }
 }

 private void LoadDataToDataSet()
 {
 string connStr = @"Provider=Microsoft.Jet.OLEDB.4.0;Persist Security
Info=False;
 Data Source=[User folder]\\Samples14\\Data\\Reels.mdb";
 string productSql = "SELECT * From Product";

 dataSetData = new DataSet();
 OleDbConnection conn = new OleDbConnection(connStr);
 OleDbCommand cmd = new OleDbCommand(productSql, conn);
 OleDbDataAdapter adapter = new OleDbDataAdapter();
 adapter.SelectCommand = cmd;
 adapter.Fill(dataSetData, "Products");
 }
}

Note: The DataSetDataSource sample provides context on how to create the DataLayer class, used in the
code below. The DataSetDataSource sample can be downloaded from GitHub. See the sample description
here.

12. Double-click the title bar of the Windows Form to create an event-handling method for the Form_Load event and
add the following code to the handler.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

LoadReport()

Visual Basic.NET code. Paste INSIDE the class declaration of the form.

Dim WithEvents runtime As GrapeCity.ActiveReports.Document.PageDocument

ActiveReports 14 775

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/DataBinding/PageAndRDL

Private Sub LoadReport()
 Dim rptPath As New System.IO.FileInfo("..\..\YourReportName.rdlx")
 'Create a report definition that loads an existing report.
 Dim definition As New GrapeCity.ActiveReports.PageReport(rptPath)
 'Load the report definition into a new page document.
 runtime = New GrapeCity.ActiveReports.Document.PageDocument(definition)
 'Attach the runtime to an event. This line of code creates the event shell
below.
 Viewer1.LoadDocument(runtime)
End Sub

'ActiveReports raises this event when it cannot locate a report's data source in
the usual ways.
Private Sub runtime_LocateDataSource(ByVal sender As Object, ByVal args As
GrapeCity.ActiveReports.LocateDataSourceEventArgs) Handles Runtime.LocateDataSource
 Dim dl = New DataLayer
 args.Data = dl.DataSetData.Tables("Products")
End Sub

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

LoadReport();

C# code. Paste INSIDE the class declaration of the form.

private void LoadReport()

{
 System.IO.FileInfo rptPath = new
System.IO.FileInfo("..\\..\\YourReportName.rdlx");
 //Create a report definition that loads an existing report.
 GrapeCity.ActiveReports.PageReport definition = new
GrapeCity.ActiveReports.PageReport(rptPath);
 //Load the report definition into a new page document.
 GrapeCity.ActiveReports.Document.PageDocument runtime = new
GrapeCity.ActiveReports.Document.PageDocument(definition);
 //Attach the runtime to an event. This line of code creates the event shell
below.
 runtime.LocateDataSource += new
GrapeCity.ActiveReports.LocateDataSourceEventHandler(runtime_LocateDataSource);
 viewer1.LoadDocument(runtime);
}

//ActiveReports raises this event when it cannot locate a report's data source in
the usual ways.
private void runtime_LocateDataSource(object sender,

ActiveReports 14 776

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.LocateDataSourceEventArgs args)
{

 DataLayer dl = new DataLayer();
 args.Data = dl.DataSetData.Tables["Products"];
}

Object Provider

Use the API to bind a report data source to a collection of objects. To bind the Object provider to a report, set up a report
definition and a page document, and attach the page document to a LocateDataSourceEventHandler. Create a public class
which sets up a property name to which the data field can bind.

The Object provider data source must have a dataset with the Query left blank and fields that correspond to the fields of
your Object provider data source. Add these fields manually in the DataSet Dialog under Fields.

When using the Object provider, always leave the report's ConnectionString blank because it uses the LocateDataSource
event to bind to an Object. Set the Query to one of these values:

To use the Object Provider

These steps assume that you have already added a Page Report template and placed a Viewer control on a Windows
Form in your Visual Studio project. See Quick Start and Windows Forms Viewer for further information.

1. In the Report Explorer, go to the DataSources node and right-click to select Add Data Source.
2. In the Report Data Source dialog that appears, set Type to ObjectProvider and close the dialog. A data source

node appears in the ReportExplorer.
3. Right-click the data source node and in the DataSet dialog that appears select the Fields page.
4. In the Fields page, add a field like =Fields!name.Value and click ok to close the dialog. A node with the field

name appears under the dataset name.
5. From the Visual Studio toolbox ActiveReports 14 Page Report tab, drag a Table data region onto the design surface

of the report.
6. From the ReportExplorer, add the newly added field onto a cell in the detail row of the Table.
7. Save the report as DogReport.rdlx.
8. In the Solution Explorer, right-click the Form and select View Code to open the Code View.
9. In the Code View of the form, paste the following code inside the class declaration.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the class declaration of the form.

' Create a class from which to call a property.
Public Class dog
 Private _name As String
 Public Property name() As String
 Get
 Return _name
 End Get
 Set(ByVal value As String)
 _name = Value
 End Set
 End Property
End Class

ActiveReports 14 777

Copyright © 2020 GrapeCity, Inc. All rights reserved.

' Create an array to contain the data.
Dim dogArray As System.Collections.ArrayList
' Create a method to populate the data array.
Private Sub LoadData()
 dogArray = New System.Collections.ArrayList()
 Dim dog1 As New dog()
 dog1.name = "border collie"
 dogArray.Add(dog1)
 dog1 = New dog()
 dog1.name = "cocker spaniel"
 dogArray.Add(dog1)
 dog1 = New dog()
 dog1.name = "golden retriever"
 dogArray.Add(dog1)
 dog1 = New dog()
 dog1.name = "shar pei"
 dogArray.Add(dog1)
End Sub

To write the code in C#

C# code. Paste INSIDE the class declaration of the form.

// Create a class from which to call a property.
public class dog
{
 private string _name;
 public string name
 {
 get { return _name; }
 set { _name = value; }
 }
}
// Create an array to contain the data.
System.Collections.ArrayList dogArray;
// Create a method to populate the data array.
private void LoadData()
{
 dogArray = new System.Collections.ArrayList();
 dog dog1 = new dog();
 dog1.name = "border collie";
 dogArray.Add(dog1);
 dog1 = new dog();
 dog1.name = "cocker spaniel";
 dogArray.Add(dog1);
 dog1 = new dog();
 dog1.name = "golden retriever";
 dogArray.Add(dog1);

ActiveReports 14 778

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 dog1 = new dog();
 dog1.name = "shar pei";
 dogArray.Add(dog1);
}

10. Set up the report and add a handler for the LocateDataSource event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 ' Create file info with a path to the report in your project.
 Dim fi As New System.IO.FileInfo("..\\..\\DogReport.rdlx")
 ' Create a report definition using the file info.
 Dim repDef As New GrapeCity.ActiveReports.PageReport(fi)
 ' Create a page document using the report definition.
 Dim runt As New GrapeCity.ActiveReports.Document.PageDocument(repDef)
 ' Create a LocateDataSource event for the runtime.
 AddHandler runt.LocateDataSource, AddressOf runt_LocateDataSource
 ' Display the report in the viewer. The title can be any text.
 Viewer1.LoadDocument(runt)
End Sub

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

private void Form1_Load(object sender, EventArgs e)
{
 // Create file info with a path to the report in your project.
 System.IO.FileInfo fi = new System.IO.FileInfo("..\\..\\DogReport.rdlx");
 // Create a report definition using the file info.
 GrapeCity.ActiveReports.PageReport repDef = new
GrapeCity.ActiveReports.PageReport(fi);
 // Create a page document using the report definition.
 GrapeCity.ActiveReports.Document.PageDocument runt = new
GrapeCity.ActiveReports.Document.PageDocument(repDef);
 // Create a LocateDataSource event for the runtime.
 runt.LocateDataSource += new
GrapeCity.ActiveReports.LocateDataSourceEventHandler(runt_LocateDataSource);
 // Display the report in the viewer. The title can be any text.
 viewer1.LoadDocument(runt);
}

11. Use the LocateDataSource event to load data from the object.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the class declaration of the form.

ActiveReports 14 779

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Private Sub runt_LocateDataSource(ByVal sender As Object, ByVal args As
GrapeCity.ActiveReports.LocateDataSourceEventArgs)
 If dogArray Is Nothing Then LoadData()
 args.Data = dogArray
End Sub

To write the code in C#

C# code. Paste INSIDE the class declaration of the form.

void runt_LocateDataSource(object sender,
GrapeCity.ActiveReports.LocateDataSourceEventArgs args)
{
 if (dogArray == null)
 {
 LoadData();
 }
 args.Data = dogArray;
}

12. Press F5 to run the application.

Use Dynamically Built JSON Data Source
JSON Data Provider supports dynamically built data sources. You can enter a connection string for the JSON data as an
expression and pass values using parameters to set up data sources dynamically.

Steps to set up dynamically built data source are as follows:

Note:

JSON data source used is available at http://jsonplaceholder.typicode.com/comments/.
JSON schema for the above Json data is generated using http://jsonschema.net.

 Create a Page Report

1. Open ActiveReport Report Designer application.
2. From the File menu, select New.
3. In the Create New Report dialog box that appears, select Page Report template and then click OK.

Add a Parameter
4. In the Report Explorer, right-click the Parameters node and select Add Parameters option.
5. In the Report - Parameters dialog that appears, rename the parameter as UserId, and then click OK.

Add a Data Source
6. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data Source

from the add button.
7. In the Report Data Source dialog that appears, select the General page and enter the name of the data source. By

default, the data source name is set to DataSource1. This name appears as a child node to the Data Sources node in
the Report Explorer.

8. Under Type, select JSON Provider.

ActiveReports 14 780

Copyright © 2020 GrapeCity, Inc. All rights reserved.

http://jsonplaceholder.typicode.com/comments/
https://jsonschema.net/login

9. In the Content tab, select Expression.
10. In the Expression field, enter an expression like the following:

="jsondoc=http://jsonplaceholder.typicode.com/comments/" & Parameters!UserId.Value &
";schemadata=
{ ""$schema"": ""http://json-schema.org/draft-04/schema#"", ""type"": ""object"",
""properties"": { ""postId"": { ""type"": ""integer"" },
 ""id"": { ""type"": ""integer"" },
 ""name"": { ""type"": ""string"" },
 ""email"": { ""type"": ""string"" },
 ""body"": { ""type"": ""string"" } },
 ""required"": [""postId"", ""id"", ""name"", ""email"",
""body""] }}"

Add a Data Set
11. In the Report Explorer, right-click the data source node (DataSource1 by default) and select the Add Data Set option

or select Data Set... from the Add button.
12. In the DataSet Dialog that appears, select the General page and enter the name of the dataset.
13. On the Query page of this dialog, select Command Type as Text and enter Query as $.
14. On the Fields page, enter the Field name and value pairs as

Name: postId; Value: postId
Name: email; Value: email
Name: name; Value: name
Name: body; Value: body

15. Click OK.

Create layout for the Report
16. Drop controls from Toolbox onto the report designer surface.
17. Set the Value of each control to a data set field.

Preview the Report
18. Click the Preview tab.
19. Enter the UserId parameter and click View report.

Report Controls
Learn to perform common tasks with ActiveReports with quick how-to topics.

In this section

Work with Map
Learn how to work with layers and data in a Map control.

Work with Images
Learn how to add an embedded image, data visualizer, web image, or data base image.

Add Table Of Contents
Learn how to use the TableOfContents control to create an organized hierarchy.

Merge Cells in a Data Region
Learn how to merge cells in Table and Tablix data regions.

Add Totals and Subtotals in a Data Region
Learn how to set totals and subtotals in all the data regions with illustrative examples.

Set Fixed Size of a Data Region

ActiveReports 14 781

Copyright © 2020 GrapeCity, Inc. All rights reserved.

http://json-schema.org/draft-04/schema

Learn how to set the FixedSize property of a Data Region using the resize handler and the Properties window.

Work with Map
Learn using Map data region in Page Reports and RDL Reports.

In this section

Create a Map
Learn how to add and create a Map in a Report.

Add Data
Learn how to add and work with data in a Map control.

Work with Layers
Learn how to use different layers to display different data on a Map data region.

Create a Map

The Map data region shows your business data against a geographical background. This topic illustrates how to create a
Map and modify its appearance.

These steps assume that you have added a page layout template to your project and have a data connection in place. See
Quick Start and Connect to a Data Source for further information.

To add a map to the report
1. From the Visual Studio toolbox, drag a Map control onto the design surface.

2. In the Select a Map Template wizard that appears, select a map template from the following options:

ActiveReports 14 782

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Empty map: An empty map without any predefined data.
USA map: A map with the predefined polygon layer that contains the embedded spatial data with the USA
map.
From ESRI file: Select from your local .shp file, the shapefile spatial data format that complies with the
Environmental Systems Research Institute, Inc. (ESRI). An ESRI Shapefile is a collection of files, where a .shp
file defines the geographical or geometrical shapes and the .dbf file provides attributes for the shapes in the
.shp file. To successfully add spatial data using this option, both files (.shp and .dbf) must be copied to the
same folder. ESRI files are available on public domain data sources on the Web, including government and
university sites. For more information, go to https://www.census.gov/geographies/mapping-files/time-
series/geo/tiger-geodatabase-file.html.

To modify the appearance of the map
1. On the design surface, select the Map control and click the Property dialog link in the command section that

appears below the properties window.

2. In the Map dialog that appears, on the General page, enter "Map" in the Name textbox. You can also make
modifications in properties that control the smoothing mode of all map elements (Antialiasing and Antialiasing
quality).

3. On the Visibility page of the dialog, you can setup the visibility mode of the map.

4. On the Appearance page of the dialog, you can make modifications to the border width, style, color and
background color.

5. On the Data Output page of the dialog, choose from Auto, Yes or No to decide whether to include this map in
the XML output. Also, if you choose to include this map in the XML output, then in Element Name, enter a name
to be used in the XML output for this map. Choosing Auto will include the map in the XML output.

6. Click OK to close the dialog.

To add a legend to the map
A legend on a map provides valuable information to users for interpreting the map data visualization rules such as color,
size, and marker type differences for map elements on a layer. By default, a single Legend item already exists in the
legends collection which can be used by all layers to display items. You can also create additional legends to use them
individually with layers that have associated rules to display items in the legend. Use these steps to learn adding and
setting a legend on a map:

ActiveReports 14 783

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html

1. On the design surface, select the Map control.
2. In the Properties window, click the Legends (Collection) property and then click the ellipsis (...) button that

appears.

3. In the LegendDesigner Collection Editor that appears, click Add under the Members list of legends. Legend1
with the default legend settings appears in the Members list.

4. With Legend1 selected in the Members list of legends, you can make modifications to its font, border and
background color settings.

5. Click OK to close the dialog.

Note: You can associate the newly added legend to a layer by specifying its name in the Legend Name field
that appears in the Legend tab on a specific rule page of a Layer dialog. See, Use Color Rule, Marker Rule and
Size Rule for more information.

To add a title to the map
Map Title describes the theme or subject of the map. The purpose of map title is to tell the viewer of what he is looking at.
Use these steps to learn adding a title on a map control.

1. On the design surface, select the Map control.
2. In the Properties window, click the Titles (Collection) property and then click the ellipsis (...) button that appears.

3. In the MapTitleDesigner Collection Editor that appears, in the Members list of titles, Title with the default
property settings already exist.

4. In the Properties Window, you can modify the text, font, border and the background color settings of the map
title.

5. Click OK to close the dialog.

To set the distance scale
A distance scale helps a user to understand the scale of the map. Distance on a map is not the same as the actual real-
world distance, so a distance scale shows that a certain distance on the map equals a certain distance in a real-world. In

ActiveReports 14 784

Copyright © 2020 GrapeCity, Inc. All rights reserved.

distance scale, the distance is displayed in both miles and kilometers. The scale range and values are automatically
calculated using the viewport boundaries, projection type, and zoom level. Use these steps to learn setting a distance
scale on a map:

1. On the design surface, select the Map control.
2. In the Properties window, click the DistanceScale property and then click the ellipsis (...) button that appears.

3. In the Map Distance Scale dialog that appears, on the General page, you can set the location and the color of the
distance scale.

4. On the Appearance page of the dialog, you can make modifications to the border width, style, color and
background color.

5. On the Font page of the dialog, you can make modifications to the font properties of the distance scale.
6. On the Visibility page of the dialog, you can setup the visibility mode of the distance scale.
7. On the Navigation page of the dialog, you can setup the interactivity features for the distance scale.
8. Click OK to close the dialog.

To set the color scale
A color scale helps a user to understand the range of colors that are used for data visualization on a layer. A map has just
one color scale and multiple layers can provide data for it. Use these steps to learn setting a color scale on a map.

1. On the design surface, select the Map control.
2. In the Properties window, click the ColorScale property and then click the ellipsis (...) button that appears.

3. In the Map Color Scale dialog that appears, on the General page, you can set the location and the color of
the color scale.

4. On the Labels page of the dialog, you can make modifications to the properties of the color scale labels.

ActiveReports 14 785

Copyright © 2020 GrapeCity, Inc. All rights reserved.

5. On the Title page of the dialog, you can make modifications to title text and font properties of the color scale.
6. On to the Appearance page, you can make modifications to the border width, style, color and background color.
7. On the Font page, you can make modifications to the font properties of the color scale.

8. On the Visibility page, you can setup the visibility mode of the color scale.

9. On the Navigation page, you can setup the interactivity features for the color scale.

10. Click OK to close the dialog.

To modify the appearance of the Viewport
Viewport refers to the area on the map where map data is displayed against a geographical background. It specifies the
coordinates, projection system, parallels and meridians, center point, and scale of the map. In other words, it is a map
element that actually display geographical data and occupies most area of the map control depending on the location
and dock position of other map elements. See Map for more information.

You can modify Viewport properties to make the map look more attractive.

1. On the design surface, select the Map control.
2. Go to the Properties window, click the Viewport property and then click the ellipsis (...) button that appears.

3. In the Map Viewport dialog that appears, on the General page, choose the Coordinate system. The map
viewport supports the following two coordinate system:

Geographic: Specifies Earth coordinates by defining longitude and latitude values. If you set the
CoordinateSystem property to Geographic, then you must specify the Projection property. A projection is a
set of rules on how to locate three-dimensional objects onto a planar surface.
Planar: Specifies geometric coordinates on a two-dimensional surface by using X and Y values. and in case
you set it to Geographic then set the Projection.

4. Go to the Meridians page, set its visibility and its line and font style and color.
5. Similarly, go to the Parallels page, set its visibility and its line and font style and color.
6. On the View page of the dialog, choose a Center and Zoom mode. The map viewport supports the following four

center and zoom modes:
Custom: Choose this option to specify custom values for the view center and the zoom level.
Center map to show a map layer: Choose this option to specify a layer and automatically, center the view
on its map data. For example, center the view on LineLayer1.
Center map to show a map element: Choose this option to center the view on a specific data bound map
element. For example, center the view on the map element where the name of the match field is
[StateName] and the match value is "Washington".
Center map to show all map elements: Choose this option to center the view on all map elements in the

ActiveReports 14 786

Copyright © 2020 GrapeCity, Inc. All rights reserved.

layer.

Note: Zoom and View Center level can also be set from the design surface using the zoom slider and arrow
keys that appears in the View Pane of the Map control.

7. On the Appearance page, set the Border and Background style and color of the viewport.

8. Click OK to close the dialog.

Add Data
The Map data region uses the following two types of data:

Spatial Data
Spatial data is a set of coordinates that defines a map element. Each map layer must have spatial data of one of the
following types - a polygon, a line, or a point.

Spatial data can be either embedded in a map or can be linked to a map layer. The only difference between the two is that
while having the spatial data embedded in a map, there is no separate file to locate or to keep track of when you move
the report between projects or machines.

Embedded Spatial Data:

Embedded spatial data can refer to the following:

Embedded ESRI shapefile or dataset: When you use the Embedded option in Map Layer Data
Properties dialog or the From ESRI file option in the Map Wizard to import spatial data from an ESRI
shapefile, the ESRI shapefile gets embedded in the Map. Similarly, if a report dataset is been used to provide
spatial data to a map layer, you always have an option of embedding that spatial data in the map using the
Embed Spatial Data option that appears in the layers pane. See, Use Layers to learn embedding spatial
data to a map.
Custom data: When you add an empty layer to a map and enter spatial data manually in the LayerDesigner
Collection Editor, the data entered gets embedded to the map automatically.

External Spatial Data:

External spatial data can refer to the following:

Remote or Local ESRI shapefile: When you use the Linked option in Map Layer Data Properties dialog or
use the File property in the Properties Window to specify the local or remote path/location of an ESRI
shapefile, the ESRI shapefile gets linked to the Map layer. However, it remains an external source as
the dependent ESRI shapefile needs to moved along with the report between projects or machines.
Report Dataset: When you use a report dataset to provide spatial data to a map layer and you don't embed
the spatial data, it remains an external source. This requires the dependent database file to moved along
with the report between projects or machines.

ActiveReports provide numerous ways to add spatial data to the map. You can either use the Map Wizard and add data
from an ESRI shapefile or use the Map Layer Data Properties dialog for using advance options. You can also add spatial
data from the Properties Window.

To add spatial data using Map Wizard

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.

ActiveReports 14 787

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the Select a Map Template wizard that appears, select From ESRI file.
3. In the Open dialog that appears, navigate to the folder that contains the .shp and .dbf files, select the .shp file, use

the Map Resolution slider to simplify vector data and click Open.

This option automatically imports the spatial data stored in the shapefile and adds a related layer to the map control.

To add spatial data using the Map Layer Data Properties dialog

The Map Layer Data Properties dialog provide the following advance options to add spatial data. For more information
on Map Layer Data Properties dialog, see Map.

Embedded : Use this option where you want to add spatial data from an ESRI file along with an additional
option of adding custom spatial data fields if required.

To add Spatial data from an ESRI file using the Embedded option

1. In the Map Layer Data Properties dialog, on the General page, select the Embedded option and click
the Browse button.

2. In the Open dialog that appears, navigate to the folder that contains the .shp and .dbf files.
3. Select the .shp file, use the Map Resolution slider to simplify vector data and click Open. The fields list

gets populated with spatial data fields that are added from the shapefile.
4. In Dataset, set the name of the dataset.
5. In the Fields list, click the Add (+) button to add a new empty spatial data field.
6. With the newly added spatial data field selected in the list, in Field name, enter the name of the field.
7. In Field type, set the field type of newly added spatial data field.
8. Click OK to close the dialog.

Note: In order to apply the new spatial data field on a layer, you must provide its value for each map layer
element like polygons, points or lines in the added map layer Designer Collection Editor dialog.

Linked : Use this option when you just want to add spatial data from an ESRI shapefile without any additional
modifications or additions .

To add Spatial data from an ESRI file using the Linked option

1. In the Map Layer Data Properties dialog, on the General page, select the Linked option and click the
Browse button.

2. In the Open dialog that appears, navigate to the folder that contains the .shp and .dbf files.
3. Select the .shp file and click Open.
4. Click OK to close the dialog.

Dataset : Use this option when you have a dataset that stores a spatial data field to provide spatial data to the

ActiveReports 14 788

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Map. You can directly use the data fields from the dataset to display data on a map layer without setting the
match fields for analytical data. Therefore, it also provides you an additional option of having different dataset
for analytical data and spatial data respectively.

To add Spatial data from a Dataset

1. In the Map Layer Data Properties dialog, on the General page, select the Dataset option.
2. In Dataset, set the name of the dataset.
3. In Field name, enter the data field name that contains the spatial data.

Caution:

Simply type the name of the dataset field that contains spatial data. For example,
enter value as StateName, not as =[StateName].
You cannot use the MapPoint() function in parameters.

4. Click OK to close the dialog.

Note:

MapPoint() function is supported for Point layer only.
Simple (non spatial) data can also be added as Spatial field using MapPoint() expression as
 =MapPoint(<Latitude>, <Longitude>) from Expression Editor.

Analytical : Use this option when you want to use the spatial data field from the same dataset that you may
use for adding Analytical data to the layer. For using this option you need to first set the dataset for analytical
data and then use the spatial data field from the dataset to provide spatial data to the map layer.

To add spatial data from Analytical data

1. Configure Analytical data for the Map control. See the dropdown section below to learn adding
Analytical data.

Note: Once the Analytical data has been set, the Analytical option on the General page of the Map
Layer Data Properties dialog becomes active.

2. In the Map Layer Data Properties dialog, on the General page, select the Analytical option.
3. In Field name, enter the data field name that contains the spatial data.

Caution: In Field name, enter the data field name as =[StateName], not as StateName.

4. Click OK to close the dialog.

To add spatial data using Properties Window

These steps assume that you have a Map control containing at least one map data layer placed on the design surface. To
learn how to add a layer to the Map control, see Use Layers.

1. With the Map control selected, go to the Properties window, click the Layers (Collection) property and then click
the ellipsis button that appears.

2. In the LayerDesigner Collection Editor that appears, under Members, select the map data layer you want to use
and expand the SpatialData property.

ActiveReports 14 789

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. In Type, choose the spatial data source of the layer from the following supported options:
Embedded: Use this option when you want to add custom spatial data to the map data layer. This can be
done by first adding the spatial data fields for the embedded spatial data using the
MapFieldDefinitionDesigner Collection Editor which can be accessed through the FieldDefinitions property.
And then later adding spatial data (points, polygons or lines) using the PolygonDesigner Collection Editor,
PointsDesigner Collection Editor or LineDesigner Collection Editor depending on the layer in use. These
Editor dialogs can be accessed using the SpatialData > Polygons, SpatialData > Points or SpatialData >
Lines property.
File: Use this option when you want to add spatial data from an ESRI file. Use the Source property to specify
the location of the shapefile.

Note: The specified location must contain the shape format (.shp) and attribute format (.dbf) files.

DataSet: Use this option when you have a dataset that stores a spatial data field to provide spatial data to
the Map. This option is equivalent to the DataSet option in the Map Layer Data Properties dialog. Use the
SpatialData > DataSetName property to specify the name of the dataset and the SpatialData >
SpatialField property to specify the data field that contains spatial data.

Note:

MapPoint() function is supported for Point layer only.
Simple (non spatial) data can also be added as Spatial field using MapPoint() expression as
 =MapPoint(<Latitude>, <Longitude>) from Expression Editor.

Caution: You cannot use the MapPoint() function in parameters.

DataRegion: Use this option when you have a dataset that stores a spatial data field to provide spatial data
to the Map. This option is equivalent to the Analytical option in the Map Layer Data Properties
dialog. Use the LayerData > DataSetName property to specify the name of the dataset and the
SpatialData > VectorData property to specify the data field or expression that contains spatial data.

4. Click OK to close the dialog.

Analytical Data
Analytical data is the data that you want to visualize on the map, for example, tourist attractions in a city or product sales
by region. For analytical data, you can associate it with map elements by indicating match fields in the Match box of the
Map Layer Data Properties dialog. You can use one or more fields in the Match box of the Map Layer Data Properties
dialog; for each spatial data field you must indicate a unique analytical data field. This data is optional.

You can get analytical data from the following types of data sources.

Dataset field: A field from a dataset.
Spatial data source field: A field from the spatial data source. For example, you can often find that an ESRI
Shapefile contains both spatial and analytical data. Field names from the spatial data source are marked with the #
sign in the drop-down list of fields.
Embedded data for a map element: After you embed polygons, lines, or points in a report, you can select the

ActiveReports 14 790

Copyright © 2020 GrapeCity, Inc. All rights reserved.

data fields for map elements and define custom values.

To add Analytical Data to the Map control

Use the following steps to add analytical data to the map. These steps assume that you have added a page layout
template to your report and have a data connection in place. See Quick Start and Connect to a Data Source for further
information.

1. Add spatial data to the map control. See the dropdown sections above to learn adding spatial data to the map
control.

2. In the Map Layer Data Properties dialog, go to the Analytical data page.
3. Select the dataset that you want to use from the Dataset dropdown list and click the Add (+) button located next

to the Match field. This creates an empty match field expression and enables the Spatial and Analytical field
properties.

4. In the Spatial field and Analytical field options set data fields that contain same data in both Spatial and
Analytical databases. This builds the match field expression and relates analytical data to map elements on a map
layer.

Note: It is necessary to set match fields if you want to use a spatial data field from analytical data, or if you
want to visualize analytical data on the map layer. Match fields enable the report processor to build a
relationship between the analytical data and the spatial data.

5. Click OK to close the dialog.

Work with Layers
See step-by-step instructions for using map layers in a Map data region to display data.

In this section

Use Layers
Learn adding and removing layers, adding bookmarks and hyperlinks to map layer elements and embedding spatial
data on a map.

Use a Polygon Layer
Learn how to use a polygon layer to display data on a map.

Use a Point Layer
Learn how to use a point layer to display data on a map.

Use a Line Layer
Learn how to use a line layer to display data on a map.

Use a Tile Layer
Learn how to use a tile layer to display data on a map.

Use Color Rule, Marker Rule and Size Rule
Learn how to use Color, Marker and Size rules to modify appearance of the data displayed on a map.

Use Layers
A map is a collection of layers that display data on the map control. See, Map for more information.

This topic illustrates how to add, remove and change order of layers. It also shows how to add interactive navigational
feature to map layer elements.

ActiveReports 14 791

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add a map layer
To add a map layer from the design surface

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.
2. In the Select a Map Template wizard that appears, select a map template.
3. Click the Map until the map panes appear.
4. Right click inside the area labeled "Right click to add the new layer." and select the map layer you want to use.

To add a map layer using the LayerDesigner Collection Editor

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.
2. In the Select a Map Template wizard that appears, select a map template.
3. With the Map control selected, go to the Properties window, click the Layers (Collection) property and then click

the ellipsis button that appears.
4. In the LayerDesigner Collection Editor that appears, use the Add combo-box to view the list of available layers

and select the map layer you want to use.

To delete a map layer
To delete a map layer from the design surface

1. On the design surface, click the map until the map panes appear.
2. In the layers pane, right click the layer you want to remove and select Delete.

To delete a map layer using the LayerDesigner Collection Editor

1. On the design surface, with the Map control selected, go to the Properties window, click the Layers (Collection)
property and then click the ellipsis button that appears.

2. In the LayerDesigner Collection Editor that appears, under the members list, select the map layer you want to
delete and click the Remove button.

To change order of layers
Map layers are rendered from left to right in the order that they appear in the map panes. In the image below, the
polygon layer is drawn first and the line layer is rendered last. Layers that are rendered later might hide map elements on
layers that are rendered earlier. You can change rendering order of layers added to the map control using the
LayerDesigner Collection Editor. Follow these to steps learn re-ordering the layers on a map.

1. On the design surface, with the Map control selected, go to the Properties window.
2. In the Properties Window, click the Layers (Collection) property and then click the ellipsis button that appears.
3. In the LayerDesigner Collection Editor that appears, under the members list, select the map layer you want to

reorder and use the up or down arrow to change the rendering order of each layer.
4. Click OK to close the Collection Editor.

To embed layer spatial data or tiles in a map
When you embed map elements or map tiles in a report, the spatial data is stored in the report definition.

ActiveReports 14 792

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Click the map until the map panes appear.
2. In the layers pane, right click the added layer that contains spatial data, select Embed Spatial Data and then select

All Spatial Data or Currently Visible Data. In case of Tile layer select Embed Tiles.

Note: All Spatial Data refers to all the spatial data fields, while Currently Visible Data refers to the spatial
data field that is set in the Field property.

To add Hyperlinks, Bookmarks and drill-through links
Map layer elements like point, polygon and line provides you a functionality to set interactive navigational features like a
bookmark link to jump to other areas in the same report, a hyperlink to jump to a Web address, or a drill-through link to
jump to another report. Follow these steps to learn adding hyperlinks, bookmarks and drill-through links to a layer
element:

1. On the design surface, click the map until the map panes appear.
2. In the layers pane, right click the layer in use and select Edit.
3. In the selected layer's dialog that appears, go to the Navigation page.
4. On the Navigation page, select from the following actions to perform when a user clicks a data layer element :

None: The default behavior to indicate that the item has no action.
Jump to report: For drill-through reporting, select this option and provide the name of a local report, the
relative path of a report in another folder, or the full path of a report on another server.

Parameters: Supply parameters to the targeted report by entering the Name of each parameter,
the Value to send to the targeted report, or whether to Omit the parameter. Note that
parameter names you supply must exactly match parameters in the target report. You can
remove or change the order of parameters using the X and arrow buttons.

For detailed steps on adding a drill-through link, see Set a Drill-Through Link.

Jump to bookmark: Select this option and provide a valid Bookmark ID to allow the user to jump
to another report control with the same Bookmark ID.
For more information on adding bookmarks, see Add Bookmarks.

Jump to URL: Select this option and provide a valid URL to create a hyperlink to a Web page.
For more information on adding hyperlinks, see Add Hyperlinks.

5. Click OK to close the dialog.

Use a Polygon Layer
A Polygon layer display outlines of areas or site boundaries that can be linked to Locations and can be used to select
records that fall within the boundary for reporting usage.

Use the following steps for creating a basic map using the Polygon layer. These steps assume that you have added a page
layout template to your project and have a data connection in place. See Quick Start and Connect to a Data Source for
further information.

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.
2. In the Select a Map Template wizard that appears, select the New Map template.
3. Click the map until the map panes appear.
4. Right click inside the area labeled "Right click to add the new layer." and select Add Polygon Layer. This adds a

polygon layer to the map and opens the Map Layer Data Properties dialog.

ActiveReports 14 793

Copyright © 2020 GrapeCity, Inc. All rights reserved.

5. In the Map Layer Data Properties dialog that appears, on the General page, import the spatial data (polygons)
from a shape file or use a data field from the analytical data to specify the spatial data source.

6. In case you want to visualize analytical data on the map, go to the Analytical data page of the dialog, select your
dataset from the Dataset dropdown list and click the Add (+) button located next to the Match field. This creates
an empty match field expression and enables the Spatial and Analytical field properties. See, Add Data for
more information.

7. In the Spatial field and Analytical field options set data fields that contain similar data in both Spatial and
Analytical databases. This builds the match field expression and relates analytical data to map elements on a
polygon layer.

Note: It is necessary to set match fields if you want to use a spatial data field from analytical data, or if you
want to visualize analytical data on the map layer. Match fields enable the report processor to build a
relationship between the analytical data and the spatial data.

8. Go to the Filters page and set filters if any.
9. Click OK to close the dialog.

10. In the layers pane, right click on PolygonLayer1 and select Edit to open Map Polygon Layer dialog.

11. In the General page of the dialog, select any data field from the Label Text combo box to display as labels inside
polygons at run time.

12. Go to the Color Rule page of the dialog, to set rules to visualize data using color pallets, color ranges or custom
colors for polygons or polygon center points that gets displayed on the map or keep it set to the default "Use
Appearance settings". See, Use Color Rule, Marker Rule and Size Rule for more information.

13. Go to the Visibility page of the dialog and make sure the layer visibility is set to Show. You can also select
options to show or hide layer based on any expression or zoom value.

14. In the Navigation page of the dialog, you can optionally link the polygon to a URL, bookmark or a report.
15. The Appearance page of the dialog either reflects the default appearance of the polygons or the color rule

settings if any.
16. In the Font page of the dialog, you can optionally set the font family, size, weight, style, set and color for the label

text that you had set in the General page of the dialog.
17. Go to the Data Output page and specify the Data Element Name of the layer to be used while rendering to XML

and also specify whether the layer should be included in output while rendering or not.
18. Click OK to close the dialog and go to the preview tab to view the map.

Use a Point Layer
A Point layer displays markers for point locations such as a city or an address for a store, restaurant, or school.

Use the following steps for creating a basic map using the Point layer. These steps assume that you have added a page

ActiveReports 14 794

Copyright © 2020 GrapeCity, Inc. All rights reserved.

layout template to your project and have a data connection in place. See Quick Start and Connect to a Data Source for
further information.

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.
2. In the Select a Map Template wizard that appears, select the New Map template.
3. Click the map until the map panes appear.
4. Right click inside the area labeled "Right click to add the new layer." and add either a Tile layer or a Polygon layer.

One of these layers that you add serves as the geographic base to plot points on. See, Use a Polygon Layer or Use a
Tile Layer for steps to add these layers on a Map control.

5. Right click again inside the area labeled "Right click to add the new layer." and select Add Point Layer. This adds a
point layer to the map and opens the Map Layer Data Properties dialog.

6. In the Map Layer Data Properties dialog that appears, on the General page, import the spatial data (points) from
a shape file or use a data field from the analytical data to specify the spatial data source.

7. In case you want to visualize analytical data on the map, go to the Analytical data page of the dialog, select your
dataset from the Dataset dropdown list and click the Add (+) button located next to the Match field. This makes
the Spatial field and Analytical field options active. See, Add Data for more information.

8. In the Spatial field and Analytical field options set data fields that contain similar data in both Spatial and
Analytical databases. Match fields are used to relate the spatial data with the analytical data.

Note: It is necessary to set match fields if you want to use a data field from the analytical data to set spatial
data for the layer, or if you want to visualize analytical data on the map.

9. Go to the Filters page and set filters if any.
10. Click OK to close the dialog and return to design surface.
11. In the layers pane, right click on PointLayer1 and select Edit to open Map Point Layer dialog.

12. In the General page of the dialog, select any data field from the Label Text dropdown list to display as label for
each point that gets displayed on the map at run time. You can also set the label placement, size and marker type.

13. Go to the Marker Rule page to set rules to visualize data using markers or keep it set to "Use default marker type".
14. Go to the Size Rule page to set rules to visualize data using different marker sizes or keep it set to "Use default

marker size". See, Use Color Rule, Marker Rule and Size Rule for more information.
15. Go to the Color Rule page to set rules to visualize data using color pallets, color ranges or custom colors for

markers that gets displayed on the map or keep it set to "Use Appearance settings".
16. Go to the Visibility page of the dialog and make sure the layer visibility is set to Show. You can also select

options to show or hide layer based on any expression or zoom value.
17. In the Navigation page of the dialog, you can optionally link the layer to a URL, bookmark or a report.
18. The Appearance page of the dialog either reflects the default appearance of the polygons or the color rule

settings if any.
19. In the Font page of the dialog, you can optionally set the font family, size, weight, style, set and color for the label

ActiveReports 14 795

Copyright © 2020 GrapeCity, Inc. All rights reserved.

text that you had set in the General page of the dialog.
20. Go to the Data Output page and specify the Data Element Name of the layer to be used while rendering to XML

and also specify whether the layer should be included in output while rendering or not.
21. Click OK to close the dialog and go to the preview tab to view the map.

Use a Line Layer
A Line layer displays routes and paths between different locations, for example, transportation route between two stores.

Use the following steps for creating a basic map using the Line layer. These steps assume that you have added a page
layout template to your project and have a data connection in place. See Quick Start and Connect to a Data Source for
further information.

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.
2. In the Select a Map Template wizard that appears, select the New Map template.
3. Click the map until the map panes appear.
4. Right click inside the area labeled "Right click to add the new layer." and add either a Tile layer or a Polygon layer.

One of these layers that you add serves as the geographic base to plot lines on. See, Use a Polygon Layer or Use a
Tile Layer for steps to add these layers on a Map control.

5. Right click again inside the area labeled "Right click to add the new layer." and select Add Line Layer. This adds
a Line layer to the map and opens the Map Layer Data Properties dialog.

6. In the Map Layer Data Properties dialog that appears, on the General page, import the spatial data (lines) from a
shape file or use a data field from the analytical data to specify the spatial data source.

7. In case you want to visualize analytical data on the map, go to the Analytical data page of the dialog, select your
dataset from the Dataset dropdown list and click the Add (+) button located next to the Match field. This makes
the Spatial field and Analytical field options active. See, Add Data for more information.

8. In the Spatial field and Analytical field options set data fields that contain similar data in both Spatial and
Analytical databases. Match fields are used to relate the spatial data with the analytical data.

Note: It is necessary to set match fields if you want to use a data field from the analytical data to set spatial
data for the layer, or if you want to visualize analytical data on the map.

9. Go to the Filters page and set filters if any.
10. Click OK to close the dialog and return to design surface.
11. In the layers pane, right click on LineLayer1 and select Edit to open Map Line Layer dialog.

12. In the General page of the dialog, select any data field from the Label Text dropdown list to display as label for
each line that gets displayed on the map at run time. You can also set the label placement.

13. Go to the Color Rule page to set rules to visualize data using color pallets, color ranges or custom colors for lines

ActiveReports 14 796

Copyright © 2020 GrapeCity, Inc. All rights reserved.

that gets displayed on the map or keep it set to "Use Appearance settings". See, Use Color Rule, Marker Rule and
Size Rule for more information.

14. Go to the Size Rule page to set rules to visualize data using line width or keep it set to the default line width.
15. Go to the Visibility page of the dialog and make sure the layer visibility is set to Show. You can also select

options to show or hide layer based on any expression or zoom value.
16. In the Navigation page of the dialog, you can optionally link the layer to a URL, bookmark or a report.
17. Go to the Appearance page of the dialog and set the style, width and color of the layer border and the

layer background.
18. In the Font page of the dialog, you can optionally set the font family, size, weight, style, set and color for the label

text that you had set in the General page of the dialog.
19. Go to the Data Output page and specify the Data Element Name of the layer to be used while rendering to XML

and also specify whether the layer should be included in output while rendering or not.
20. Click OK to close the dialog and go to the preview tab to view the map.

Use a Tile Layer
A Tile layer displays the virtual earth tile background on the map.

Use the following steps for creating a basic map using the Tile layer. These steps assume that you have added a page layout template to your
report and have a data connection in place. See Quick Start and Connect to a Data Source for further information.

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.
2. In the Select a Map Template wizard that appears, select the New Map template.
3. Click the map until the map panes appear.
4. Right click inside the area labeled "Right click to add the new layer." and select Add Tile Layer. This adds a tile layer to the map and

opens the Map Tile Properties dialog.

5. In the Map Tile Properties dialog that appears, on the General page, set the layer name and choose its Source and Type. The default
values in these fields also work fine.

6. In the Provider property, choose one from the following supported tile providers:
Bing: The Microsoft Bing Map server offers static map images. This requires an Application key for authentication. The default key
provided by ActiveReports is for demo purpose and can't be used by 3rd party applications. In order to obtain a Bing Map
Key, see HowTo - Create a Bing Map Account and HowTo - Get a Bing Map Key.

Note: After generating the key, add the following script in the Grapecity.ActiveReports.config file to configure
embedded Bing tile provider with Application key.

Script

Paste inside the <Configuration></Configuration> tags.

<MapTileServerConfiguration>
 <Timeout>5</Timeout>
 <AppID>"Your Application Key"</AppID>
</MapTileServerConfiguration>

Caution: The Grapecity.ActiveReports.config file should always be placed in the same folder as the EndUserDesigner.exe file

ActiveReports 14 797

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/creating-a-bing-maps-account?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/getting-a-bing-maps-key?redirectedfrom=MSDN

for displaying a Bing tile layer on a Map.

Google: The Google Map server creates your map tiles based on URL parameters sent through a standard HTTP request that
returns the map tiles as an image. It is necessary to set the API key in order to monitor usage of this tile server with the Google
API Console. Please register with Google to get the API key.

Note: After obtaining the key, add the following script in the Grapecity.ActiveReports.config file to configure
embedded Google tile provider with ApiKey.

Script

Paste inside the <Configuration></Configuration> tags.

<!-- Configure embedded Google tile provider with API Key -->
<MapTileProvider Name="Google" DisplayName="Google" >
 <Settings>
 <add key="ApiKey" value="API Key" />
 <add key="Timeout" value="5000" />
 </Settings>
</MapTileProvider>

CloudMade: The CloudMade tile server allows you to access it through the HTTP Tile API. The URL structure for this API is
straightforward, and is instantly recognizable to anyone familiar with the OpenStreetMap tile numbering convention. To use a
CloudMade Tile server you require an API key for authentication which can be obtained by registering at CloudMade.

Note: After generating the key, add the following script in the Grapecity.ActiveReports.config file to configure
embedded CloudMade tile provider with ApiKey.

Script

Paste inside the <Configuration></Configuration> tags.

<!-- Configure embedded CloudMade tile provider with ApiKey -->
<MapTileProvider Name="CloudMade" DisplayName="CloudMade Tiles Provider">
 <Settings>
 <add key="ApiKey" value="API Key" />
 </Settings>
</MapTileProvider>

MapQuest: The MapQuest tile server provides the tiles in a format similar to Google. This tile server requires an API Key for
authentication which can be obtained by registering at MapQuest.

Note: After generating the key, add the following script in the Grapecity.ActiveReports.config file to configure embedded
MapQuest tile provider with ApiKey.

Script

Paste inside the <Configuration></Configuration> tags.

<!-- Configure embedded MapQuest tile provider with ApiKey -->
<MapTileProvider Name="MapQuest" DisplayName="Map Quest Tiles Provider">
 <Settings>
 <add key="ApiKey" value="API Key" />
 <add key="Timeout" value="3000" />
 </Settings>
</MapTileProvider>

OpenStreetMap: The OpenStreetMap server provides the tiles in an index based format. This tile server provides only the
roadmap and returns fixed size images (256x256). Before using the OpenStreetMap server, go through the Copyright and License
and Tile usage policy pages.

7. Go to the Visibility page of the dialog and make sure the layer visibility is set to Show. You can also select options to show or hide layer
based on any expression or zoom value.

ActiveReports 14 798

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://developers.google.com/maps/documentation
https://wiki.openstreetmap.org/wiki/API
https://cloudmade.com/
https://developer.mapquest.com/
https://www.openstreetmap.org/copyright
https://operations.osmfoundation.org/policies/tiles/

8. Click OK to close the dialog and go to the preview tab to view the map.

Note: If you are using proxy server connection to see the map tile images, you need to set credentials for the proxy server in the
application config file for authentication. To use your default proxy server credentials, you can do the following:

For Visual Studio Designer (IDE)

1. Find devenv.exe.config (the devenv.exe configuration file) in: Program Files (x86)\Microsoft Visual
Studio\2017\Professional\Common7\IDE

2. In the configuration file, find the <system.net> block, and add this code:

Paste inside the <system.net></system.net> tags.

<defaultProxy useDefaultCredentials="true" />

For Visual Studio Application

1. On the menu bar, choose Project, Add New Item and then choose the Application Configuration File template.
2. In the Name text box, enter a name, and then click Add button.
3. In the configuration file, add this code:

Paste inside the <configuration></configuration> tags.

<system.net>
<defaultProxy useDefaultCredentials="true" />
</system.net>

Note: Grapecity.ActiveReports.config file should be kept inside the project Debug folder and added to a Visual Studio project for
displaying a Tile layer on a Map in any Viewer control.

Add a Custom Tile Provider
You can add and configure a Custom Tile Provider in the Map control using the
GrapeCity.ActiveReports.Extensibility.Rendering.Components.Map.IMapTileProvider
and GrapeCity.ActiveReports.Extensibility.Rendering.Components.Map.IMapTile interfaces.

The IMapTileProvider interface contains detailed settings that are required to communicate with the tile server, whereas
the IMapTile interface represents a single tile of a Map's tile layer that fetches the tile image based on the configurations in
the IMapTileProvider interface.

Adding a custom tile provider also requires making some modifications in the Grapecity.ActiveReports.config file. Follow these
steps to learn how to set a custom tile provider:

1. Create a Class Library Project, for example MyClassLib, in Visual Studio.
2. Add a new Class to the project and name the class, for example, MyTileProvider. You may add functions and features

to this class for getting the Tile images based on your tile server settings and details. This class serves as the interface
between your Map control and your custom tile server. Replace the existing code with the following in the
MyTileProvider class to implement the IMapTileProvider interface.

To write the code in Visual Basic.NET

VB code. Paste on TOP

Imports System
Imports System.Collections.Specialized
Imports GrapeCity.ActiveReports.Extensibility.Rendering.Components.Map

VB code. Paste BELOW the Imports statements

Namespace MyClassLib

ActiveReports 14 799

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Public Class MyTileProvider Implements IMapTileProvider
 ' Tile provider settings, like ApiKey, Language, Style and etc.
 Public Property Settings() As NameValueCollection
 ' Add your code here.
 End Property
 ' Get instance of tile by specifying tile coordinates and details.
 Public Sub GetTile(key As MapTileKey, success As Action(Of IMapTile),
 [error] As Action(Of Exception))
 ' Add your code here.
 End Sub
 End Class

End Namespace

To write the code in C#

C# code. Paste on TOP

using System;
using System.Collections.Specialized;
using GrapeCity.ActiveReports.Extensibility.Rendering.Components.Map;

C# code. Paste BELOW the Using statements

namespace MyClassLib
{
 public Class MyTileProvider :IMapTileProvider
 {// Tile provider settings, like ApiKey, Language, Style and etc.
 public NameValueCollection Settings { get; private set;}
 // Get instance of tile by specifying tile coordinates and details.
 public void GetTile(MapTileKey key, Action<IMapTile> success, Action<Exception>
error);
 // Add your code here.
 }
}

3. Add a new Class to the project and name the class, for example, MyMapTile. Replace the existing code with the
following in the MyMapTile class to implement the IMapTile interface.

To write the code in Visual Basic.NET

VB code. Paste on TOP

Imports System.IO
Imports GrapeCity.ActiveReports.Extensibility.Rendering.Components.Map

VB code. Paste BELOW the Imports statements

Namespace MyClassLib
 Public Class MyMapTile Implements IMapTile
 ' Gets the tile identifier
 Public Property Id() As MapTileKey
 ' Add your code here

ActiveReports 14 800

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 End Property
 ' Gets the tile image stream.
 Public Property Image() As Stream
 ' Add your code here.
 End Property
 End Class
End Namespace

To write the code in C#

C# code. Paste on TOP

using System.IO;
using GrapeCity.ActiveReports.Extensibility.Rendering.Components.Map;

C# code. Paste BELOW the Using statements

namespace MyClassLib
 public class MyMapTile : IMapTile
 { // Gets the tile identifier.
 public MapTileKey Id { get; private set; }
 // Gets the tile image stream.
 public Stream Image { get; private set; }
 // Add your code here.
 }
}

4. Add another Class to the project and name the class, for example, WebRequestHelper. Replace the existing code with
the following in the WebRequestHelper class to implement the loading of raw website data into the
System.IO.MemoryStream class.

To write the code in Visual Basic.NET

VB code. Paste on TOP

Imports System.IO
Imports System.Net

VB code. Paste BELOW the Imports statements

Namespace MyClassLib
 Module StringExtensions
 Public Sub CopyTo(ByVal input As Stream, ByVal output As Stream)
 'Add your code here
 End Sub
 Private Function InlineAssignHelper(Of T)(ByRef target As T, value As T) As T
 'Add your code here
 End Function
 End Module
 Friend NotInheritable Class WebRequestHelper
 Private Sub New()
 End Sub
 ' Load raw data into MemoryStream from specified Url.
 Public Shared Function DownloadData(url As String, timeoutMilliseconds As

ActiveReports 14 801

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Integer) As Stream
 'Add your code here
 End Function
 'Load raw data into MemoryStream from specified Url.
 Public Shared Sub DownloadDataAsync(url As String, timeoutMilliseconds As
Integer,
 success As Action(Of MemoryStream), [error] As Action(Of Exception))
 'Add your code here
 End Sub
 Private Shared Function InlineAssignHelper(Of T)(ByRef target As T, value As
T) As T
 'Add your code here
 End Function
 End Class
End Namespace

To write the code in C#

C# code. Paste on TOP

using System.IO;
using System.Net;

C# code. Paste BELOW the Using statements

namespace MyClassLib
{
 internal static class WebRequestHelper
 { // Load raw data into MemoryStream from specified Url.
 public static Stream DownloadData(string url, int timeoutMilliseconds)
 {//Add your code here }
 public static void DownloadDataAsync(string url, int timeoutMilliseconds,
 Action<MemoryStream> success, Action<Exception> error)
 {//Add your code here }
 public static void CopyTo(this Stream input, Stream output)
 {//Add your code here }
 }
}

5. Save and build your class library project and locate the new .dll file in its Bin>Debug folder. This file has the same
name as your class library project, with a .dll extension.

6. Create a Basic End User Designer in a new solution following the steps in Creating a Basic End User Designer.
7. Run your Basic End User Designer project to create a EndUserDesigner.exe in your projects Bin>Debug folder.
8. Copy the Grapecity.ActiveReports.config file from the C:\Program Files (x86)\GrapeCity\ActiveReports 14\ location and

paste it into your End User Designer project's Bin>Debug folder.

Caution: Grapecity.ActiveReports.config file should always be placed inside the same folder as the
EndUserDesigner.exe file for displaying a tile layer on a Map.

9. Right-click on the Grapecity.ActiveReports.config file and select Include in this Project to make changes in the config
file.

10. Double-click to open the Grapecity.ActiveReports.config file and paste the following code between the
<Configuration> and </Configuration> tags:

ActiveReports 14 802

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Paste between the <Configuration></Configuration> tags.

<!-- Register and configure custom tile provider. -->
<MapTileProvider Name="Custom" DisplayName="Custom Provider" type="YourTileProvider,
AssemblyName,
 Version = x.x.x.x">
 <Settings>
 <add key="ApiKey" value="API Key" />
 </Settings>
</MapTileProvider>

Note: Replace YourTileProvider with fully qualified class name and AssemblyName with the name of the
assembly created after implementing IMapTileProvider and IMapTile interfaces.

11. Add the Class Library project created in step 5 to your Basic End User Designer project.
12. Copy the YourProjectName.dll created in step 5 and paste it to the current project's Bin>Debug folder together with

the EndUserDesigner.exe.
13. Save and Run the project.
14. Create a Report containing a Map control in the Basic End User Designer. See Reports with Map for more information.
15. Add a Tile layer to the Map control. Right click the Tile layer and select Edit to view the custom tile provider added in

the Provider drop-down. See Use a Tile Layer for more information.

Use Color Rule, Marker Rule and Size Rule
You can visualize the data displayed on a map by setting rules to control color, size or marker type for all map elements
on a layer. You can set three types of rules depending on the type of layer in use.

Color Rule
Color Rule is set to fill colors for map elements like polygons, markers (points or polygon center points) and lines while
using a Polygon, Point or Line layer.
Color Rule provides four options:

1. Apply Appearance Settings : Use the default appearance settings that are set in the Appearance page of the map
layer dialog.

2. Visualize data by using color palette : This option uses an in-built palette that you specify. Based on related
analytical data, each map element is assigned a different color from the palette.

3. Visualize data by using color ranges : This option, combined with the start, middle, and end colors that you
specify on this page and the options that you specify on the Distribution page, divide the related analytical data
into ranges. The report then assigns the appropriate color to each map element based on its associated data and
the range that it falls into. For example, in a map which uses color to display temperatures on a scale of 0 to 100,
low values are blue to represent cold and high values are red to represent hot.

4. Visualize data by using custom colors : This option uses the list of custom colors that you specify. Based on
related analytical data, each map element is assigned a color from the list.

To set Color Rule for polygons, lines and markers

To visualize polygons, lines or markers using color palette

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.

ActiveReports 14 803

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. In the selected map layer dialog that appears, go to the Color Rule page.
4. In the Color Rule page, select the Visualize data by using color palette option.
5. In Data field, set the name of the field or expression that contains the analytical data that you want to visualize by

color.
6. In Palette, set the name of the palette to use.
7. Click OK to close the dialog.

To visualize polygons, lines or markers using color ranges

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the Color Rule page.
4. In the Color Rule page, select the Visualize data by using color ranges option.
5. In Data field, set the name of the field or expression that contains the analytical data that you want to visualize by

color.
6. In Start color, set the color to be used for the color range.
7. In Middle color, set the color to be used for the color range.
8. In End color, set the color to be used for the color range.
9. Click OK to close the dialog.

To visualize polygons, lines or markers using custom colors

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the Color Rule page.
4. In the Color Rule page, select the Visualize data by using custom colors option.
5. In Data field, set the name of the field that contains the analytical data that you want to visualize by color.
6. Click Add to specify each custom color.
7. Click OK to close the dialog.

Marker Rule
Marker Rule is set on markers that represent points or polygon center points on a map while using a Point layer.
Marker Rule support two options:

1. Use a default marker type : You specify one of the available marker types.
2. Visualize data using markers : This option uses a set of markers in an order in which you want them to be used.

Marker types include Rectangle, Circle, Diamond, Triangle, Trapezoid, Star, Wedge, Pentagon, PushPin and Image.

To set Marker Rule for points

To visualize points using default marker type

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the Marker Rule page.
4. In Default, set a default marker type that will appear in place of each point on a map.
5. Click OK to close the dialog.

To visualize points using specific marker types

1. Click the Map until the map panes appear.

ActiveReports 14 804

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the Marker Rule page.
4. In the Marker Rule page, select the Visualize data using markers option.
5. In Data field, set the name of the field that contains the analytical data that you want to visualize using different

marker types.
6. Click Add and specify each Marker type in an order in which you want them to be used.
7. Click OK to close the dialog.

To visualize points using Image as marker type

ActiveReports provides Image as one of the many available marker types to use from. You can set this marker type
and use any image as a marker on a map layer. Like other marker types, you can either use it as a default marker or use it
as one of the member in the markers collection.

Use Image as Default marker type

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, on the General page, set Marker Type to Image. A new set of

properties appears on the page.
4. In Image Source, choose the source of image from the provided options:

External: Select this option and set a path or url of the image file in Image Value.
Embedded: Choose from the list of embedded images added to your report. Once you set this option, the
Image Value provides you the list of embedded images to choose from.
Database: Select this option and set the data field containing the image in the Image Value property.

5. In MIME Type, set the MIME type of the image chosen. In case you are using the Embedded image source the
MIME Type gets set automatically as you select the image in the Image Value property.

6. Set the Transparent Color and the Resize Mode.
7. Click OK to close the dialog.

Use Image in markers collection

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the Marker Rule page.
4. In the Marker Rule page, select the Visualize data using markers option.
5. In Data field, set the name of the field that contains the analytical data that you want to visualize using different

marker types.
6. Click Add and set Marker type to Image. A new set of properties for image marker types appears on the page.
7. In Image Source, choose the source of image from the provided options:

External: Select this option and set a path or url of the image file in Image Value.
Embedded: Choose from the list of embedded images added to your report. Once you set this option, the
Image Value provides you the list of embedded images to choose from.
Database: Select this option and set the data field containing the image in the Image Value property.

8. In MIME Type, set the MIME type of the image chosen. In case you are using the Embedded image source the
MIME Type gets set automatically as you select the image in the Image Value property.

9. Set the Transparent Color and the Resize Mode.
10. Click OK to close the dialog.

Size Rule
Size Rule is set on markers, polygon center points or line width while using a Polygon, Point or a Line layer.

ActiveReports 14 805

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Size Rule support two options:

1. Use a default marker size or Use a default line width : You specify the marker size or line width in points.
2. Visualize data by using size or Visualize data by using line width : In this option, you set the

minimum (start) and maximum (end) sizes or width for marker or line, specify the data field to be used for varying
the marker size or line width and then specify the distribution options to apply to that data.

To set Size Rule for markers and line width

To visualize marker or line using default marker size or line width

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the Size Rule page.
4. In Default, set default size or width for each marker or line that appears on a map.
5. Click OK to close the dialog.

To visualize marker or line using specific marker size or line width

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the Size Rule page.
4. In the Size Rule page, select Visualize data by using size or Visualize data by using line width depending on the

layer type in use.
5. In Data field, set the name of the field that contains the analytical data that you want to visualize using different

marker sizes or line width.
6. Set Start size and End size in case of Point Layer or Minimum line width and Maximum line width in case of

Line Layer.
7. Click OK to close the dialog.

Distribution Options
The distribution values are used by the rules to differ the map element display values.

To create a distribution of values, you divide your data into ranges by specifying the distribution method, the number of
sub-ranges, and the range start and end values.

To set distribution values for rules

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the rule page(Color Rule, Marker Rule or Size Rule) where you

need to specify distribution values.
4. In the rule page of the dialog, select any option to visualize data using the selected rule type and go to the

Distribution tab.
5. On the Distribution tab, select one of the following distribution types:

EqualInterval : Create ranges that divide the data into equal range intervals. For the example, the three
ranges would be 0-2999, 3000-5999, 6000-8999. Sub-range 1: 1, 10, 200, 500. Sub-range 2: 4777. Sub-range
3: 8999.
EqualDistribution : Create ranges that divide that data so that each range has an equal number of items.
For example, the three ranges would be 0-10, 11-500, 501-8999. Sub-range 1: 1, 10. Sub-range 2: 200, 500.
Sub-range 3: 4777, 8999.
Optimal : Specifies ranges that automatically adjust distribution to create balanced sub-ranges. The number

ActiveReports 14 806

Copyright © 2020 GrapeCity, Inc. All rights reserved.

of Sub-ranges is determined by the algorithm.
Custom : Specify your own number of ranges to control the distribution of values. For example, you can
specify your own custom ranges 0-5000 and 5001-10000.

6. In Number of Sub-ranges, type the number of sub-ranges to use.
7. In Range start, type a minimum range value. All values less than this number are the same as the range minimum.
8. In Range end, type a maximum range value. All values larger than this number are the same as the range

maximum.
9. Click OK to close the dialog.

Displaying Rule results in Legend
To display rule results in Legend

1. Click the Map until the map panes appear.
2. In the layers pane, right click on the added map layer and select Edit to open the selected map layer dialog.
3. In the selected map layer dialog that appears, go to the rule page(Color Rule, Marker Rule or Size Rule) where you

need to specify displaying rule results in a legend.
4. In the rule page of the dialog, select any option to visualize data using the selected rule type and go to the Legend

tab.
5. Select Show in legend checkbox and set Legend name.
6. In Legend text, enter text that specify which data should appear in the legend. Use map keywords and custom

formats to help control the format of legend text. For example, #VALUE {C2} specifies a currency format with two
decimal places. Following are the supported formats that you can use:

Format Description Example

#Value Displays a numeric
value calculated using
"(EndRangeValue -
StartRangeValue)/2"
formula.

#FROMVALUE {C0} Displays the currency of
the total value with no
decimal places.

$100

#FROMVALUE {C2} Displays the currency of
the total value to two
decimal places.

$40.25

#TOVALUE Displays the actual
numeric value of the
data field.

100

#FROMVALUE{N0} - #TOVALUE{N0} Displays the actual
numeric values of the
beginning of the range
and end of the range.

10 - 500

7. Click OK to close the dialog.

Work with Images

ActiveReports 14 807

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Image report control displays an image that you embed in a report, add to a Visual Studio project, store in a database
and access through a URL. You can choose an Image Source in the Properties window after you place the Image report
control on a report.

To embed an image in your report
The benefit of using an embedded image is that there is no separate image file to locate or keep track of when you move
the report between projects. The drawback of using embedded images is that when you use large images, it increases the
size of your report.

1. In the Report menu, select Embedded Images.
2. Click under the Image column to reveal an ellipsis button (...) and select an image file from your local files. The

Name and MimeType columns are filled in automatically and the image is stored in the report definition.
3. With the Image report control selected, in the Properties grid, set the Source property to Embedded.
4. In the Value property, select the embedded image from the drop-down list box.

To add a data visualizer image to your report
You can use a data visualizer to display data in small graphs that are easy to comprehend.

1. With the Image report control selected, in the Properties grid, drop down the Value property and select <Data
Visualizer...>.

2. In the Data Visualizers dialog that appears, select the Visualizer Type that you want to use, Icon Set, Range Bar, or
Data Bar.

3. Use expressions related to your data to set the other values in the dialog.

To store an image in your Visual Studio project.
You may have an image that you want to use in multiple reports, for example a logo. In such cases, you can store your
image as a project image. This not only allows you to quickly locate the correct image for new reports in the project, but
also makes it easier when you update your logo, as you will not need to search through every report to replace embedded
images. Another benefit is that the images are distributed with your application.

1. From the Project menu, select Add Existing Item and navigate to the image file that you want to add to the
project.

2. With the Image report control selected, in the Properties grid, set the Source property to External.
3. In the Value property, select project image from the drop-down list box.

To use a database image in an Image report control
Product catalogues are probably the most common scenario in which images stored in a database are used in reports.
Place the Image report control in a data region to use database images that repeat for every row of data.

Note:

You cannot use database images in Page Headers and Page Footers because these sections cannot use the
value expressions that refer to fields.
Microsoft Access database images are generally stored as OLE objects which the Image report control cannot
read.

ActiveReports 14 808

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. With the Image report control selected, in the Properties grid, set the Source property to Database.
2. In the Value property, select the field containing the image.

To use a Web image
You can also use any image to which you can navigate via a URL. The advantage of using web images is that images
stored in this way add nothing to the file size of the project or of the report, but the drawback is that if the web based
image is moved, it will no longer show up in your report.

1. With the Image report control selected, in the Properties grid, set the Source property to External.
2. In the Value property, enter the URL for the image.

Add TableOfContents
The Table of Contents control allows you to display the document map, an organized hierarchy of the report bookmark
labels and heading levels along with their page numbers, in the body of a report.

To add items to the Document Map using HeadingLevel Property
You can define an hierarchical structure for your report using the HeadingLevel property of the TextBox control. For
example, you can set the HeadingLevel property of the TextBox displaying the report title to Heading1 and then set the
HeadingLevel property of the TextBox displaying a group header to Heading2, this will club all the Heading2 entries
under the Heading1 entry in the Document Map.

These steps assume that you have already set the HeadingLevel property of the TextBox controls that your report
contains. See, Add Items to the Document Map for more information.

1. In the Report Explorer, right-click the Report item and select Report Properties...
2. In the Report Properties dialog that appears, go to the Document Map page.
3. On the Document Map page, set Source to Headings Only and optionally select the Numbering Style from the

dropdown list.

Tip: You can also set Source to Labels and Headings to include both labels and headings in the Document
Map.

4. Click OK to close the dialog.

To add items to the Document Map using Label Property or Document
Map Labels
By setting the Label property or Document Map Label of the controls in your page report/RDL report, you can show a
hierarchical structure based on the parent - child relationship between the controls in the Document Map. For
example, set the Label property or Document Map Label of a List data region and a TextBox control and then place the
TextBox control inside the List data region. When you view the Document Map, the TextBox label appears nested inside
the List data region label, thereby displaying a hierarchical structure. Similarly, if you set a Document map label on
multiple Groups of a data region, they appear nested below each other in the document map displaying the same
hierarchy in which they were set.

These steps assume that you have already set the Label property or Document Map Label of the controls that your
report contains. See, Add Items to the Document Map for more information.

ActiveReports 14 809

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the Report Explorer, right-click the control and select Report Properties...
2. In the Report Properties dialog that appears, go to the Document Map page.
3. In the Document Map page, set Source to Labels Only and optionally select the Numbering Style from the

dropdown list.

Tip: You can also set Source to Labels and Headings to include both labels and headings in the Document
Map.

4. Click OK to close the dialog.

To add items to the Document Map
1. On the design surface, select a control you want to add to the Document map.
2. In the command section of the Properties Window, click the Property dialog. This is a command to open the

control's dialog. See Properties Window for more information on how to access commands.
3. In the dialog that appears, go to the Navigation page and under the Document map label, enter a text or an

expression representing the control in the Document map.
4. Click OK to close the dialog.

To add and configure TableOfContents
Follow these steps to setup the TableOfContents control in the report layout displaying the document map set in the
procedures above.

To add a TableOfContents control in Page Report

1. In the Report designer, click the New tab to add a new page to the report layout.
2. From the toolbox, drag and drop the TableOfContents control onto Page 1 while use Page 2 to create layout for

displaying the main content of the report. Using the same page that contains the TableOfContents may disrupt the
flow of data displayed in the report.

3. On the design surface, select the TableOfContents control and go to the Properties window to set its FixedHeight
property. The use of the FixedHeight property is similar to the use of the FixedSize property that is available with
other report controls.

Note: You can also place the Overflow Place Holder control and link it with the TableOfContents control using
its OverflowName property to display data that does not fit inside the fixed size of the TableOfContents
control.

4. With the TableOfContents control selected, click the Levels (Collection) property and then click the ellipsis button
that appears.

5. In the LevelDesigner Collection Editor that appears, consider the hierarchy of entries that appear in the
Document Map and add as many levels required using the Add button. This allows you to customize entries at
different nested levels. Using just a single Level will list down all the TableOfContents entries at the same level. You
can also set various numbering styles for all levels or an individual level by setting the Numbering Style for
document map levels using the Report dialog or using the DocumentMap property that gets directly applied to
the TableOfContents control. For more information see Add Items to the Document Map.

6. Select each level and set its related properties available in the LevelDesigner Collection Editor. These properties
could be general properties like DisplayPageNumber or DisplayFillCharacter, or they could be related to the level's
appearance like BackgroundColor, Font, Padding etc. These properties directly affect all the entries that appear in
the selected level, thereby allowing you to customize them. For information on the important properties of the
TableOfContents control, see Table of Contents.

ActiveReports 14 810

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Click OK to close the dialog and return to the design surface.
8. Go to the Preview Tab to view the Table of Contents appear in the report output.
9. Click any TableOfContents entry and navigate to the targeted report control in the report.

To add a TableOfContents control in Report Definition Language (RDL)

1. From the toolbox, drag and drop the TableOfContents control onto the report design surface, preferably at the
start or end of the report layout to justify the significance of the control.

To configure TableOfContents Appearance
1. With the TableOfContents control selected, click the Levels (Collection) property and then click the ellipsis button

that appears.
2. In the LevelDesigner Collection Editor that appears, consider the hierarchy of entries that appear in the

Document Map and add as many levels required using the Add button. This allows you to customize entries at
different nested levels. Using just a single Level will list down all the TableOfContents entries at the same level.

3. Select each level and set its related properties available in the LevelDesigner Collection Editor. These properties
could be general properties like DisplayPageNumber or DisplayFillCharacter, or they could be related to the level's
appearance like BackgroundColor, Font, Padding etc. These properties directly affect all the entries that appear in
the selected level, thereby allowing you to customize them. For information on the important properties of the
TableOfContents control, see Table of Contents.

Note: You can also set various numbering styles for all levels or individual level by setting the Numbering
Style for document map levels using the Report dialog or using the DocumentMap property that gets
directly applied to the TableOfContents control. For more information see Add Items to the Document Map.

4. Click OK to close the dialog and return to the design surface.
5. Go to the Preview Tab to view the Table of Contents appear in the report output.
6. Click any TableOfContents entry and navigate to that targeted report control in the report.

To apply styles to the TableOfContents control
In the TableOfContents control, styles can be applied using the StyleName property.

1. Create a new style sheet and add styles that you want to apply to the TableOfContents control. For more
information on creating style sheets and style types, see Working with Styles and Style Elements.

2. Apply the style sheet to the report. For details on how to apply style sheets to reports at design time, see Working
with Styles.

3. From the toolbox, drag and drop the TableOfContents control onto the report design surface, preferably at the
start or end of the report layout to justify the significance of the control.

4. On the design surface, select the TableOfContents control.
5. In the Properties Window, from the StyleName property drop-down, select a style to apply to the TableOfContents

control.

To apply styles to the TableOfContents levels
In the TableOfContents control, styles can be applied to each TableOfContents level using the StyleName property
available in the LevelDesigner Collection Editor dialog.

1. Create a new style sheet and add styles that you want to apply for the TableOfContents level. For more information
on creating style sheets and and the type of styles available for TableOfContents level, see Working with Styles and

ActiveReports 14 811

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Style Elements.
2. From the toolbox, drag and drop the TableOfContents control onto the report design surface, preferably at the

start or end of the report layout to justify the significance of the control.
3. With the TableOfContents control selected, click the Levels (Collection) property from the Properties window and

then click the ellipsis button that appears.
4. In the LevelDesigner Collection Edior dialog that appears, select a TableOfContents level on which to want to

apply the style.
5. From the list of properties on the right, drop-down the StyleName property to select a style to apply.

Merge Cells in a Data Region
Merging data in Table or Tablix data regions is a common scenario. ActiveReports 14 provides
AutoMergeMode property that consists of Always, Never, and Restricted values. The detail cells with same data values
and with AutoMergeMode property set to:

Always - are merged.
Never - are not merged.
Restricted - are merged only if the corresponding cells in previous columns are similarly merged. If for example,
cells in Column 2 (with same data values) are set 'Restricted' and the corresponding cells (with same data values) in
previous column, that is Column 1, are set 'Never', then cells in Column 2 are not merged.

The reports using AutoMerge in older versions can be opened correctly in ActiveReports 14, and new reports with
AutoMergeMode are correctly opened in previous ActiveReports versions.

The following steps take you through how to add automatic merge to the cells in Table and Tablix data regions.

These steps assume that you have already added a Page Report/RDL Report template to your project, connected it to a
data source and added a dataset. See Quick Start, Connect to a Data Source and Add a Dataset for more information.

Note: This topic uses the Orders table in the NWind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

ActiveReports 14 812

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To apply merge in Table cells

1. From the toolbox, drag a Table data region onto the report design surface.
2. Select the Table and set the BorderStyle property to Solid.
3. In the Table, select the following TextBoxes and from the Fields Selection Adorner, set their Values as follows.

TextBox Value

TextBox4 OrderID

TextBox5 ShipName

TextBox6 EmployeeID

4. Select TextBox6 and set AutoMergeMode property to Restricted. This merges employee ids depending on
whether the corresponding ship names (cells in previous column) are merged.

5. Select TextBox5 and set AutoMergeMode property to Always. This merges the cells with similar ship names.
6. Set the BorderStyle property of Header row and Detail row to Solid to view the merged cells clearly.

To merge cells in Tablix (outside row group)

1. From the toolbox, drag a Tablix data region onto the report design surface.
2. Select the Tablix and set the BorderStyle property to Solid.
3. Right-click Textbox4, select Insert Column, and then select Outside Group - Right.

ActiveReports 14 813

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. In the Tablix, select the following TextBoxes and set their Values as follows.

TextBox Value

TextBox3 OrderID

TextBox4 ShipName

TextBox6 EmployeeID

5. Select TextBox6 and set AutoMergeMode property to Restricted. This merges employee ids depending on
whether the corresponding ship names (cells in previous column) are merged.

6. Select TextBox4 and set AutoMergeMode property to Always. This merges the cells with similar ship names.
7. Select the Row Group area and set the BorderStyle property to Solid to view the merged cells clearly.

Add Totals and Subtotals in a Data Region
You can add subtotals and grand totals in a data region to add meaning to the data it displays.

Use the steps below to learn how to set subtotals and totals in each data region. These steps assume that you have
already added a Page Report/RDL Report template and connected it to a data source. See Quick Start, Connect to a Data
Source and Add a Dataset for more information.

Note: This topic uses examples from the tables in the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.

To add Totals and Subtotals in a Table
To add a subtotals to a table group

1. From the Visual Studio toolbox, drag and drop a Table data region onto the design surface.
2. From the Report Explorer, drag a numeric field (like InStock) onto the detail row of the Table. This is the field for

which you want to display subtotals.
3. Follow the steps below to add groups to the Table data region.

Click inside the Table to reveal the row and column handles along the left and top edges.
Right-click in the row handles along the left edge of the table and select Insert Group.
In the Groups dialog that appears, set a Group on expression (like StorePrice) on which you want to group
the data.
Click the OK button to close the dialog and add the group. A new pair of rows for group header and footer
appear on the Table.

4. From the Report Explorer, drag and drop the numeric field (like InStock) you added to the detail row in step 2, onto
the GroupFooter row.

5. Double click the textbox containing the field you just dropped onto the GroupFooter row and add a Sum function
to its expression to calculate the total [for example, =Sum(Fields!InStock.Value)].

6. Go to the Preview Tab to see the subtotals appearing below each group of data in the Table.

ActiveReports 14 814

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To add a grand total to a table

1. Drag the numeric field (like InStock) you used to set subtotals on in the procedure above onto the Table Footer
row.

2. Double click the textbox containing the field you just dropped onto the Table Footer row and add a Sum function
to its expression to calculate the total [for example, =Sum(Fields!InStock.Value)].

3. Go to the Preview Tab and notice that at the end of the table, the Textbox from the Table Footer row supplies the
grand total.

To add Totals and Subtotals in a List
To add a subtotals to a list

1. From the Visual Studio toolbox, drag and drop a List data region onto the design surface.
2. From the Report Explorer, drag and drop a numeric field (like Price) onto the List data region.
3. Double click the textbox containing the field you just dropped and add a Sum function to its expression to

calculate the total [for example, =Sum([Price] * [Quantity])].

ActiveReports 14 815

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: If you preview the report at this point, you will notice that the field renders the grand total for the
dataset after each sales amount.

4. Follow the steps below to add detail grouping to the List data region.
Right-click the list and select Properties.
In the Detail Grouping page, select a Group on expression (like AccountNumber) on which you want to
group the data.
Click the OK button to close the dialog and apply grouping.

5. Go to the Preview Tab to view the report, you can see a subtotal on price for each account number.

To add a grand total to a list

1. Drag the numeric field that shows subtotals in your list (like Price) just below the List data region.
2. Double click the textbox containing the field you just dropped and add a Sum function to its expression to

calculate the grand total [for example, =Sum([Price] * [Quantity], "List1")].
3. Go to the Preview Tab and notice that below the List there is a Textbox that supplies the grand total.

To add Totals and Subtotals in a BandedList

ActiveReports 14 816

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add a subtotal to a banded list

1. From the Visual Studio toolbox, drag and drop a Banded List data region onto the design surface.
2. From the Report Explorer, drag a numeric field (Like InStock) onto the detail band of the banded list.
3. Follow the steps below to add groups to the BandedList data region.

Right-click the BandedList and select Insert Group.
In the Groups dialog that appears, select a Group on expression (like StorePrice) on which you want to
group the data.
Click the OK button to close the dialog and add a group. A new pair of group bands appear on the data
region.

4. From the Report Explorer, the numeric field (like InStock) you added to the detail band in step 2, onto the
GroupFooter band.

5. Double click the textbox containing the field you just dropped and add a Sum function to its expression to
calculate the subtotal[for example, =Sum(Fields!InStock.Value)].

6. Go to the Preview Tab to view the report to see the subtotals appearing below each group of data in the
BandedList.

To add a grand total to a banded list

1. Drag the numeric field (like InStock) you used to set subtotals on in the procedure above onto the
BandedListFooter band.

2. Double click the textbox containing the field you just dropped onto the BandedListFooter band and add a Sum
function to its expression to calculate the total [for example, =Sum(Fields!InStock.Value)].

3. Go to Preview Tab and notice that at the end of the BandedList, the Textbox from the BandedListFooter band
supplies the grand total.

ActiveReports 14 817

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add Totals and Subtotals in a Tablix

Note: In this example, we are using the StoreSalesbyYear table from the Reels database.

To add a subtotal to a Tablix group

1. From the Visual Studio toolbox, drag and drop a Tablix data region onto the design surface.
2. Drag and drop the StoreName field from the Report Explorer to the row group area (bottom left corner) of the

Tablix data region. This is the row header, and dragging a field into it automatically adds a row group.
3. Drag and drop the SaleYear field from the Report Explorer to the column group area (top right corner) of the

Tablix data region. This is the column header, and dragging a field into it automatically adds a column
group. Modify the SaleDate field expression to =[SaleDate].Year to provide yearly data.

4. Drag and drop the TotalSales field from the Report Explorer to the body area (bottom right corner) of the Tablix
data region. This will automatically set expression of the cell to =Sum(Fields!TotalSales.Value).

5. Right-click the column group area, select Add Total, and then click After. A new column appears to the right with
the text Total. This displays the subtotals for each row group.

6. Right-click the row group area, select Add Total, and then click After. A new row appears at the bottom with the
text Total. This displays the subtotals for each column group.

7. Go to the Preview tab to view the subtotals for each year.

ActiveReports 14 818

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add a grand total to a Tablix

1. The row and columns subtotals set in the previous procedure, intersect at the rightmost cell of the Tablix that
contains the grand total of the combined sales amount for years 2004 and 2005 in all the stores.

2. Go to the Preview tab to view the result.

Set Fixed Size of a Data Region
FixedSize property of a Page Report is used to set the exact height or width (or both) that the data region will occupy at
run time. Using this property, you can control the number of records that are displayed on each page.

In case there are more records to display than what FixedSize can accommodate, the remaining records get displayed on
the next page. However, in case there is an OverflowPlaceHolder control bound to a data region on the same page, the
remaining records are displayed at the location where the OverflowPlaceHolder control is placed. When you link a data
region to an OverflowPlaceHolder, this control gets its Size property value from the Size of the data region it is linked
with. However, it is also possible to change the Size (Height and Width) property values of OverflowPlaceHolder control
based on the requirement of your Page Report.

Caution: The Size of an OverflowPlaceHolder cannot be changed to a value which is less than the Size of a data
region it is linked with.

The significance of the FixedHeight and FixedWidth property depends on the data region that is being used. For
example, in case of Table data region, only the FixedHeight property holds importance as the Table control always
grows vertically to accommodate excessive data, while in case of Tablix data region both FixedHeight and FixedWidth
properties are important as the control expands both vertically and horizontally to fit excessive data.

The table below show the data regions that contains the FixedSize property and their support for FixedHeight and
FixedWidth properties:

Data Region Supported Property

ActiveReports 14 819

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Table FixedHeight

Tablix FixedHeight and FixedWidth both

List FixedHeight

BandedList FixedHeight

To set the FixedSize Property
You can use the Properties Window to set the FixedHeight and FixedWidth properties of a data region manually, or use
the resize handlers that appears around the data region to set the FixedSize.

Follow these steps to set FixedSize through the Properties window:

1. From the Visual Studio toolbox, drag and drop a data region like List or a Table control onto the design surface.
2. On the design surface, click the data region to select it and go to the Properties Window.
3. In the Properties Window, locate and expand the FixedSize property node to assign values for the Height and

Width.

Follow these steps to set FixedSize using the resize handlers:

1. From the Visual Studio toolbox, drag and drop a data region like List or a Table control onto the design surface.
Notice the resize handlers that appear around the data region.

2. Use mouse to drag the resize handlers to set the FixedSize area of a data region.

Manage Data
See step-by-step instructions for performing data related operations in Page Reports and RDL Reports.

In this section

ActiveReports 14 820

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Group Data
Learn how to group data to organize data in reports

Sort Data
Learn how to apply sorting on a data region, grouped data or fixed range

Set Detail Grouping In Sparklines
Learn how to apply detail grouping to sparklines to visualize data clearly

Set Filters
Learn how to filter data using parameters in a query

Group Data
In a page report and RDL report, you can set grouping to organize data in your reports. The most common grouping
scenario is to create groups by fields or expressions in a data region.
Depending on the data region you select, you can group data in one of the following ways:

In a Table or Banded List, you can add group header and footer rows. You can also set detail grouping in the Table
data region.
In a List, you can set detail grouping.
In a Tablix, you can add columns and rows either dynamically or manually to group data.
In a Classic Chart , you can group data by categories or series.

To group in a data region

Detail Grouping is useful when you do not want to repeat values within the data on display in the report.

1. From the Visual Studio toolbox, drag and drop a Table data region onto the design surface.
2. With the Table selected on the report, under the Properties Window, click the Property dialog link to open the

Table dialog > Detail Grouping page.
3. In the Detail Grouping page, under Group on enter the expression on which you want to group the data. For e.g.,

=Fields!YearReleased.Value

Note: A default group name like Table1_Detail_Group1 appears under Name, until you set the grouping
expression under Group On, after which you can modify the group name.

4. Under the Document map label, you can optionally set a label to add the item to the document map.
See Document Map for further information.

5. Under Parent group, you can optionally set the parent group for a recursive hierarchy.
6. Click OK to close the dialog.

ActiveReports 14 821

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Drag and drop fields onto the Table data region and go to the preview tab to see grouped data.

Tip: You can filter, set page breaks or set visibility for your grouped data in the other tabs of the Table-Detail
Grouping page.

To group in a FixedPage

In a Page Report, you can group your data on the fixed page. A group set on the fixed page, applies to the entire report
including the controls within the report. Therefore, once you set grouping here, you may decide not to group individual
data regions.

Use the following steps to understand grouping on a fixed page. These steps assume that you have already added a Page
Report template, connected it to a data source and created a dataset. See Quick Start and Connect to a Data Source for
further information.

Note: This topic uses the Movie table in the Reels database. By default, the Reels.mdb file is located in [User
Documents folder]\GrapeCity Samples\ActiveReports 14\Data folder.

1. Right-click the gray area outside the design surface and select Fixed Layout Settings or with the fixed page
selected, under the Properties Window, click the Property dialog link to open the FixedPage dialog.

2. On the Grouping page, in the General tab, under Group on enter the field name or expression on which you want
to group the data. For example, =Fields!YearReleased.Value.

Note: A default group name like FixedPage1_Group appears under Name, once you set the group. To modify
the group name, add a field name or expression under Group on to enable the Name option and enter a new
name.

3. Under the Document map label field, you can optionally set a label to add the item to the document map.
4. Click OK to close the dialog.
5. Drag and drop a data region, like a Table onto the design surface and set data inside its cells.
6. Go to the Preview Tab to view the result. You'll notice that the data appears in groups sorted according the

YearReleased field on each report page.

ActiveReports 14 822

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Detail Grouping

Detail grouping is available in the List and Table data regions. It is useful when you do not want to repeat values within
the details. When you set detail grouping, the value repeats for each distinct result of the grouping expression instead of
each row of data.

For example, if you use the Movie table of the Reels database to display movie titles by year without setting detail
grouping, you see each year as many times as there are movies from that year.

If you set detail grouping to =Fields!YearReleased.Value, each year appears only once.

Note: If the detail grouping expression you use results in a value that is distinct for every row of data, MovieID for
example, you will see no difference in the results.

Recursive Hierarchies

If you want to display parent-child relationships in your data, you can create a recursive hierarchy. To do this, you need a
unique ID field for the child group and an ID field for the parent group.

For example, if you have pulled data from the Reels database using the following SQL query:

SQL Query

SELECT EmployeePosition.*, Employee.*, Employee_1.PositionID AS ManagerPosition FROM
Employee AS Employee_1 RIGHT JOIN (EmployeePosition INNER JOIN Employee ON

ActiveReports 14 823

Copyright © 2020 GrapeCity, Inc. All rights reserved.

EmployeePosition.PositionID = Employee.PositionID) ON Employee_1.EmployeeID =
Employee.ManagementID;

You can set Detail Grouping in a Table data region using the
=Fields.Item("EmployeePosition.PositionID").Value field, and the =Fields!ManagerPosition.Value
field as the parent group to display parent-child relationships in your data.

Note: You can use only one group expression when you set a parent group.

Level Function

To better visualize data in a recursive hierarchy, you can use the Level function. This function indents text and further
clarifies the relationships between parent and child data. To do this, you set an expression in the Padding - Left property
of the text box you want to indent.

For example, in a Table data region, for the recursive hierarchy example above, you can set the following expression in the
Padding - Left property of the text box that contains the Title to indent values according to levels:

=Convert.ToString(2 + (Level()*10)) & "pt"

Set Detail Grouping In Sparklines
Applying detail grouping to a sparkline helps to visualize data clearly – the sparkline value is displayed as a set of
sparklines grouped by a detail grouping value. The following steps take you through how to show trends in analyzed data
when detail grouping is set with Sparklines.

These steps assume that you have already added a Page Report/RDL Report template to your project, connected it to a

ActiveReports 14 824

Copyright © 2020 GrapeCity, Inc. All rights reserved.

data source and added a dataset. See Quick Start, Connect to a Data Source and Add a Dataset for more information.

Note: This topic uses examples from the SalesByGenre table in the Reels database. The Reels.mdb file can be
downloaded from GitHub: ..\Samples14\Data\Reels.mdb.

1. From the toolbox, drag a Table data region onto the report design surface.
2. With the table selected, set the following:

Set the DataSetName property (For example, SalesByGenre).
Right-click the table handle to the left of the Detail row and select Insert Row Below or Insert Row Above
from the menu and add another detail row to the table.
Hover your mouse over the first Textbox located in the Detail row column to make the Field Selection
Adorner appear. Click this adorner to display a list of available fields from the data set, select a field (For
example, GenreName).

Note: This automatically places an expression in the detail row and simultaneously places a static label
Genre Name in the header row of the same column.

3. From the toolbox, drag a Sparkline control to the second detail row of the table on your report and set the
following in the Properties Window.

Set the SparklineType property to Line (by default).
Set the DataSetName property to a data set (For example, SalesByGenre).
Set the SeriesValue property by selecting <Expression...>. In the Expression Editor under Fields, expand the
Fields (SalesByGenre) node and select a numeric field from the connected data set (for example,
=Fields!Profit.Value). Click the OK button to accept the change.
Set the LineColor property to Gray.
Set the MarkerColor property to Blue.

4. To apply the detail grouping to the sparkline, right-click the Table data region and go to Properties Window to
select the Properties dialog command at the bottom.

5. In the Table dialog that appears, select the Detail Grouping.
6. In the General tab, under Group on, select an expression from the drop-down list on which to group the data (for

example, =Fields!GenreName.Value).
7. Click the OK button to close the dialog and save the changes.
8. Go to the preview tab to view the sparkline you have added to your report.

This set of sparklines display the profit value grouped by the movie genres.

Sort Data
In a page report and a RDL report, you can apply sorting on a data region, grouped data or fixed page.

ActiveReports 14 825

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Use the following steps to determine how to sort your data. These steps assume that you have already added a Page
Report (xml-based)/RDL Report template to your project and connected it to a data source. See Quick Start, Connect to a
Data Source and Add a Dataset for more information.

To sort in a data region

You can set the sorting expression on the Sorting page of a data region dialog.

1. Right-click the data region and select Properties to open the Properties window. Select the Property dialog link
under properties where the commands are displayed to open the data region dialog. See Properties Window for
more information.

2. In the dialog that appears, go to the Sorting page and click the Add(+) icon to add an empty expression to the
sorting list below.

3. In the Expression field, enter the expression directly or use <Expression...> from the dropdown to open the
Expression Editor and select the field on which you want to sort your data.

4. Under Direction, select Ascending or Descending to set the order in which to sort your data.
5. Click OK to close the dialog.
6. From the Report Explorer, drag and drop the field on which the sorting expression is set and go to the Preview Tab

to view the result.

The following image shows the result after setting sorting in a Table data region on the Title field in Ascending order:

ActiveReports 14 826

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To sort on grouped data

You can sort the order of groups through the Sorting tab of the Groups page or the Detail Grouping page of the List data
region. The following steps assume that you have already grouped data in the data region. See Group Data for further
information on grouping.

Note: In a Chart data region dialog, the Sorting tab is available on the Category Groups and Series Groups pages.

1. On the Groups or the Detail Grouping page of the data region dialog, select the Sorting tab.
2. In the Sorting tab, click the Add(+) icon to add an empty expression to the sorting list.
3. In the Expression field, enter the expression directly or use <Expression...> from the dropdown to open the

Expression Editor and select the field on which you want to sort your data. The expression set here should be the
same as the grouping expression.

4. Under Direction, select Ascending or Descending to set the order in which to sort your data.
5. Click OK to close the dialog.
6. From the Report Explorer, drag and drop the field on which sorting is set and go to the Preview Tab to view the

result.

The following image shows the result on a Table data region where grouping and sorting is set on the StorePrice field in
Descending order:

To sort on a fixed page

ActiveReports 14 827

Copyright © 2020 GrapeCity, Inc. All rights reserved.

In a Page Report , if the fixed page is grouped on a dynamic value, you can sort the order of the groups through the
Sorting page of the FixedPage Dialog. Follow the steps below to learn setting up sorting on a Fixed Page:

1. Right-click the gray area of the report and select Fixed Layout Settings to open the FixedPage dialog.
OR
Right click the report page and select Properties to open the Properties window. Select the Property dialog link
under properties where the commands are displayed to open the FixedPage dialog. See Properties Window for
more information on commands.

2. In the FixedPage dialog that appears, go to the Grouping page and in the Expression field, enter the expression
directly or use <Expression...> from the dropdown to open the Expression Editor and select the field on which you
want to group your data.

3. In the FixedPage dialog, now go to the Sorting page and click the Add(+) icon to add an empty expression to the
sorting list below and in the Expression field enter the same expression you used for grouping the data.

4. Under Direction, select Ascending or Descending to set the order in which to sort your data.
5. Click OK to close and apply the settings.
6. From the Report Explorer, drag and drop the field on which sorting is set and go to the Preview Tab to view the

result.

Note: The difference in setting sorting on a Fixed Page is that it affects every data region placed on the report
layout, whereas sorting on a data region is limited to the data region only.

The following images shows the result when sorting is set on a fixed page on the StorePrice field in descending
order:

Page 1 Page 2

ActiveReports 14 828

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Set Filters
Normally you can filter your data using parameters in a query, but if your data source does not support parameters you
can use filters. You can set filters on the following:

DataSet
Data Region
Groups in a Data Region

In a Page Report, you can also set filters on the page through the FixedPage dialog.

Use the following steps to create filters in a page report and RDL report. These steps assume that you have already added
a Page Report/RDL Report template and have a data connection and a dataset in place. See Quick Start, Connect to a Data
Source and Add a Dataset for more information.

To set filters on a DataSet
When you set a filter on a dataset, any control you add to the design surface can utilize this filtered data.

1. In the Report Explorer, right-click the DataSet node and select Edit.
2. In the DataSet dialog that appears, select the Filters page and click the Add (+) icon to add a new filter for the data

set. By default, an empty filter expression gets added to the filter list.
3. Under Expression, enter an expression or use the Expression Editor to provide the expression on which to filter

data. For example, =Fields!YearReleased.Value
4. Under Operator, select an operator from the list to decide how to compare the Expression with the Value. For

example, set a GreaterThan operator on the Expression above. See Filtering for a list of available operators and
their description.

ActiveReports 14 829

Copyright © 2020 GrapeCity, Inc. All rights reserved.

5. Under Value, enter a value or set an expression using the Expression Editor with which to compare the expression
results. For example, 2000 to represent the year 2000.

The resultant filter looks like the following.
=Fields!YearReleased.Value > 2000

To set filters in a Data Region
When you set a filter in a data region, you can limit the amount of data available for use inside that data region.

1. With the data region selected on the report, under the Properties window, click the Property dialog link. This is a
command to open the corresponding data region dialog. See Properties Window for more on how to access
commands.

Note: In a Classic Chart data region, right-click the data region and choose the Chart data option to open the
Chart Data dialog.

2. In the data region dialog that appears, select the Filters page and click the Add (+) icon to add a new filter for the
data region. By default, an empty filter expression gets added to the filter list.

3. Under Expression, enter an expression or use the Expression Editor to provide the expression on which to filter
data. For example, =Fields!UserRating.Value

4. Under Operator, select an operator from the list to decide how to compare the Expression with the Value. For
example, set a LessThan operator on the Expression above. See Filtering for a list of available operators and their

ActiveReports 14 830

Copyright © 2020 GrapeCity, Inc. All rights reserved.

description.

5. Under Value, enter a value or set an expression using the Expression Editor with which to compare the expression
results. For example, 6 to represent the Rating 6.

The resultant filter looks like the following.
=Fields!UserRating.Value < 6

To set filters on groups in a Data Region
You can also set filters on grouped data in a data region. The following example uses the Table data region to show
filtering on groups.

1. In the report, set grouping on a data region. For example, on a Table data region, set grouping on the
=Fields!YearReleased.Value field. See Group Data for further details.

2. With the data region selected on the report, under the Properties window, click the Property dialog link. This is a
command to open the corresponding data region dialog. See Properties Window for more on how to access
commands.

Note: In a Classic Chart data region, right-click the data region and choose the Chart data option to open the
Chart Data dialog.

3. In the Table dialog, go to the Groups tab and select the Group.

ActiveReports 14 831

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. After selecting the group, go to the Filters tab and click the Add (+) icon to add a new filter. By default, an empty
filter expression gets added to the filter list.

5. Under Expression, enter an expression or use the Expression Editor to provide the expression on which to filter
data. For example, =Fields!YearReleased.Value

6. Under Operator, select an operator from the list to decide how to compare the Expression with the Value. For
example, GreaterThan operator set on the Expression above. See Filtering for a list of available operators and their
description.

7. Under Value, enter a value or set an expression using the Expression Editor with which to compare the expression
results. For example, 2000 to represent the year 2000.

The resultant filter looks like the following.
=Fields!YearReleased.Value > 2000

Page/RDL Report Scenarios
See step-by-step instructions for creating commonly used reports in a Page Layout.

In this section

ActiveReports 14 832

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Create Top N Report
Learn how to display top N data on a report.

Create Red Negatives Report
Learn to highlight negative values in red on a report.

Create Green Bar Report
Learn to create alternate background colors for report details.

Create a Bullet Graph
Learn how to create a Bullet Graph.

Create a Whisker Sparkline
Learn how to create a Whisker Sparkline.

Create and Use a Master Report (RDL Report)
Learn how to create a master report and apply common features to any number of reports.

Merge Multiple Reports
Learn how combine multiple Page and RDL reports.

Create Top N Report
A Top N Report displays details for the top results in your report. You can create this report by modifying the SQL query
while creating a dataset.

The following steps demonstrate how to create a Top N report. These steps assume that you have already added a Page
Report/RDL Report template to your project and connected it to a data source. See Quick Start and Connect to a Data
Source for more information.

1. In the Report Explorer, right-click the data source node (DataSource1 by default) and select the Add Data Set
option or select Data Set from the add button.

2. In the DataSet dialog that appears, go to the Query page and enter a query in the Query textbox in the following
format : Select Top N FieldNames From TableName

Note: In the query above TableName refers to the table you want to get from the database. FieldNames and
N refer to the fields you want to fetch from the table and the number of records to display from that field.
Following is an example of a Top N Report SQL query : Select Top 10 * From Movie

3. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query and
then click OK to close the dialog.

4. In the Report Explorer, expand the DataSet node and drag and drop fields onto the design surface. In an Page
report, you need to place these fields inside a data region.

5. Go to the Preview tab and view the result. You'll notice only N number of records displaying in your report.

The following image is an example of a Top N Report displaying top 10 movie records:

ActiveReports 14 833

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Create Red Negatives Report
A Red Negatives report shows negative values in red color if those values meet the requirements set in a conditional
expression. The following steps demonstrate how to create a report with negative values in red negatives.

These steps assume that you have already added a Page Report/RDL Report template to your project, connected it to a
data source and added a DataSet. See Quick Start, Connect to a Data Source and Add a Dataset for more information.

1. From the Visual Studio toolbox, drag and drop a Table data region onto the design surface and place fields
inside the cells of the details row.

2. In the same Table, select any cell (Textbox) that displays integer values and right click to select Properties.
3. In the Properties Window that appears, set the following expression in the Color property:

=iif(Fields!FieldName.Value < 0, "Red", "Black")

Note: In the expression above, FieldName refers to field that the textbox contains. For example, if a textbox
contains the Rollup field, the expression looks like: =iif(Fields!Rollup.Value < 0, "Red",
"Black")

4. Go to the Preview tab and view the result.

The following image illustrates a report that contains negative values in red:

Create Green Bar Report
You can create a Green Bar report by alternating the background color of a data region like a Table using conditional
formatting. The following steps demonstrate Follow the steps below to learn creating a Green Bar Report.

These steps assume that you have already added a Page Report/RDL Report template to your project, connected it to a
data source and added a dataset. See Quick Start, Connect to a Data Source and Add a Dataset for more information.

1. From the Visual Studio toolbox, drag and drop a Table data region onto the design surface.
2. In the Table data region, click the row handle to the left of the detail row and right-click to select Properties.
3. In the Properties Window dialog that appears, set the following expression in the BackgroundColor property:

=iif(RowNumber(Nothing) Mod 2, "PaleGreen", "White")
4. On the design surface, set fields the detail row of the table data region.
5. Go to Preview tab and view the result. You will notice that every alternate detail the report displays has a green

ActiveReports 14 834

Copyright © 2020 GrapeCity, Inc. All rights reserved.

background.

The following image shows an example of a Green Bar report:

Create a Bullet Graph
You can create a bullet graph based on aggregated data from the data source. The following steps demonstrate how to
create a bullet graph.

These steps assume that you have already added a Page Report/RDL Report template to your project and connected it to
a data source. See Quick Start and Connect to a Data Source for more information.

1. From the Visual Studio toolbox, drag a drop Table control onto the design surface.
2. From the Visual Studio toolbox, drag a Bullet control onto the detail row of the table and in the properties

window, set its Value property to a numeric field (like =Fields!SalesAmount.Value). This Value property is
used to define the key measure displayed on the graph.

3. With the Bullet control selected on the design surface:
Set its Target Value property to 200. This property defines a target for the Value to be compared to.

Set its Best Value property to 500 and the Worst Value property to 0. The Best Value and Worst Value
properties define the value range on the graph.

You can also optionally encode the segments on the graph as qualitative ranges indicating bad, satisfactory
and good sections.

The Range1Boundary property defines a value for the bad/satisfactory boundary on the graph. Set
this property to 150.
The Range2Boundary property defines a value for the satisfactory/good boundary on the graph. Set
this property to 300.

You can also optionally define the Interval property for the graph value range. So, set this property to 100.

ActiveReports 14 835

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Go to the Preview tab to view the bullet graph you have added to your report.
As the bullet graph is based on aggregated data, you get a stack of bullet graphs indicating the Sales Amount
value for different customers.

Create a Whisker Sparkline
You can use a whisker Sparkline to render “win/loss/tie” scenarios (for example, sport statistics) or “true/false” scenarios
(for example, was the sales goal met or was the temperature above average), based on the numeric data from a data set.

The bars in a whisker sparkline render below the baseline for a negative value, above the baseline for a positive value and
on the baseline for a zero value, for example, in a "profit/loss/no profit, no loss" scenario.

The following steps demonstrate how to create a whisker sparkline. These steps assume that you have already added a
Page Report/RDL Report template to your project, connected it to a data source and added a dataset. See Quick Start,
Connect to a Data Source and Add a Dataset for more information.

Note: These steps use the AccountsChartData table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.

1. From the Visual Studio toolbox, drag a Sparkline control onto the design surface.
2. With the sparkline selected on the design surface, go to the properties window and:

Set the Sparkline Type property to Whiskers.
Set the SeriesValue property to a numeric field (like =Fields!RollUp.Value) from the connected data
set.
Set the FillStyle/FillColor property to Red.

3. Go to the Preview tab to view the whisker sparkline.

ActiveReports 14 836

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Create and Use a Master Report (RDL Report)
In an RDL report, you can create a master report and apply it to any number of content reports to keep common styles in
one easy-to-maintain location. See Master Reports for more information.

To design a master report

Note: These steps assume that you have already added an RDL Report template and connected it to a data source.
The Master Report feature is only available with RDL Reports. See the topic, Adding an ActiveReport to a Project for
further information.

1. With focus on the report, from the Report Menu, select Convert to Master Report to create a master report.
2. Right-click the ruler area to the top or left of the report and choose Page Header. Repeat and choose Page

Footer.
3. From the toolbox, drag and drop controls into the page header and footer sections. These controls appear on

every page of a content report when you apply the master report. For example, a company logo image, or a
textbox with the company Web site address.

4. A ContentPlaceHolder control appears in the toolbox when you convert an RDL report to a Master Report. This
control defines regions where users can add content. Use the following instructions to add the ContentPlaceHolder
control in the master report.

From the toolbox, drag and drop the ContentPlaceHolder control onto the report design surface.
Right-click the control and from the context menu that appears, select Properties to open the properties
window.
Set the following properties for the ContentPlaceHolder control.

Property Description

Location To position the control with respect to the top left corner of the container.

Size To set the control size for determining the space available to design a content report.

Text To add instructive text for the user. E.g. "Design your content report here." This caption appears
in the design view and not in the final output.

5. Save the master report locally on your system.

1. In Visual Studio, select the report, and from the Report menu, select Save Layout. In the stand-alone
designer, the option is in the File menu. You can also save the master report from File menu of the stand-
alone designer.

2. In the Save As dialog that appears, navigate to the location where you want to save the report and click
Save to save the report in rdlx-master file format.

To use a master report
1. With focus on the report to which you want to apply the master report, from the Report menu, select Set Master

Report, then Open Local File.
2. In the Open dialog that appears, navigate to the location where you saved the master report and open it. The

master report layout is applied to the content report with all areas locked except for the region with the
ContentPlaceHolder, which is available for use.

ActiveReports 14 837

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Merge Multiple Reports
You can merge or combine multiple Page and RDL reports into one report. Merging is performed by
using ReportCombiner ('ReportCombiner Class' in the on-line documentation) class which adds the reports as
subreports. The reports are merged one after the another, in the order in which they are added. To correctly combine
reports, you should use reports with the same layouts: for Page reports, you need to set equal margins for all reports and
for RDL reports, you need to set equal margins and width for all reports.

You can use the BuildReport ('BuildReport Method' in the on-line documentation) method to utilize all the features
of the PageReport class. You can also insert page breaks and specify the gap between two reports when merging. By
default, the gap of 1 inch is added between the reports.

The following code combines three reports. You need to add GrapeCity.ActiveReports.Core.Rendering assembly to
your project. The code also exports the merged report in PDF format, so you need to add
GrapeCity.ActiveReports.Export.Pdf assembly.

To write the code in Visual Basic.NET

Visual Basic.NET

Dim combiner = New GrapeCity.ActiveReports.ReportsCore.Tools.ReportCombiner()

Dim r1 = New GrapeCity.ActiveReports.PageReport()
r1.Load(New System.IO.FileInfo("c:\temp\Report1.rdlx"))

Dim r2 = New GrapeCity.ActiveReports.PageReport()
r2.Load(New System.IO.FileInfo("c:\temp\Report2.rdlx"))

Dim r3 = New GrapeCity.ActiveReports.PageReport()
r3.Load(New System.IO.FileInfo("c:\temp\Report3.rdlx"))

combiner.AddReport(r1)

Dim options = New GrapeCity.ActiveReports.ReportsCore.Tools.LocationOptions
options.Gap = "5in" 'adds a 5 inch gap from the first report. By default this gap is 1
inch.
options.PageBreakBefore = True 'adds a page break.

combiner.AddReport(r2, options)
combiner.AddReport(r3)

'PDF Rendering extension
Dim pdfRe = New GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension()
Dim provider = New GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(New
System.IO.DirectoryInfo("c:\temp\"), "CombinedReport")

Viewer1.LoadDocument(combiner.BuildReport().Document) 'load combined report in viewer
combiner.BuildReport().Document.Render(pdfRe, provider) 'export combined report in PDF
format

ActiveReports 14 838

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write the code in C#

C# code

var combiner = new GrapeCity.ActiveReports.ReportsCore.Tools.ReportCombiner();

var r1 = new GrapeCity.ActiveReports.PageReport();
r1.Load(new System.IO.FileInfo(@"c:\temp\Report1.rdlx"));

var r2 = new GrapeCity.ActiveReports.PageReport();
r2.Load(new System.IO.FileInfo(@"c:\temp\Report2.rdlx"));

var r3 = new GrapeCity.ActiveReports.PageReport();
r3.Load(new System.IO.FileInfo(@"c:\temp\Report3.rdlx"));

combiner.AddReport(r1);
combiner.AddReport(r2, new LocationOptions() { PageBreakBefore = true, Gap = "5in" });
//adds second report after a page break and a 5 inch gap from the first report. By
default this gap is 1 inch.
combiner.AddReport(r3);

//PDF Rendering extension
var pdfRe = new GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension();
var provider = new GrapeCity.ActiveReports.Rendering.IO.FileStreamProvider(new
System.IO.DirectoryInfo(@"c:\temp\"), "CombinedReport");

viewer1.LoadDocument(combiner.BuildReport().Document); //load combined report in
viewer
combiner.BuildReport().Document.Render(pdfRe, provider); //export combined report in PDF
format

The merged reports can be modified in many ways as described below.

To add reports at particular index

If you want to add a report r4 after the first report r1, use the following code with index '1':

C#

combiner.Insert(1, r4, new LocationOptions());
report = combiner.BuildReport();

VB.NET

combiner.Insert(1, r4, New GrapeCity.ActiveReports.ReportsCore.Tools.LocationOptions())
report = combiner.BuildReport()

To add a list of reports

C#

ActiveReports 14 839

Copyright © 2020 GrapeCity, Inc. All rights reserved.

combiner.AddRange(new PageReport[] {r1, r2, r3, r4 }, new LocationOptions())
report = combiner.BuildReport();

VB.NET

Dim reports As IEnumerable(Of GrapeCity.ActiveReports.PageReport) = {r1, r2, r3, r4}
combiner.AddRange(reports, New
GrapeCity.ActiveReports.ReportsCore.Tools.LocationOptions())
report = combiner.BuildReport()

To delete report(s)

If you want to delete a report in first position, use the following code with index '0':

C#

combiner.RemoveAt(0);
report = combiner.BuildReport();

VB.NET

combiner.RemoveAt(0)
report = combiner.BuildReport()

Similarly, if you want to delete report at second position, use index '1'.

If you want to delete all instances of report r2, use the following code:

C#

combiner.RemoveAll(r2);
report = combiner.BuildReport();

VB.NET

combiner.RemoveAll(r2)
report = combiner.BuildReport()

Note:

If the reports being merged are of different sizes, the page size of the first report is applied to all the pages
of combined report.
If the reports being merged are of different paper orientations, the paper orientation of the first report is
applied to all the pages of combined report.

Interactivity
Learn to perform interactive tasks in Page Reports and RDL Reports with quick how-to topics.

In this section

ActiveReports 14 840

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Add Parameters
Learn how to add parameters to page reports or RDL reports

Add Hyperlinks
Learn how to add hyperlinks

Add Bookmarks
Learn how to add bookmarks to move to another area in reports

Create a Drill-Down Report
Learn how to create a drill-down report

Set a Drill-Through Link
Learn how to use drill-through links to connect one report to another detailed report

Allow Users to Sort Data in the Viewer
Learn how to allow the end-user to sort data in the Viewer

Add Parameters
You can add parameters to a page report/RDL report to allow users to select the data to display, or to use in creating drill-
through reports.

To add a parameter
1. In the Report Explorer, right-click the Parameters node and select Add Parameter. The Report Parameters dialog

appears.
2. On the General tab of the dialog, set the name, data type and prompt text for the parameter. For example:

Name: MPAA
Data type: String
Text for prompting users for a value: Enter value

Select out of the checkbox options to allow null values, multivalues, blank value, multiline values or set hidden
parameters.

3. On the Available Values tab, you can select From query populate a list from the data set from which users can
select a value. Alternatively, you can select Non-queried to enter your own values.

4. On the Default Values tab, you can provide default values to use if the user does not select a value. This is useful
when you are creating a hidden parameter.

5. Click OK to save the parameter. The new parameter appears in the Report Explorer under the Parameters node.
6. From the Report Explorer, drag the parameter to report design surface to create a TextBox that is bound to the

parameter. When you run the report, the value that the user supplies in the prompt dialog displays in the bound
TextBox on the report.

For a step by step description of adding parameters in different scenarios look at the following pages:

Add a Multi-Value Parameter
Learn how to create a multi-value parameter.

Add a Cascading Parameter
Learn how to create cascading parameters where one parameter value is dependent on the selection of another.

Set a Hidden Parameter
Learn how to set a hidden parameter to allow data to fetched using the parameter value without prompting the user.

ActiveReports 14 841

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Add a Multi-Value Parameter
In a page report or an RDL report, you can create a multi-value parameter by selecting the Multivalue option. In a multi-
value parameter, you can choose a few options from the list or simply choose 'Select all' to select all options.
If there are large number of options to choose from, choosing 'Select all' option creates an SQL query too long for an SQL
Command to run. In such a case, you can specify a value to the multi-value parameter in Value for 'Select All' option.

The following procedures take you through a step by step process of how to create a multi-value parameter and specify a
value for selecting all options from the list. These steps assume that you have added a Page Report/RDL Report template to
your report and have a data connection in place. See Quick Start and Connect to a Data Source for further information.

Note: This topic uses the Products table from the NWind database. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

To create a dataset to populate the parameter values
1. In the Report Explorer, right-click the Data Source (DataSource1 by default) node and select Add Data Set.

2. In the DataSet dialog that appears, select the Query page.
3. Enter an SQL query like the following into the Query text box

select distinct productName from Products
4. Click the OK to close the dialog. You see the data set, DataSet1, and the field, productName, in the Report Explorer.

To add a Report Parameter
1. In the Report Explorer, right-click the Parameters node and select Add Parameter.

2. In the Report - Parameters dialog that appears, add a name for the parameter, ReportParameter1.
3. Ensure that the Data type matches that of the field (String for ProductName).
4. Enter some text in the Text for prompting users for a value field.

ActiveReports 14 842

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

5. Select the check box next to Multivalue to allow users to select more than one item from the list.
6. In the Value for 'Select All' option, enter '1'.

To provide a list of values for the Report Parameter
1. In the Report - Parameters dialog, go to the Available Values tab and select the From query radio button.
2. Under the Dataset field, select the dataset created previous steps (DataSet1).
3. Under the Value and Label fields, select the field productName.
4. Click the OK to close the dialog and add the parameter to the collection.

To add a dataset with a parameter
1. In the Report Explorer, right-click the Data Source (DataSource1) node and select Add Data Set.
2. In the DataSet dialog that appears, on the Parameters page, click the Add (+) icon above the parameters list and add

the following to the dataset to provide values for the parameters we add to the query in step 3 below.
Name: ReportParameter1; Value: =Parameters!ReportParameter1.Value

ActiveReports 14 843

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name: Parameter1; Value: =Parameters!ReportParameter1.Value

3. On the Query page, enter a SQL query like the following in the Query text box:

SELECT * FROM products where ProductName in (?) OR '1' in (?)

At run time, this query matches the selected product name and fetches data accordingly. If the user chooses 'Select
all' (for which we have specified value '1'), then query after 'OR' is evaluated and data is fetched for all products.

4. Click the Validate DataSet icon to validate the query and to populate the Fields list.
5. Click the OK to close the dialog. You see the data set, DataSet2, and the fields in the Report Explorer.

To view the report
Place a control like a Table onto the design surface and add fields to it. View the report in the preview tab and see the
Parameters in the sidebar with Select all option at the top.

ActiveReports 14 844

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: If the Available Values (queried or non-queried) for a parameter contain only some values from database and
Select all value is specified for the parameter, then on previewing report, selecting 'Select all’ checkbox shows all
records from the database instead of only those present in the parameter. For example, if in database there are four
records and in Available values there are only two records with Select all value specified, then on previewing report and
selecting 'Select all' checkbox, all four records are shown instead of only two.

Add a Cascading Parameter
When a parameter’s value list depends on the value of another parameter, the report collects the required parameter
value and uses it to create the value list for the second parameter. This cascade of parameter values is sometimes also
called dependent or hierarchical parameters.

Use the following instructions to create your own cascading parameters. These steps assume that you have added a Page
Report/RDL template to your report and have a data connection in place. See Quick Start and Connect to a Data Source
for further information. Also refer to Add a Dataset before reading this topic.

Note: This topic uses the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.

1. In the Report Explorer, right-click the Data Source (DataSource1 by default) node and select Add Data Set to
create a dataset named Regions.

2. On the Query page of the DataSet Dialog, use the following SQL Query to fetch data from the Regions table.
SELECT RegionID, Region FROM Regions

ActiveReports 14 845

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

3. Click OK to close the Regions DataSet dialog.
4. Follow step 1 to create another dataset named Districts and on the Parameters page of the DataSet Dialog, click

the Add(+) icon to add a parameter named Region with the value set to:
=Parameters!Region.Value
This parameter is added to the Report Parameters collection later.

5. In the Districts dataset dialog, on the Query page, add the following SQL query to fetch data from the Districts
table. This query depends on the Region parameter.
SELECT DistrictID, District FROM Districts WHERE Region = ?

6. Click OK to close the Districts DataSet dialog.
7. Follow step 1 and create another dataset named StoreNames and on the Parameters page of the DataSet Dialog,

click the Add(+) icon to add a parameter named DistrictID with the value set to:
=Parameters!DistrictID.Value
This parameter is added to the Report Parameters collection later.

8. In the StoreNames dataset, on the Query page, add the following SQL query to retrieve data for the
selected region from the selected district. This query depends on the DistrictID parameter.
SELECT StoreID, StoreName, OpenDate FROM Store WHERE NOT StoreID = 0 AND DistrictID
= ?

9. Click OK to close the StoreNames DataSet dialog.
10. In the Report Explorer, right-click the Parameters node and select Add Parameter

11. In the Report - Parameters dialog that appears, add a parameter named Region with an Integer data type. On the
Available Values tab, select From query and set the dataset to Regions, the value field to RegionID, and the label
field to Region.

12. Click OK to close the Report - Parameters dialog.
13. Follow the same process as steps 10 and 11 to add a second parameter named DistrictID with an Integer data

type. On the Available Values tab, select From query and set the dataset to Districts, DistrictID for the value field,
and District for the label field.

14. From the Visual Studio toolbox, drag and drop a Table data region (or any other data region) onto the design
surface, and drag the StoreID, StoreName and OpenDate fields onto the table details row.

15. Click the Preview Tab to view the result.

Notice that the two drop down lists, for regions and districts appear in the Parameters sidebar while the second drop
down list remains disabled until a region is selected. Click the View Report button to see the StoreID, StoreName
and OpenDate values returned for the selected region and district.

ActiveReports 14 846

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: In a Page Report, when you have multiple datasets in the report, you need to set the DataSet property on the
General tab of the FixedPage dialog in order to specify which dataset is used to display data in the report.

Set a Hidden Parameter
If you want to run a report without prompting the user for a value at run time, you need to set a default value for each
parameter. The report collects the required parameter value from the default value and uses it to generate the report.

Default values can be queried or non-queried. A non-queried default value can be a static value or an expression. A
queried default value is a field value from a dataset.

Use the following instructions to create your own hidden parameters. These steps assume that you have added a
Page Report/RDL Report template to your report and have a data connection in place. See Quick Start and Connect to a
Data Source for further information. Also refer to Add a Dataset before reading this topic.

Note: This topic uses the DVDStock table in the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.

1. In the Report Explorer, right-click the Parameters node and select Add Parameter.

2. In the Report - Parameters dialog that appears, add a parameter named StorePrice with an Integer data type.
Click the checkbox next to Hidden to hide the parameter UI at run time.

3. On the Default Values tab, select Non-queried and click the Add(+) icon to add an empty expression for the value.

Note: When you use From query to provide a default value, only the first returned row value is used as the

ActiveReports 14 847

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

default value.

4. In the Value field enter 5 and click OK to close the Report - Parameters dialog.

Note: When adding multiple default values, in the Report - Parameters dialog, General tab, check the
Multivalue check box, otherwise the report collects only the first default value from the list and uses it to
generate the report.

5. In the Report Explorer, right-click Data Source (DataSource1 by default) node and select Add Data Set to create a
dataset.

6. In the DataSet Dialog that appears, on the Parameters page, click the Add(+) icon to add an empty expression for
the parameter.

7. In the Name field, enter the same parameter name (StorePrice) you had added in the steps above and set its value
to:
=Parameters!StorePrice.Value

8. On the Query page of the DataSet Dialog, use the following SQL query to fetch data from the DvDStock table.
SELECT * FROM DvDStock WHERE StorePrice IN (?).

9. From the Visual Studio toolbox, drag and drop a Table data region (or any other data region) onto the design
surface, and from the Report Explorer, drag the Title, StorePrice and In Stock fields onto the table details row.

10. Click the Preview Tab to view the result.

Notice that the report collects the required parameter value from the default value (i.e. 5) and uses it to display the list of
Movie DVDs with Store Price $5.

ActiveReports 14 848

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Add Hyperlinks
In a page report or a RDL report, you can set hyperlinks in the TextBox or Image controls to access a Web page from your
report. You can also set hyperlinks on Map layer data elements. These hyperlinks open in the default browser of the
system.

To add a hyperlink in the Textbox or Image control
1. Add a Textbox or Image control to the design surface.
2. With the control selected, under the Properties window, click the Property dialog link to open the respective

control's dialog and go to the Navigation page.
OR
With the control selected, go to the Properties window and click the ellipses near the Action property to open the
Navigation page in the dialog.

3. On the Navigation page, select the Jump to URL radio button to enable the field below it.
4. Type or use the expression editor to provide a valid Web page address. For example,

https://www.grapecity.com/activereportsnet
5. Click OK to close the dialog.
6. In the Properties window, enter text in the Value property of the respective control to set the display text for the

Web page hyperlink. For example, GrapeCity GrapeCity.

To add a hyperlink on Map layer elements
Map layer elements like point, polygon and line provides you a functionality to set hyperlinks on them to access a Web
page from your report.

1. On the design surface, click the map until the map panes appear.
2. In the layers pane, right click the layer in use and select Edit.
3. In the selected layer's dialog that appears, go to the Navigation page.
4. On the Navigation page, select the Jump to URL radio button to enable the field below it.
5. Type or use the expression editor to provide a valid Web page address. For example,

https://www.grapecity.com/activereportsnet
6. Click OK to close the dialog.

Add Bookmarks
A bookmark link is similar to a hyperlink, except that it moves the viewer to another area in the report instead of opening
a web page. You can add bookmarks in a two-step process:

Identify the place (target control) where you want to allow a user to jump to with the help of a Bookmark ID.
Share that Bookmark ID with another control that links to the target control.

Use the following steps to create a Bookmark ID on a Textbox control and create a bookmark link on another Textbox
control at the bottom of the page.

These steps assume that you have already added a Page Report/RDL Report template to your project. See Quick Start for
further details.

To add a Bookmark ID on a control

ActiveReports 14 849

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/activereportsnet
https://www.grapecity.com/activereportsnet

Bookmark ID is like a URL that provides information required by the report viewer to locate the report control. You need
to provide a Bookmark ID for any control to which you want to allow users to jump to via a Bookmark Link.

1. From the Visual Studio toolbox, drag and drop a Textbox control onto the design surface.
2. Select the Textbox to view its properties in the Properties window and enter any text in the Value property (For

e.g., Top).
3. Click the Property dialog link below the Properties window to open the Textbox dialog.
4. In the TextBox dialog that appears, select the Navigation page and in the Bookmark ID field enter text like Link

Text.

5. Click OK to close the dialog.

Tip: You can also set the Bookmark ID through the Bookmark property in the Properties window.

To set a bookmark link
Bookmark Link is a simple link you create to jump to the location where the Bookmark ID is set.

1. From the Visual Studio toolbox, drag and drop another Textbox control onto the design surface. Place it at the
bottom of the page for this example.

2. Select the Textbox to view its properties in the Properties window and in the Value property enter Go to Top.
3. Click the Property dialog link below the Properties window to open the Textbox dialog.
4. In the Textbox dialog that appears, click on the Navigation page and select the Jump To Bookmark radio button

to activate it.
5. Under Jump To Bookmark, enter the same text (i.e. Link Text) you assigned as Bookmark ID in the steps above.

6. Click OK to close the dialog.

ActiveReports 14 850

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Go to the Preview Tab, and click Go to Top.

You move to the top of the page where the Bookmark ID was set on the control.

Tip: You can also access the Navigation page of a control to set the bookmark link through the ellipsis button next to
the Action property in the Properties window.

Create a Drill-Down Report
In a page layout, you can set up data regions, report controls, table rows, and tablix row and column groups to collapse,
so that users can drill down into the data they choose to view.

In order to collapse an item, you use the Visibility settings available in the Properties Window or in the control dialog.
You set the initial visibility of the report controls to Hidden and allow the user to toggle them by clicking other report
controls (usually a TextBox).

When the report is initially displayed at run-time, the toggle items display with plus sign icons that you can click to display
the detail data. Use the following steps to set a drill-down link.

1. From the Visual Studio toolbox, drag and drop a TextBox control and a Table data region onto the report design
surface.

2. Place the TextBox control such that it appears as a header on your report.
3. From the Report Explorer, expand your data set and drag fields and place them inside the detail row of the Table

data region. Expressions for these fields appear in the detail row, and labels appear in the table header row.
4. With the Table data region selected on the design surface, under the Properties window, click the Property dialog

link. This is a command to open the respective control's dialog. See Properties Window for more on how to access
commands.

5. In the Table dialog that appears, go to the Visibility page, change the Initial visibility to Hidden, and select the
check box next to Visibility can be toggled by another report control.

6. From the drop-down list that appears, select the TextBox that you added in step 1. The TextBox is now used to
toggle items in the Table and show detail data.

7. Click OK to save the changes.

When you view the report, the Textbox displays an Expand/Collapse icon to its left.

ActiveReports 14 851

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Click the icon to view the hidden data.

Set a Drill-Through Link
In a page report or a RDL report, you can use drill-through links to connect one report to another detailed report. Follow
the steps to set a drill-through link:

1. On the design surface, select a report control (like a TextBox) on which you want set the link and under the
Properties window, click the Property dialog link. This is a command to open the TextBox dialog. See Properties
Window for more on how to access commands.

2. In the control dialog that appears, go to the Navigation page and under Action, select the Jump to report radio
button. Doing this activates the fields below it.

ActiveReports 14 852

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Under the Jump to Report field, enter the name of the report (like BasicReport.rdlx) that you want to navigate to
on clicking the drill-through link. You can also use expressions to create drill-through links.

Note: In the Jump to Report field, enter just the report name if the targeted report is in the same directory as
the parent report. Or you can enter a relative path to the report. Use the Custom Resource Locator to jump to
a report in your connected database.

4. After setting the detail report to drill-through, on the Navigation page, under Parameters, you can optionally
enter a valid parameter Name and Value to pass to the detail report. This value must evaluate to a valid value for
the parameter. By setting parameters you can jump right to the desired information. For example, if your summary
report contains a list of invoice numbers and delivery dates for each customer, you could use a drill-through link
with the invoice number as the parameter to allow the user to jump to the relevant invoice.

Caution: The Parameter Name must exactly match the name of the parameter in the detail report. If any
parameter is spelled differently, capitalized differently, or if an expected parameter is not supplied, the drill-
through report fails.

5. Go to the preview tab and click the drill-through link to navigate to the targeted report.
6. On the Viewer toolbar, click the Back to Parent Report button to return to the main report.

The following images show a simple drill-through link set on a list displaying years. Click any year to drill-through to a
report that contains top movies in that year.

Report With a Drill-Through Link

ActiveReports 14 853

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Target Report

Allow Users to Sort Data in the Viewer
In a page report or a RDL report, you can allow the end-user to sort columns of data in the Viewer by setting interactive
sorting on a TextBox control within a data region. Follow the steps below to set interactive sorting in a TextBox control.

To set interactive sort properties on a TextBox
These steps assume that you have already added a Page Report (xml-based)/RDL Report template to your project and
connected it to a data source and a data set. See Connect to a Data Source and Add a Dataset for further information.

1. From the toolbox, drag a Table data region onto the report.
2. From the Report Explorer, drag fields into the detail row of the table. Labels appear in the table header row, and

expressions appear in the detail row.
3. Click to select a TextBox in the header row on which you want to allow users to sort, and in the Commands section

at the bottom of the Properties Window, click the Property dialog command.
4. In the TextBox dialog that appears, select the Interactive Sort page.

ActiveReports 14 854

Copyright © 2020 GrapeCity, Inc. All rights reserved.

5. Select the checkbox next to Add an interactive sort action to this textbox and enable the other properties on
the page.

6. Under Sort expression, drop down the list and select the expression containing the value of the field on which you
want to provide sorting.

Note: Under Data region or group to sort, and Evaluate sort expression in this scope, you can optionally
choose a different a scope from the Choose data region or grouping drop down list.

7. Click OK to close the dialog and accept the changes.

When you preview the report, you can see a sort icon next to the TextBox control, the User Rating header in this case.

You can click the icon to sort in descending order. The icon changes to an up arrow that you can click to sort ascending.

ActiveReports 14 855

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Common Tasks
Learn to perform common tasks in Page Reports and RDL Reports with quick how-to topics.

In this section

Add Items to the Document Map
Learn how to add report controls, groups and detail groups to the Document Map

Change Page Size
Learn how to can change the size of your page

Add Code to Layouts Using Scripts
Learn how to add custom code in your expressions to extend report capabilities.

Freeze Rows and Columns (RDL Report)
Learn how to Freeze Rows and Columns in RDL Report

Add Page Numbers
Learn how to add page numbers in Page reports or RDL reports

Add Page Breaks in RDL (RDL Report)
Learn how to add Page Breaks in RDL reports

Add Items to the Document Map
In a page report or a RDL report, use the following steps to add report controls, groups and detail groups to the
document map.

To add a control to the Document Map

Using Document Map Label or Label Property

1. On the design surface, select a control you want to add to the Document map and right-click to choose Properties
from the context menu.

2. In the command section of the Properties Window, click Property dialog. This is a command to open the control's
dialog. See Properties Window for more information on how to access commands.

3. In the dialog that appears, go to the Navigation page and under the Document map label, enter a text or an
expression representing the control in the Document map.

ActiveReports 14 856

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Alternatively,

1. On the design surface, select the report control you want to add to the Document map and right-click to choose
Properties from the context menu.

2. In the Properties window that appears, enter a text or an expression in the Label property to represent the report
control in the Document map.

Using HeadingLevel Property

1. On the design surface, select the report control you want to add to the Document map and right-click to choose
Properties from the context menu.

2. In the Properties window that appears, set the HeadingLevel property of the report control.

Note The HeadingLevel property defines the DocumentMap level for that control.

Go to the preview tab or the Viewer to view the document map.

To add a group or a detail group to the Document Map
1. Open a report that contains a group. See Group Data for further information.
2. On the design surface, select the data region on which grouping or detail grouping has been set and go to the

command section which appears below the Properties Window.
3. Click Property dialog to open the data region dialog. See Properties Window for more information on how to

access commands.
4. In the dialog that appears, go to the Grouping or Detail Grouping page, and under the Document map label,

enter a text or an expression representing the group or detail group in the Document Map.

ActiveReports 14 857

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Go to the preview tab or the Viewer to view the document map.

To create a hierarchical Document Map
1. Open a report that contains a data region like a Table.
2. With the data region selected, right-click to open the context menu and select Properties.
3. In the Properties Window that appears, select the Property dialog command at the bottom of the window to open

the data region dialog. See Properties Window for further information on how to access commands.
4. On the data region dialog, on the Groups page, set the grouping expression. For example, group the data on

StorePrice (=Fields!StorePrice.Value). See Group Data for further information.
5. On the same Groups page, set the Document map label to the value of the grouping expression. For example,

=Fields!StorePrice.Value.
6. On the design surface, select a control inside the data region. For example, the TextBox in the detail row of the

Table data region.
7. Right-click the control and select properties to open the Properties Window. In the command section of the

Properties Window, click Property dialog.
8. In the dialog that appears, go to the Navigation page and under the Document map label, enter a text or an

expression representing the control in the Document map.

Go to the preview tab or the Viewer to view the document map.

ActiveReports 14 858

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: In an Page report, you can also set grouping and set the document map label on the FixedPage dialog >
Groups page. See Group Data to learn how to set groups on a fixed page.

To set the numbering style for Document Map levels
You can the set the numbering style for all document map levels using the Report dialog or in the Properties Window
using the DocumentMap property.

1. In the Report Explorer select the Report item.
2. In the command section of the Properties Window, click Property dialog. This is a command to open the Report

dialog. See Properties Window for more information on how to access commands.
3. In the Report dialog that appears, go to the Document Map page and set the Source property to one of the

available value.
4. Set the Numbering Style to one of the available formats. The selected style would get applied to all the document

levels and only to the selected source that you had set above.
5. Click OK to close the dialog.

You can also set separate numbering style to different document map levels using the DocumentMapLevelDesigner
Collection Editor dialog.

1. In the Report Explorer select the Report item.
2. Go to the Properties Window, click the Levels (Collection) property and then click the ellipsis button that appears.
3. In the DocumentMapLevelDesigner Collection Editor dialog that appears, consider the hierarchy of report

bookmarks that appears in Document Map and add as many levels required using the Add button.
4. Select each level and set its NumberingStyle to any of the available format.
5. Click OK to close the dialog.

Note: Any customization made here gets directly applied to the Table of Contents control.

Change Page Size
You can change the size of your page through the Appearance page of the Report Dialog.

ActiveReports 14 859

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Click the gray area outside the design surface to select the report and under the Properties Window, click
the Property dialog command.

2. In the Report dialog that appears, on the Appearance page, select from a list of pre-defined Paper Size options
from the dropdown list. This automatically changes the Height and Width values of the page based on the selected
size.

3. Set the Orientation of the page to Portrait or Landscape. This also modifies the Height and Width values of the
page.

You can also set the page size through the PageSize property in the Properties Window.

Note: The unit of measure is based on your locale, but you can change it by typing in a different unit designator such
as cm or pt after the number.

Add Code to Layouts Using Scripts
In a page report or a RDL report, you can use custom code in your expressions to extend the capabilities of your report.
However, for complex functions, or functions you plan to use many times in the report, you also have the facility to embed
the code within the report. You can also create and maintain a custom assembly for code that you want to use in multiple
reports and refer to its methods in expressions.

Embed Code in the Report
Add a page report/RDL report template to your project and in the ActiveReports Designer that appears, add code like the
following in the Script tab.

To call a function from the control's property

This is a simple example of a single method code block:
Public Function GetDueDate() as Date
 Return DateTime.Now.AddDays(30)
End Function

This is an expression used to call the method in the code block from the control's property. For example, you can call this
function in the Value property of the Textbox control:
=Code.GetDueDate()

ActiveReports 14 860

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To use the custom constant and variable from the control's property

This is a simple example of how to define custom constants and variables in your code block:
Public Dim MyVersion As String = "123.456"
Public Dim MyDoubleVersion As Double = 123.456
Public Const MyConst As String = "444"

This is an expression to use the custom constant and variable in the code block from the control's property. For example,
you can get the value of a variable or a constant in the Value property of the Textbox control:
=Code.MyVersion
=Code.MyDoubleVersion
=Code.MyConst

To call a global collection from the control's property

This is a simple example of a global collection code block where the code block references the report object to access the
report parameter value:
Public Function ReturnParam() As String
 Return "param value = " + Report.Parameters!ReportParameter1.value.ToString()
End Function

This is an expression used to call a global collection in the code block from the control's property. For example, you can
call the global collection in the Value property of the Textbox control:
=Code.ReturnParam()

Use instance-based Visual Basic .NET code in the form of a code block. You can include multiple methods in your code
block, and access those methods from expressions in the control properties.

Note: In a page report or a RDL report, you can use Visual Basic.NET as the script language. However, you can use
both Visual Basic.Net and C# in your script for a section report.

Create custom assemblies
You can create custom assemblies in C# or Visual Basic .NET to make code available to multiple reports:

1. Create or find the assembly you wish to use. The assemblies can be found in the installed location: C:\Program Files
(x86)\GrapeCity\ActiveReports 14\NuGet\{Package name}\lib\net462\{Assembly}

2. Make the assembly available to the report engine.
If you are embedding the designer or viewer controls in your own application, copy the assembly to the
same location as your executable.
If you are using the included designer or viewer, copy the assembly into the ActiveReports assembly folder
located at ...\GrapeCity\ActiveReports 14 by default.

Note: To make the assembly available for use in your own application and for use in designing reports
for your application, copy it to both locations listed above. Alternatively, you can place the assembly in
the Global Assembly Cache (C:\Windows\assembly).

3. Add an assembly reference to the report.
From the Report Menu, choose Report Properties.
In the Report dialog that appears, select the References and click the Open icon above the assembly name
list to add your own assembly.
Go to the Class list below the assembly names and under Class name, enter the namespace and class name.
Similarly, under Instance name, enter the name you want to use in your expressions.

ActiveReports 14 861

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Access the assembly through expressions.
To access static members (member denoted as public static in C# assemblies, or as Public Shared
in Visual Basic assemblies):
=Namespace.Class.Member
To access class instances:
=Code.InstanceName

Freeze Rows and Columns (RDL Report)
When you use a Table or a Tablix data region containing a large amount of data in an RDL report, the user must scroll to
see all of the data. On scrolling the column or row headers out of sight, the data becomes difficult to understand.

Note: The Frozen rows and columns feature is only available with RDL Reports.

To alleviate this problem, we have added GrapeCity.ActiveReports.PageReportModel.Table.FrozenRows and
GrapeCity.ActiveReports.PageReportModel.Table.FrozenColumns properties to the Table and Tablix data regions. The
properties take effect in the JSViewer in Galley mode, and allow you to freeze headers so that they remain visible while
scrolling through the data region. You can freeze as many rows or columns as you have headers in the data region.

If your data stretches downward, set the FrozenRows property to a value to float the column headers when
scrolling.
If your data stretches to the right, set the FrozenColumns property to a value to float the row headers when
scrolling.
If your data stretches both downward and to the right, set both FrozenRows and FrozenColumns properties.

Here is an RDL report with a Tablix data region displayed in the JSViewer in Galley mode.

ActiveReports 14 862

Copyright © 2020 GrapeCity, Inc. All rights reserved.

When you scroll to view more rows and columns of data, the row and column headers scroll out of view, like this.

When you set FrozenColumns = 3 and FrozenRows = 2, the three row headers and two column headers float when the
user scrolls through the data, like this.

If any header cells that you want to freeze are merged, you should not set the FrozenRows or FrozenColumns property to
a value that would split a merged cell. For example, in the image above, there is an empty merged cell at the top left
corner. This cell prevents you from setting FrozenRows to a value less than 2, because it would split the merged cell. The
same cell also prevents you from setting FrozenColumns to a value less than 3, because that would also split the merged
cell.

Add Page Numbers
You can choose the page numbering format for your Page reports/RDL reports by selecting from a list of pre-defined
formats or by creating a custom page numbering expression.

Adding page numbers to a report
There are two ways to add page numbering to a report.

From the Report Explorer, under the Common Values node, drag a pre-defined page numbering format and drop
it directly onto the report design surface.
Or add a TextBox control to the report design surface and in the Value property of the control, use the Expression
Editor Dialog to select a page numbering expression from the Common Values node.

Usually a page number is added to a report header or footer, but you can add it anywhere on the layout page.

ActiveReports 14 863

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Pre-defined page numbering formats

You can find the pre-defined page numbering formats listed in the Report Explorer under the Common Values node, and
in the Expression Editor under the Common Values field.

Predefined Format Descriptions

Numbering
Format

Description

Page N of M This format displays the current page out of the total number of pages in the report. Here N signifies the
current page of a report and M the total number of report pages. Use the following expression to set this
page numbering format: ="Page " & Globals!PageNumber & " of " & Globals!TotalPages

Page N of M
(Section)

This format displays the current page out of the total number of pages of a grouped report section. Here
N signifies the current page of a grouped report section and M signifies the total number of pages in a
grouped report section. Use the following expression to set this page numbering format: ="Page " &
Globals!PageNumberInSection & " of " & Globals!TotalPagesInSection

Page N of M
(Cumulative)

This format displays the current page out of the total number of cumulative pages in a report. Here N
signifies the current page of the report and M signifies the total number of cumulative pages in a report.
Use the following expression to set this page numbering format: ="Page " &
Globals!CumulativePageNumber & " of " & Globals!CumulativeTotalPages

Page
Number

This format displays only the current page number of a report. Use the following expression to set this
page numbering format: =Globals!PageNumber

Page
Number
(Section)

This format displays only the current page number of a specific grouped report section. Use the following
expression to set this page numbering format: =Globals!PageNumberInSection

Total Pages This format displays only the total number of pages in the report. Use the following expression to set this
page numbering format: =Globals!TotalPages

Total Pages
(Section)

This format displays only the total number of pages in specific grouped report section. Use the following
expression to set this page numbering format: =Globals!TotalPagesInSection

Cumulative
Page
Number

This format displays only the current cumulative page number of the report. Use the following expression
to set this page numbering format: =Globals!CumulativePageNumber

Cumulative
Total Pages

This format displays only the total number of cumulative pages in a report. Use the following expression
to set this page numbering format: =Globals!CumulativeTotalPages

Tip: In addition to modifying the page numbering expression in the Expression Editor, you can also modify the pre-
defined formats directly in the control on the design surface.

Custom page numbering formats

Use the following steps to create your own page numbering format.

To create a custom page numbering format

ActiveReports 14 864

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. From the toolbox, drag and drop a Textbox control onto the report design surface.
2. With the Textbox selected on the report, under the Properties window, click the Property dialog link. This is a

command to open the TextBox dialog. See Properties Window for more on how to access commands.
3. In the TextBox - General dialog that appears, in the Value field, enter a page numbering expression like the

following: =Globals!PageNumber & "/" & Globals!TotalPages
4. Click OK to close the dialog.
5. Select the Preview tab. Page numbers appear in the expression format you set in the Value field above, in this case,

for a one-page report, "1/1."

Add Page Breaks in RDL (RDL Report)
In a page layout, you can add page breaks in a RDL report, using the PageBreakAtStart and PageBreakAtEnd properties
of the report control.

You can set a page break before or after the Container control. It is also possible to force a page break before or after the
following data regions or their groups:

List
Table
Tablix
Chart

Use the following steps to set page breaks in the report from the control dialogs:

To add a page break before or after a report control
1. On the design surface, select the report control on which you want to add a page break and in the command

section of the Properties Window, click Property dialog. This is a command to open the control's dialog. See
Properties Window for more information on how to access commands.

2. In the control's dialog that appears, on the General page, under Page Breaks, select the check box for Insert a
page break before this control or Insert a page break after this control or both.

3. Click the OK button to save the changes and to close the dialog.
4. Go to the preview tab to view the result.

To add a page break before or after a group
1. On the design surface, select the report control containing a group and in the command section of the Properties

Window, click Property dialog. This is a command to open the control's dialog. See Properties Window for more
information on how to access commands.

2. In the control's dialog that appears, go to the Groups or Detail Grouping page whichever is available.
3. On the Groups or Detail Grouping page, go the Layout tab and select the check box for Page break at start or

Page break at end or both.
4. Click the OK button to save the changes and to close the dialog.
5. Go to the preview tab to view the result.

Section Report How To
Learn to perform common tasks in Section reports with quick how-to topics.

ActiveReports 14 865

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Report Data
Learn how to connect to different data sources and modify them at run time in Section report.

Report Controls
Learn how to use custom controls and add field expressions, display page numbers and report dates on Section
report.

Section Report Scenarios
Learn how to work with Section report and perform various report tasks.

Interactivity
Learn how to add parameters, hyperlinks, bookmarks and perform other report operations.

Common Tasks
Learn how to execute common report tasks.

Report Data
See step-by-step instructions for performing common tasks using ActiveReports.

In this section

Bind Reports to a Data Source
Learn how to bind reports to various data sources.

Modify Data Sources at Run Time
Learn to use code to modify a report's data source.

Bind Reports to a Data Source
At design time, you can connect a section report to a data source through the Report Data Source dialog. You can access
the Report Data Source dialog by doing one of the following:

On the detail section band, click the Data Source Icon.

Click the gray area around the design surface and in the commands section at the bottom of the Properties
Window, click the Edit Data Source command.

There are four tabs in the dialog for the four most commonly used data sources.

The following steps take you through the process of binding reports to each data source. These steps assume that you
have already added an ActiveReports 14 Section Report template in a Visual Studio project. See Quick Start further

ActiveReports 14 866

Copyright © 2020 GrapeCity, Inc. All rights reserved.

information on adding different report layouts.

To use the OLE DB data source
1. In the Report Data Source dialog, on the OLE DB tab, click the Build button next to Connection String.
2. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next

button to move to the Connection tab.
3. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open

once you have selected the appropriate database path.
4. Click the Test Connection button to see if you have successfully connected to the database.
5. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
6. In the Query field on the OLE DB tab, enter a SQL query to select the data that you want use from the connected

database. For example, Select * From CUSTOMERS
OR
In the Report Data Source dialog, click on Query Designer button to access Visual Query Designer for creating SQL
queries. See Visual Query Designer for further information on how to create a query using the interactive query
designer.

7. Click OK to save the data source and return to the report design surface.

To use the ODBC data source
Before you connect to a ODBC data source, you must install a ODBC driver and set up a ODBC data source. For more
information, see How To: Setup an ODBC Data Source.

1. In the Report Data Source dialog, click the ODBC tab.
2. In the Connection String field on the ODBC tab, enter a connection string to connect to the database. For

example, Provider=MSDASQL;Persist Security Info=False;DSN=MS Access Database
3. In the Query field on the ODBC tab, enter a SQL query to select the data that you want use from the connected

database. For example, Select * From CUSTOMERS
4. Click OK to save the data source and return to the report design surface.

To use the SQL data source
1. In the Report Data Source dialog, on the SQL tab, click the Build button next to Connection String.
2. In the Data Link Properties window that appears, select Microsoft OLE DB Provider for SQL Server and click the

Next button to move to the Connection tab.
3. On the Connection tab of the Data Link Properties window:

In the Select or enter server name field, select your server from the drop down list.
Under Enter information to log on to the server, select the Windows NT security credentials or your
specific user name and password.
Under Select the database on the server, select a database from the server or attach a database file.
Click the Test Connection button to see if you have successfully connected to the database.

4. Click OK to close the Data Link Properties window and to return to the Report Data Source dialog. Notice that the
Connection String field gets filled automatically.

5. In the Query field on the SQL tab, enter a SQL query to select the data that you want use from the connected
database. For example, Select * From CUSTOMERS
OR
In the Report Data Source dialog, click on Query Designer button to access Visual Query Designer for creating SQL
queries. See Visual Query Designer for further information on how to create a query using the interactive query

ActiveReports 14 867

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/previous-versions/visualstudio/foxpro/ca6axakh(v=vs.80)

designer.
6. Click OK to save the data source and return to the report design surface.

To use the XML data source
1. In the Report Data Source dialog, on the XML tab, click the ellipsis (...) button next to File URL field.
2. In the Open File window that appears, navigate to your XML data file to select it and click the Open button. You

can use a sample XML data file (Customer.xml) available on GitHub.
3. In the Recordset Pattern field, enter a valid XPath expression like: //CUSTOMER
4. Click OK to save the data source and return to the report design surface.

You also have the option to use an unbound or an IEnumerable data source. See the following procedures to implement
these data source connections in code.

To use the CSV data source
1. In the Report Data Source dialog, on the CSV tab, click the Build button next to Connection String.
2. Specify the File Path by clicking the Open button and selecting the .csv file. You can also enter a relative path to

the csv file here.
3. Set the options in the wizard. See the Sample CSV Connection String drop-down under Report Data Source

Dialog for further details.
4. To edit the Name, Width (if applicable), and Data Type of columns shown in the Preview, click the Get from

preview button. Note that Width is applicable only for Fixed data type.

ActiveReports 14 868

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

5. Click OK to save the changes and close the dialog. The Connection String tab displays the generated connection

string. You can validate the connection string by clicking the Validate DataSource icon .
6. Click OK on the lower right corner to close the dialog. You have successfully connected the report to a CSV data

source. Note that the dataset for the CSV data source is added automatically.

To use an Unbound data source
To create a data connection

1. Add an Imports (VisualBasic.NET) or using (C#) statement for System.Data and System.Data.Oledb namespaces.
2. Right-click the gray area outside the design surface to select the report and select Properties.
3. In the Properties window that appears, click the Events icon to view the available events for the report.
4. In the events list, double-click the ReportStart event. This creates an event-handling method for the ReportStart

event in code.
5. Add the following code to the handler.

ActiveReports 14 869

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write code in VisualBasic.NET

Visual Basic.NET code. Paste above the ReportStart event.

Dim m_cnnString As String
Dim sqlString As String
Dim m_reader As OleDbDataReader
Dim m_cnn As OleDbConnection

Visual Basic.NET code. Paste inside the ReportStart event.

'Set data source connection string.
m_cnnString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 + "Data Source=[User Folder]\Samples14\Data\NWIND.mdb;Persist Security
Info=False"
'Set data source SQL query.
sqlString = "SELECT * FROM categories INNER JOIN products ON categories.categoryid
" _
 + "= products.categoryid ORDER BY products.categoryid, products.productid"
'Open connection and create DataReader.
m_cnn = New OleDb.OleDbConnection(m_cnnString)
Dim m_Cmd As New OleDb.OleDbCommand(sqlString, m_cnn)
If m_cnn.State = ConnectionState.Closed Then
 m_cnn.Open()
End If
m_reader = m_Cmd.ExecuteReader()

To write code in C#

C# code. Paste above the ReportStart event.

private static OleDbConnection m_cnn;
private static OleDbDataReader m_reader;
private string sqlString;
private string m_cnnString;

C# code. Paste inside the ReportStart event.

//Set data source connection string.
m_cnnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source="
 + @"=[User Folder]\Samples14\Data\NWIND.mdb;Persist Security Info=False";
//Set data source SQL query.
sqlString = "SELECT * FROM categories INNER JOIN products"
 + " ON categories.categoryid = products.categoryid"
 + " ORDER BY products.categoryid, products.productid";
//Open connection and create DataReader.
m_cnn = new OleDbConnection(m_cnnString);
OleDbCommand m_Cmd = new OleDbCommand(sqlString,m_cnn);
if(m_cnn.State == ConnectionState.Closed)
{
 m_cnn.Open();

ActiveReports 14 870

Copyright © 2020 GrapeCity, Inc. All rights reserved.

}
m_reader = m_Cmd.ExecuteReader();

To close the data connection

1. Right-click the gray area outside the design surface to select the report and select Properties.
2. In the Properties window that appears, click the Events icon to view the available events for the report.
3. In the events list, double-click the ReportEnd event. This creates an event-handling method for the ReportEnd

event.
4. Add the following code to the handler.

To write the code in Visual Basic

Visual Basic.NET code. Paste inside the ReportEnd event.

m_reader.Close()
m_cnn.Close()

To write the code in C#

C# code. Paste inside the ReportEnd event.

m_reader.Close();
m_cnn.Close();

To create a fields collection

1. Right-click the gray area around the design surface to select the report and select Properties.
2. In the Properties window that appears, click the Events icon to view the available events for the report.
3. In the events list, double-click DataInitialize event. This creates an event-handling method for the report's

DataInitialize event.
4. Add code to the handler to add fields to the report's fields collection.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste inside the DataInitialize event.

Fields.Add("CategoryName")
Fields.Add("ProductName")
Fields.Add("UnitsInStock")
Fields.Add("Description")

To write the code in C#

C# code. Paste inside the DataInitialize event.

Fields.Add("CategoryName");
Fields.Add("ProductName");
Fields.Add("UnitsInStock");
Fields.Add("Description");

To populate the fields

ActiveReports 14 871

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Right-click the gray area around the design surface to select the report and select Properties.
2. In the Properties window that appears, click the Events icon to view the available events for the report.
3. In the events list, double-click the FetchData event. This creates an event-handling method for the report's

FetchData event.
4. Add the following code to the handler to retrieve information to populate the report fields.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste inside the FetchData event.

Try
 m_reader.Read()
 Me.Fields("CategoryName").Value = m_reader("CategoryName")
 Me.Fields("ProductName").Value = m_reader("ProductName")
 Me.Fields("UnitsInStock").Value = m_reader("UnitsInStock")
 Me.Fields("Description").Value = m_reader("Description")
 eArgs.EOF = False
Catch ex As Exception
 eArgs.EOF = True
End Try

To write the code in C#

C# code. Paste inside the FetchData event.

try
{
 m_reader.Read();
 Fields["CategoryName"].Value = m_reader["CategoryName"].ToString();
 Fields["ProductName"].Value = m_reader["ProductName"].ToString();
 Fields["UnitsInStock"].Value = m_reader["UnitsInStock"].ToString();
 Fields["Description"].Value = m_reader["Description"].ToString();
 eArgs.EOF = false;
}
catch
{
 eArgs.EOF = true;
}

Tip: In order to view the added data at run time, add controls to your report and assign their DataField property to
the name of the fields you added in code while creating a field collection.

Caution: Do not access the Fields collection outside the DataInitialize and FetchData events. Accessing the Fields
collection outside of these events is not supported, and has unpredictable results.

To use the IEnumerable data source
1. Right-click the design surface and select View Code.
2. Add the following code inside the class declaration of the report:

ActiveReports 14 872

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To create a data source in Visual Basic

Visual Basic.NET code. Paste inside the class declaration of the report.

Private datasource1 As IEnumerator(Of String) = Nothing
Dim list As List(Of String)= Nothing

Visual Basic.NET code. Paste inside the class declaration of the report.

Private Function GetIEnumerableData() As IEnumerable(Of String)
 For i As Integer = 1 To 10
 list.Add(String.Format("TestData_{0}", i.ToString()))
 Next
 Return list
End Function

To create a data source in C#

C# code. Paste inside the class declaration of the report.

private IEnumerator<string> datasource = null;

C# code. Paste inside the class declaration of the report.

private IEnumerable<string> GetIEnumerableData()
{
 for (int i = 1; i <= 10; i++)
 {
 yield return string.Format("TestData_{0}", i.ToString());
 }
}

3. On the design surface, right-click the gray area around the design surface to select the report and select Properties.
4. In the Properties window that appears, click the Events icon to view the available events for the report.
5. Double-click the DataInitialize event. This creates an event-handling method for the report's DataInitialize event.
6. Add the following code to the handler to add fields to the report's Fields collection.

To add fields in Visual Basic

Visual Basic.NET code. Paste inside the DataInitialize event.

Me.Fields.Add("TestField")
Me.list = New List(Of String)
datasource1 = GetIEnumerableData().GetEnumerator()

To add fields in C#

C# code. Paste inside the DataInitialize event.

this.Fields.Add("TestField");
datasource = GetIEnumerableData().GetEnumerator();

7. Repeat steps 3 and 4 to open the events list in the property window.
8. Double-click the FetchData event. This creates an event-handling method for the report's FetchData event.

ActiveReports 14 873

Copyright © 2020 GrapeCity, Inc. All rights reserved.

9. Add code to the handler to retrieve information to populate the report fields.

To populate fields in Visual Basic

Visual Basic.NET code. Paste inside the FetchData event.

If datasource1.MoveNext() Then
 Me.Fields("TestField").Value = datasource1.Current
 eArgs.EOF = False
Else
 eArgs.EOF = True
End If

To populate fields in C#

C# code. Paste inside the FetchData event.

if (datasource.MoveNext())
{
 this.Fields["TestField"].Value = datasource.Current;
 eArgs.EOF = false;
}
else
 eArgs.EOF = true;

Tip: In order to view the added data at run time, add controls to your report and assign their DataField property to
the name of the fields you added in code while creating a field collection.

Modify Data Sources at Run Time
In a section report, you can modify your data source at run time. Follow the steps below to connect your report to the
NWind.mdb sample database at run time.

To find the database path

Note: These steps assume that the data path is defined in the following registry key.

1. Right-click the design surface, and select View Code to display the code view for the report.
2. Add the following code to the report to access the sample database path from the registry.

To write the code in Visual Basic

The following example shows what the code for the function looks like.

Visual Basic.NET code. Paste below the Imports GrapeCity.ActiveReports statement at the top of the code view.

Imports System
Imports Microsoft.Win32

ActiveReports 14 874

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This creates a function for getDatabasePath.

Visual Basic.NET code. Paste inside the getDatabasePath function.

Private Function getDatabasePath() As String
Dim regKey As RegistryKey
regKey = Registry.LocalMachine
regKey = regKey.CreateSubKey("SOFTWARE\\GrapeCity\\ActiveReports\\v14")
getDatabasePath = CType(regKey.GetValue(""), String)
End Function

To write the code in C#

The following example shows what the code for the function looks like.

C# code. Paste below the using GrapCity.ActiveReports statement at the top of the code view.

using Microsoft.Win32;
using System;

This creates a function for getDatabasePath.

C# code. Paste BELOW the getDatabasePath function.

private string getDatabasePath()
{
RegistryKey regKey = Registry.LocalMachine;
regKey = regKey.CreateSubKey("SOFTWARE\\GrapeCity\\ActiveReports\\v14");
return ((string)(regKey.GetValue("")));
}

To change the data source at run time
1. Double-click the gray area outside the design surface to create an event-handling method for the ReportStart

event.
2. Add the following code to the handler to change the data source at run time.

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste above the ReportStart event.

Dim conn As System.Data.OleDb.OleDbConnection
Dim reader As System.Data.OleDb.OleDbDataReader

Visual Basic.NET code. Paste inside the ReportStart event.

Dim dbPath As String = getDatabasePath()
Dim connString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + dbPath
+ "\NWIND.mdb"
conn = New System.Data.OleDb.OleDbConnection(connString)

ActiveReports 14 875

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Dim cmd As New System.Data.OleDb.OleDbCommand("SELECT * FROM Products WHERE
UnitPrice = 18", conn)
conn.Open()
reader = cmd.ExecuteReader()
Me.DataSource = reader

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste above the ReportStart event.

private static System.Data.OleDb.OleDbConnection conn;
private static System.Data.OleDb.OleDbDataReader reader;

C# code. Paste inside the ReportStart event.

string dbPath = getDatabasePath();
string connString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + dbPath +
"\\NWIND.mdb";
conn = new System.Data.OleDb.OleDbConnection(connString);
System.Data.OleDb.OleDbCommand cmd = new System.Data.OleDb.OleDbCommand("SELECT *
FROM Products WHERE UnitPrice = 18", conn);
conn.Open();
reader = cmd.ExecuteReader();
this.DataSource = reader;

To close the data connection
1. Right-click the gray area outside the design surface and select Properties.
2. In the Properties Window that appears, click the Events button. A list of report events appear.
3. Select the ReportEnd event and double click to create an event-handling method.
4. Add the following code to the handler to close the data connection.

To write the code in Visual Basic

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste inside the ReportEnd event.

reader.Close()
conn.Close()

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste inside the ReportEnd event.

reader.Close();
conn.Close();

Report Controls
See step-by-step instructions on using Section report controls.

In this section

Add Field Expressions
Learn how to add field expressions to a text box data field.

Display Page Numbers and Report Dates
Learn how to quickly add page numbering or report dates to Section reports using the ReportInfo control.

Load a File into a RichTextBox Control
Learn how to save and load an HTML or RTF file in a RichTextBox.

Use Custom Controls on Reports
Learn how to access a third party custom control in ActiveReports.

ActiveReports 14 876

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Add Field Expressions
In a section report, expressions can be used in the DataField property to specify textbox output in a report, such as
date/time, mathematical calculations or conditional values. All field expressions used in the DataField property begin with
the equals sign (=).

To use a mathematical expression
Set the DataField property of a textbox control to a mathematical calculation.

Example:

=UnitPrice+5

=Quantity-5

=Quantity*UnitPrice

=UnitPrice/QuantityPerUnit

To use a substring
Set the DataField property of a textbox control to the required substring. While setting up grouping, change the
GroupHeader's DataField property to the same substring.

Example:

=ProductName.Substring(0, 1)

ActiveReports 14 877

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To use date/time
Set the DataField property of a textbox control similar to the following expression to display date/time values.

Example:

=System.DateTime.Now.ToString()

To create a conditional value
Set the DataField property of a textbox control to the conditional statement as desired.

Example:

=(UnitsInStock > 0)?"In Stock":"Backorder"

To concatenate fields
Set the DataField property of a textbox control similar to the following expression to display concatenated fields.

Example:

="There are " + UnitsInStock + " units of " + ProductName + " in stock."

=TitleOfCourtesy + " " + FirstName + " " + LastName

Note: ActiveReports automatically handles null values, replacing them with an empty string.

To round a calculation
Set the DataField Property of a textbox control like the following example.

Example:

=(double)System.Math.Round(UnitsInStock/10)

To use modular division
Set the DataField property of a textbox control like the following example to get the remainder (2 in this case).

Example: =22%(5)

To replace a null value
Set the DataField property of a textbox control like the following example to replace null with your own value.

Example:

=(UnitsInStock == System.DBNull.Value) ? "No Units In Stock" : UnitsInStock

Display Page Numbers and Report Dates
With the ReportInfo control available in a section report, you can display page numbers and report dates and times by
selecting a value in the FormatString property. This property provides the following pre-defined options for page

ActiveReports 14 878

Copyright © 2020 GrapeCity, Inc. All rights reserved.

numbering and date and time formatting.

Predefined Options and their Description

Numbering Format Description

Page {PageNumber} of {PageCount} on {RunDateTime} Display the page numbers along with Date and Time in the
following format : Page 1 of 100 on 1/31/2012
2:45:50 PM

Page {PageNumber} of {PageCount} Display the only the page numbers in the following format :
Page 1 of 100

{RunDateTime:} Display the Date and Time in the following format :
1/31/2012 2:45:50 PM

{RunDateTime: M/d} Display the Date in the following format : 1/31

{RunDateTime: M/d/yy} Display the Date in the following format : 1/31/12

{RunDateTime: M/d/yyyy} Display the Date in the following format : 1/31/2012

{RunDateTime: MM/dd/yy} Display the Date in the following format : 01/31/12

{RunDateTime: MM/dd/yyyy} Display the Date in the following format : 01/31/2012

{RunDateTime: d-MMM} Display the Date in the following format : 31-Jan

{RunDateTime: d-MMM-yy} Display the Date in the following format : 31-Jan-12

{RunDateTime: d-MMM-yyyy} Display the Date in the following format : 31-Jan-2012

{RunDateTime: dd-MMM-yy} Display the Date in the following format : 31-Jan-12

{RunDateTime: dd-MMM-yyyy} Display the Date in the following format : 31-Jan-2012

{RunDateTime: MMM-yy} Display the Date in the following format : Jan-12

{RunDateTime: MMM-yyyy} Display the Date in the following format : Jan-2012

{RunDateTime: MMMM-yy} Display the Date in the following format : January-12

{RunDateTime: MMMM-yyyy} Display the Date in the following format : January-2012

{RunDateTime: MMMM d,yyyy} Display the Date in the following format : January 31,
2012

{RunDateTime: M/d/yy h:mm tt} Display the Date and Time in the following format : 1/31/12
2:45 PM

{RunDateTime: M/d/yyyy h:mm tt} Display the Date and Time in the following format :
1/31/2012 2:45 PM

{RunDateTime: M/d/yy h:mm} Display the Date and Time in the following format : 1/31/12
2:45

ActiveReports 14 879

Copyright © 2020 GrapeCity, Inc. All rights reserved.

{RunDateTime: M/d/yyyy h:mm} Display the Date and Time in the following format :
1/31/2012 2:45

Page numbering can also be set to a group level using the SummaryGroup and SummaryRunning properties.

These steps assume that you have already added a Section Report to a project in Visual Studio. See Quick Start for more
information.

To display page numbers and report dates on a report
1. From the ActiveReports 14 Section Report tab in the toolbox, drag the ReportInfo control to the desired location

on the design surface.
2. With the ReportInfo control selected in the Properties Window, drop down the FormatString property.
3. Select the pre-defined format that best suits your needs.

Tip: You can customize the pre-defined formats in the Properties Window. For example, if you change
the FormatString property to Page {PageNumber} / {PageCount}, it shows the first page number as Page
1/1. For more information on creating formatting strings, see the Date, Time, and Number Formatting topic.

To display page numbers and page count at the group level
1. From the ActiveReports 14 Section Report tab in the toolbox, drag the ReportInfo control to the GroupHeader or

GroupFooter section of the report and set the FormatString property as above.
2. With the ReportInfo control still selected in the Properties Window, drop down the SummaryGroup property and

select the group for which you want to display a page count.
3. Drop down the SummaryRunning property and select Group.

Load a File into a RichTextBox Control
In a section layout, you can load an RTF or an HTML file into the RichTextBox control both at design time and at run time .
Following is a step-by-step process that helps you load these files into the RichTextBox control.

These steps assume that you have already added a Section Report (code based) template in a Visual Studio project and
have placed a RichTextBox control inside its detail section. See Quick Start for more information.

Caution: Do not attempt to load a file into a RichTextBox in a section that repeats. After the first iteration of the
section, the RTF or HTML file is already in use by that first iteration and returns "file in use" errors when that section is
processed again.

To write an RTF file to load into a RichTextBox control
1. Open wordpad, and paste the following formatted text into it.

Paste the following section into an RTF File.

Customer List by Country
Argentina

ActiveReports 14 880

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Rancho grande
Océano Atlántico Ltda.
Cactus Comidas para llevar

Austria

Piccolo und mehr
Ernst Handel

Belgium

Suprêmes délices
Maison Dewey

Brazil

Familia Arquibaldo
Wellington Improtadora
Que Delícia
Tradição Hipermercados
Ricardo Adocicados
Hanari Carnes
Queen Cozinha
Comércio Mineiro
Gourmet Lanchonetes

2. Save the file as sample.rtf in the debug directory inside the bin folder of your project.

Note: The RichTextBox control is limited in its support for advanced RTF features such as the ones supported by
Microsoft Word. In general, the features supported by WordPad are supported in this control.

To load an RTF file into the RichTextBox control at design time
1. On the report design surface, add a RichTextBox control.
2. With the RichTextBox control selected, at the botton of the Properties Window, click the Load File command. See

Properties Window for a description of commands.
3. In the Open dialog that appears, browse to an *.RTF file (For example, sample.rtf) and click the Open button to load

the file in the RichTextBox control.

To load an RTF file into the RichTextBox control at run time

Note: The RichTextBox control has limited support for advanced RTF features such as the ones supported by
Microsoft Word. Therefore, use a WordPad for obtaining best results.

These steps assume that the RTF file (for example, sample.rtf) to load has been saved in the bin/debug directory of your
project.

1. Right-click the report and select View Code to open the code view.
2. Add an Imports (Visual Basic.NET) or using (C#) statement at the top of the code view for the

GrapeCity.ActiveReports.SectionReportModel namespace.

ActiveReports 14 881

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. In the design view, double-click the detail section of the report to create an event-handling method for the Detail
Format event.

4. Add the following code to the handler to load the RTF file into the RichTextBox control.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail1_Format event.

Dim streamRTF As New
System.IO.FileStream(System.Windows.Forms.Application.StartupPath + "\sample.rtf",
System.IO.FileMode.Open)
Me.RichTextBox1.Load(streamRTF, RichTextType.Rtf)

To write the code in C#

C# code. Paste INSIDE the detail_Format event.

System.IO.FileStream streamRTF = new
System.IO.FileStream(System.Windows.Forms.Application.StartupPath + "\\sample.rtf",
System.IO.FileMode.Open);
this.richTextBox1.Load(streamRTF, RichTextType.Rtf);

Note: The Application.Startup path code does not work in preview mode. You must run the project in order to
see the file load.

To write an HTML file to load into a RichTextBox control
1. Open a Notepad, and paste the following HTML code into it.

HTML code. Paste in a NotePad file.

<html>
<body>
<center><h1>Customer List by Country</h1></center>
<h1>Argentina</h1>

Rancho grande
Océano Atlántico Ltda.
Cactus Comidas para llevar

<h1>Austria</h1>

Piccolo und mehr
Ernst Handel

<h1>Belgium</h1>

Suprêmes délices
Maison Dewey

ActiveReports 14 882

Copyright © 2020 GrapeCity, Inc. All rights reserved.

<h1>Brazil</h1>

Familia Arquibaldo
Wellington Improtadora
Que Delícia
Tradição Hipermercados
Ricardo Adocicados
Hanari Carnes
Queen Cozinha
Comércio Mineiro
Gourmet Lanchonetes

</body>
</html>

2. Save the file as sample.html.

To load an HTML file into the RichTextBox control at design time
1. On the report design surface, add a RichTextBox control.
2. With the RichTextBox control selected, at the bottom of the Properties Window, click the Load File command. See

Properties Window for a description of commands.
3. In the Open dialog that appears, browse to an *.html file (For example, sample.html) and click the Open button to

load the file in the RichTextBox control.

To load an HTML file into a RichTextBox control at run time
These steps assume that the HTML file (for example, sample.html) to load has been saved in the bin/debug directory of
your project.

1. Right-click the report and select View Code to open the code view.
2. Add an Imports (Visual Basic.NET) or using (C#) statement at the top of the code view for the

GrapeCity.ActiveReports.SectionReportModel namespace.
3. In the design view, double-click the detail section of the report to create an event-handling method for the Detail

Format event.
4. Add code to the handler to load the HTML file into the RichText control.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail1_Format event.

Dim streamHTML As New
System.IO.FileStream(System.Windows.Forms.Application.StartupPath + "\sample.HTML",
System.IO.FileMode.Open)
Me.RichTextBox1.Load(streamHTML, RichTextType.Html)

To write the code in C#

ActiveReports 14 883

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C# code. Paste INSIDE the detail_Format event.

System.IO.FileStream streamHTML = new
System.IO.FileStream(System.Windows.Forms.Application.StartupPath +
"\\sample.html", System.IO.FileMode.Open);
this.richTextBox1.Load(streamHTML, RichTextType.Html);

Note: The Application.Startup path code does not work in preview mode. You must run the project in order to
see the file load.

Use Custom Controls on Reports
In a section report, ActiveReports allows you to drop a third party control onto the report design surface where it
is recognized as a custom control. You can access its properties using type casting.

In the following steps, we use hidden textbox controls to populate a Visual Studio TreeView control. These steps assume
that you have already added a Section Report (code-based) template in a Visual Studio project. See Quick Start for more
information.

To add the TreeView control to a report
1. From the Visual Studio toolbox Common Controls tab, drag and drop a TreeView control onto the detail section

of a report.
2. Notice that in the Properties window, the control is called CustomControl1.

To add data and hidden TextBox controls to the report
1. Connect the report to the sample Nwind.mdb. The following steps use the Orders table from the NWind database.

The NWIND.mdb file can be downloaded from GitHub: ..\Samples14\Data\NWIND.mdb.
2. From the Report Explorer, drag and drop the following fields onto the detail section of the report:

ShipCountry
ShipCity
CustomerID
EmployeeID

3. On the design surface, select all four TextBox controls, and in the Properties window, change their Visible property
to False.

To create a function to add nodes to the TreeView control
1. Right-click the design surface and select View Code to see the code view for the report.
2. Add the following code inside the report class to add a function to the report for adding nodes to the TreeView

control.

The following examples show what the code for the function looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the report class.

Private Function AddNodeToTreeView(ByVal colNodes As TreeNodeCollection, ByVal
sText As String) As TreeNode

ActiveReports 14 884

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

 Dim objTreeNode As TreeNode
 objTreeNode = New TreeNode(sText)
 colNodes.Add(objTreeNode)
 Return objTreeNode
End Function

To write the code in C#

C# code. Paste INSIDE the report class.

private TreeNode AddNodeToTreeView(TreeNodeCollection colNodes, string sText)
{
 TreeNode objTreeNode;
 objTreeNode = new TreeNode(sText);
 colNodes.Add(objTreeNode);
 return objTreeNode;
}

To access the TreeView control properties in code and assign data
1. On the report design surface, double-click the detail section to create an event-handling method for the

Detail_Format event.
2. Add the following code to the handler to access the TreeView properties and assign data from the hidden TextBox

controls.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail Format event.

'Type cast the custom control as a TreeView
Dim TreeView1 As New TreeView
TreeView1 = CType(Me.CustomControl1.Control, TreeView)

'Create a tree node
Dim objCountryTreeNode As TreeNode
'Assign the text from a hidden textbox to the node
objCountryTreeNode = AddNodeToTreeView(TreeView1.Nodes, Me.txtShipCountry1.Text)
'Add a second-level node
AddNodeToTreeView(objCountryTreeNode.Nodes, Me.txtShipCity1.Text)
'Expand the top-level node so the second-level node is in view
objCountryTreeNode.Expand()

'Create a second top-level node
Dim objCustomerTreeNode As TreeNode
objCustomerTreeNode = AddNodeToTreeView(TreeView1.Nodes, Me.txtCustomerID1.Text)
AddNodeToTreeView(objCustomerTreeNode.Nodes, Me.txtEmployeeID1.Text)
objCustomerTreeNode.Expand()

To write the code in C#

ActiveReports 14 885

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C# code. Paste INSIDE the Detail Format event.

//Type cast the custom control as a TreeView
TreeView TreeView1 = new TreeView();
TreeView1 = (TreeView)this.customControl1.Control;
//Create a tree node
TreeNode objCountryTreeNode;
//Assign the text from a hidden textbox to the node
objCountryTreeNode = AddNodeToTreeView(TreeView1.Nodes, this.txtShipCountry1.Text);
//Add a second-level node
AddNodeToTreeView(objCountryTreeNode.Nodes, this.txtShipCity1.Text);
//Expand the top-level node so the second-level node is in view
objCountryTreeNode.Expand();
//Create a second top-level node
TreeNode objCustomerTreeNode;
objCustomerTreeNode = AddNodeToTreeView(TreeView1.Nodes, this.txtCustomerID1.Text);
AddNodeToTreeView(objCustomerTreeNode.Nodes, this.txtEmployeeID1.Text);
objCustomerTreeNode.Expand();

To load the report in the Viewer, change the Form Load event
To write code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event

Dim ar = New SectionReport1()
ar.Run(False)
viewer1.LoadDocument(ar.Document)

To write code in C#

C# code. Paste INSIDE the Form Load event

var ar = new SectionReport1();
ar.Run(false);
viewer1.LoadDocument(ar.Document);

Section Report Scenarios
See step-by-step instructions for creating commonly used reports with Section Layout.

In this section

Create Top N Reports
Learn to display top 10 data on a report.

Create a Summary Report
Learn to display summary data on a report.

ActiveReports 14 886

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Create Green Bar Reports
Learn to alternate background colors on the detail section.

Create Top N Reports
In a section report, in order to display only the top N number of details on a report, you can manipulate the data pulled
by your SQL query.

To set an access data source to pull Top N data
1. On the design surface, click the DataSource Icon in the detail section band to open the Report Data Source dialog.

2. On the OLE DB tab of the Report Data Source dialog, next to Connection String, click the Build button.
3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next

button.
4. Click the ellipsis (...) button to browse to the NWind database. Click Open once you have selected the appropriate

access path.

Note: The NWIND.mdb file can be downloaded from GitHub: ..\Samples14\Data\NWIND.mdb.

5. Click OK to close the window and fill in the Connection String field.
6. Back in Report Data Source dialog, paste the following SQL query in the Query field to fetch Top 10 records from

the database.

SQL Query

SELECT TOP 10 Customers.CompanyName, Sum([UnitPrice]*[Quantity])
AS Sales
FROM (Customers INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
GROUP BY Customers.CompanyName
ORDER BY Sum([UnitPrice]*[Quantity])
DESC

7. Click OK to return to the report design surface.

To add controls to display the Top N data
1. In the Report Explorer, expand the Fields node, then the Bound node.
2. Drag and drop the following fields onto the detail section and set the properties of each textbox as indicated.

Field Text Location Miscellaneous

CompanyName Company Name 0.5, 0

Sales Sales 5, 0 OutputFormat = Currency

3. Go to Preview tab, to view the result.

A report with the Top 10 companies' data similar to the following will appear in the preview.

ActiveReports 14 887

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Create a Summary Report
In a section layout, you can display totals and subtotals by modifying the summary fields of a TextBox control. Use the
following steps to learn how to add totals and subtotals in a report.

These steps assume that you have already added a Section Report template in a Visual Studio project and connected it to
a data source. See Quick Start and Bind Reports to a Data Source for further information.

Note: These steps use the Products table from the NWind database. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

To calculate and display subtotals in a report
1. Right-click the design surface and select Insert, then Group Header/Footer to add group header and group

footer sections to the layout.
2. With the GroupHeader section selected in the Properties Window, set its DataField property to CategoryID. This

groups the data on the report according to the set field.
3. From the Report Explorer, drag and drop the following fields onto the corresponding sections of the report.

Field Name = CategoryID
Section = GroupHeader

Field Name = ProductName
Section = Detail

Field Name = UnitsInStock
Section = Detail

Field Name = UnitsInStock
Section = GroupFooter

4. With the UnitsInStock field in the GroupFooter selected, go to the Properties Window and set the following:
SummaryFunc: Sum
SummaryType: Sub Total
SummaryRunning: Group

ActiveReports 14 888

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

SummaryGroup: GroupHeader1
5. Go to the Preview tab to view the report and see the Sub Total appear below each group of data similar to the

following image.

To calculate and display grand total in a report
These steps are a continuation of the procedure above. The report generated at the end of this procedure contains totals
and subtotals.

1. Right-click the design surface and select Insert, then Report Header/Footer to add report header and footer
sections to the layout.

2. From Report Explorer, drag and drop the UnitsInStock field onto the ReportFooter section go to the Properties
Window and set the following:

SummaryFunc: Sum
SummaryType: GrandTotal
SummaryRunning: All

3. Go to the Preview tab to view the report and see the Grand Total appear on the last page of the report.

ActiveReports 14 889

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Create Green Bar Reports
In a section report, green bar printouts can be created by setting alternate shades or background color in the report's
detail section in the Format event. The following steps demonstrate how to create a Green Bar report.

1. On the design surface, double-click the detail section of the report to create an event handling method for the
Detail Format event.

2. Add the following code to the handler to alternate background colors.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste JUST ABOVE the Detail Format event.

Dim color As Boolean

Visual Basic.NET code. Paste INSIDE the Detail Format event.

If color = True Then
 Me.Detail1.BackColor = System.Drawing.Color.DarkSeaGreen
 color = False
Else
 Me.Detail1.BackColor = System.Drawing.Color.Transparent
 color = True
End If

To write the code in C#

C# code. Paste JUST ABOVE the Detail Format event.

bool color;

C# code. Paste INSIDE the Detail Format event.

if(color)
{
 this.detail.BackColor = System.Drawing.Color.DarkSeaGreen;
 color = false;
}
else
{
 this.detail.BackColor = System.Drawing.Color.Transparent;
 color = true;
}

3. Add controls like TextBox to the report design surface and preview the report.

The following image shows a Green Bar report alternating between Transparent and Dark Sea Green backgrounds:

ActiveReports 14 890

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Interactivity
Learn to perform interactive tasks in Section reports with quick how-to topics.

In this section

Add Parameters in a Section Report
Learn how to add parameters in Section reports

Add Bookmarks
Learn how to add bookmarks

Add Hyperlinks
Learn how to add hyperlinks

Add and Save Annotations
Learn how to add annotations at run time and save reports containing annotations

Add Parameters in a Section Report
There are several ways to add parameters in a section report. The following sections provide a step by step overview of
adding parameters in a report.

To add parameters using the Report Explorer
1. In the Report Explorer, right-click the Parameters node and select Add. This adds a parameter (Parameter1) as a

child to the Parameters node.

ActiveReports 14 891

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. Select the added parameter to open the Properties Window and set values in the following properties:
Name: This is the unique name of the parameter which appears as Parameter1 by default. It corresponds to
the Key property in parameters entered via code.
Default Value: Sets/returns the value displayed when the user is prompted to enter a value at run time.
Prompt: Sets/returns a string displayed when a user is prompted for the value at run time.
PromptUser: Boolean value that indicates whether to prompt the user for a value or not. This is set True to
use parameters at run time.
Type: This value which defaults to String defines the type of data the parameter represents. You can also set
data type to Date or Boolean.

3. Pass the parameter to a field on the report, or access it programmatically as described in the run time procedure
below.

To add parameters directly using a SQL query
When you add SQL parameters to a report, ActiveReports displays an Enter Report Parameters dialog where the user can
enter the values to fetch from the database.

1. In the detail section band, click the DataSource icon to view the Report Data Source dialog.
2. Connect the report to a data source, for example, OleDb data source. See Bind Reports to a Data Source for further

details.
3. In the Query field, enter a SQL query like the one below, which contains the parameter syntax to prompt for

parameter values at run time.
SELECT * FROM Products
INNER JOIN (Orders INNER JOIN [Order Details] ON Orders.OrderID= [Order
Details].OrderID)
ON Products.ProductID = [Order Details].ProductID
WHERE Products.SupplierID = <%SupplierID|Enter Supplier ID|7%>
AND OrderDate >= #<%OrderDate|Order date from|11/1/1994|D%>#
AND Discontinued = <%Discontinued|Is this checked?|true|B%>

4. Click OK to save the data source and return to the report design surface.

The SQL query above causes ActiveReports to display the following dialog to the user. The user can accept these or
input other values to select report data.

ActiveReports 14 892

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add parameters at run time
You can add, edit, and delete parameters at run time. The following code demonstrates how to add a parameter and
display its value in a Textbox control.

1. Double-click in the gray area below the report to create an event-handling method for the ReportStart event.
2. Add code to the handler to set parameters at run time.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste at beginning of code view.　

Imports GrapeCity.ActiveReports.SectionReportModel

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Dim myParam1 As New Parameter()
myParam1.Key = "myParam1"
myParam1.Type = Parameter.DataType.String

'Set to False if you do not want input from user.
myParam1.PromptUser = True
myParam1.Prompt = "Enter Data:"
myParam1.DefaultValue = "Default Value"
Me.Parameters.Add(myParam1);

'Set to True to display parameter dialog box when report is run.
Me.ShowParameterUI = True

To write the code in C#

C# code. Paste at beginning of code view.

using GrapeCity.ActiveReports.SectionReportModel;

C# code. Paste INSIDE the ReportStart event.

Parameter myParam1 = new Parameter();
myParam1.Key = "myParam1";
myParam1.Type = Parameter.DataType.String;

ActiveReports 14 893

Copyright © 2020 GrapeCity, Inc. All rights reserved.

//Set to false if you do not want input from user.
myParam1.PromptUser = true;
myParam1.Prompt = "Enter Data:";
myParam1.DefaultValue = "Default Value";
this.Parameters.Add(myParam1);

//Set to true to display parameter dialog box when report is run.
this.ShowParameterUI = true;

3. In the design view, click the gray area below the report to select it and open the Properties Window.
4. Click the events icon in the Properties Window to display available events for the report.
5. Double-click FetchData. This creates an event-handling method for the report's FetchData event.
6. Add code to the handler to pass the parameter at run time.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the FetchData event.

'Set textbox text equal to the value of the parameter.
Me.txtParam1.Text = Me.Parameters("myParam1").Value

To write the code in C#

C# code. Paste INSIDE the FetchData event.

//Set textbox text equal to the value of the parameter.
this.txtParam1.Text = this.Parameters["myParam1"].Value;

The run-time implementation above causes ActiveReports to display the following dialog to the user. The user can
enter any text in this prompt dialog and display it on the report.

To View a Parameterized Report
The parameter prompt dialog for a parameterized report depending on how you view the report.

To get a Parameter Dialog box

1. In the Visual Studio project, add a Viewer control to the Form.
2. Double-click the Form title bar to create a Form_Load event.
3. Add the following code to the handler to view the report in the Viewer.

ActiveReports 14 894

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Dim rpt As New SectionReport1
Viewer1.Document = rpt.Document
rpt.Run()

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

SectionReport1 rpt = new SectionReport1();
viewer1.Document = rpt.Document;
rpt.Run();

To get a Parameter Panel in the Viewer sidebar

1. In the Visual Studio project, add a Viewer control to the Form.
2. Double-click the Form title bar to create a Form_Load event.
3. Add the following code to the handler to view the report in the Viewer.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Dim rpt As New SectionReport1
Me.Viewer1.LoadDocument(rpt)

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

SectionReport1 rpt = new SectionReport1();
viewer1.LoadDocument(rpt);

ActiveReports 14 895

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Add Bookmarks
In a section report, you can display bookmarks and nested bookmarks in the viewer's table of contents for fields, groups, and
subreports. You can also add special bookmarks at run time.

To set up basic bookmarks
1. From the Visual Studio toolbox, drag and drop a TextBox control onto the detail section.
2. Double-click the Detail section of the report. This creates an event-handling method for the report's Detail_Format event.
3. Add code to the handler to set up bookmarks.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail Format event.

Me.Detail1.AddBookmark(textBox1.text)

To write the code in C#

C# code. Paste INSIDE the Detail Format event.

Detail.AddBookmark(TextBox1.Text);

To set up leveled or nested bookmarks

ActiveReports 14 896

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. From the Report Explorer, drag and drop CustomerID and ContactName onto the detail section.
2. Double-click the Detail section of the report. This creates an event-handling method for the report's Detail_Format event.
3. Add code to the handler to set up bookmarks.

The following example shows what the code to set up leveled or nested Bookmarks looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail Format event.

Me.Detail1.AddBookmark(txtCustomerID.Text + "\" + txtContactName.Text)

To write the code in C#

C# code. Paste INSIDE the Detail Format event.

detail.AddBookmark(txtCustomerID.Text + "\\" + txtContactName.Text);

To nest grandchild bookmarks and use bookmarks in grouping
1. From the Report Explorer, drag and drop CustomerID, ContactName and City fields onto the detail section.
2. Double-click in the Detail section of the report. This creates an event-handling method for the report's Detail_Format event.
3. Add code to the handler to set up a bookmark for each ContactName and nest ContactName bookmarks within each

CustomerID, and CustomerID bookmarks in each City.

The following example shows what the code for the detail section looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail_Format event.

Me.Detail1.AddBookmark(txtCity.Text + "\" + txtCustomerID.Text + "\" + txtContactName.Text)

To write the code in C#

C# code. Paste INSIDE the Detail_Format event.

this.detail.AddBookmark(txtCity.Text + "\\" + txtCustomerID.Text + "\\" +
txtContactName.Text);

4. Add a GroupHeader section to the layout and set its DataField property to City.
5. Double-click in the Group Header section of the report. This creates an event-handling method for the report's Group Header

Format event.
6. Add code to the handler to set up a bookmark for each instance of the City group.

The following example shows what the code for the group header looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Group Header Format event.

Me.GroupHeader1.AddBookmark(txtCity.Text)

To write the code in C#

C# code. Paste INSIDE the Group Header Format event.

this.groupHeader1.AddBookmark(txtCity.Text);

ActiveReports 14 897

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To combine parent report and subreport bookmarks
1. From the Report Explorer, drag and drop the CustomerID field onto the detail section of the Parent report.
2. Double-click the Detail section to create an event-handling method for the report's Detail Format event.
3. Add code to the handler to create a bookmark for each instance of the CustomerID field in the main report.

The following example shows what the code for the method looks like for the main report.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail Format event of the main report.

Me.Detail1.AddBookmark(txtCustomerID.Text)

To write the code in C#

C# code. Paste INSIDE the Detail Format event of the main report.

detail1.AddBookmark(txtCustomerID.Text);

4. From the Report Explorer, drag and drop the ContactName field onto the detail section of the Subreport.
5. Double-click in the Detail section to create an event-handling method for the report's Detail Format event.
6. Add code to the handler to create a bookmark for each instance of the ContactName field in the subreport.

The following example shows what the code for the method looks like for the subreport.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail Format event of the subreport.

Me.Detail1.AddBookmark(CType(Me.ParentReport.Sections("Detail1").Controls("txtCustomerID"),
TextBox).Text
+ "\" + Me.txtContactName.Text)

To write the code in C#

C# code. Paste INSIDE the Detail Format event of the subreport.

this.detail1.AddBookmark(((TextBox)
(this.ParentReport.Sections["Detail1"].Controls["txtCustomerID"])).Text
+ "\\" + this.txtContactName.Text);

To add special bookmarks at run time
To create and add special bookmarks to the bookmarks collection at run time, add the bookmarks to the report document's pages
collection.

Caution: Remember that the page collection does not exist until the report runs, so use this code in the ReportEnd event or in
form code after the report has run.

To write the code in Visual Basic.NET

1. Click in the gray area outside the report and right-click to select Properties from the context menu.
2. Click the Events icon in the Properties Window to display events available for the report.
3. Double-click ReportEnd. This creates an event-handling method for the ReportEnd event.
4. Add code to the handler to add a bookmark.

The following example shows what the code for the method looks like.

ActiveReports 14 898

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic.NET code. Paste INSIDE the ReportEnd event.

Me.Document.Pages(0).AddBookmark("New Bookmark", 1)

To write the code in C#

C# code. Paste INSIDE the ReportEnd event.

this.Document.Pages[0].AddBookmark("New Bookmark", 1);

To view a report bookmarks in the Viewer or Preview tab
1. Add the ActiveReports Viewer control to your Windows Form.
2. Add code to display the report in the Viewer. See Preview Reports for further information.
3. Press F5 to run the report.
4. On the Viewer toolbar, select Toggle Sidebar to open the sidebar and click the Document Map button to view the list of

bookmarks.

Add Hyperlinks
In a section report, you can add hyperlinks in a report using the Hyperlink property available with the following controls:

Label
TextBox
Picture

You can add hyperlinks that connect to a Web page, open an e-mail, or jump to a bookmark.

Note: Specify the full URL address (for example, "http://www.grapecity.com") for the Hyperlink property to avoid
broken links while viewing reports.

To link to a Web page
1. Select an existing control or drag and drop a control from the Visual Studio toolbox onto the design surface.
2. Right-click the control to open the Properties Window.
3. In the Properties Window, set the HyperLink property to any valid URL. For example, for example,

http://www.grapecity.com.

To link to an e-mail address
1. Select an existing control or drag and drop a control from the Visual Studio toolbox onto the design surface.
2. Right-click the control to open the Properties Window.
3. In the Properties Window, set the HyperLink property to mailto: any valid e-mail address.

To parse the URL out of a database field for a hyperlink
1. From the Report Explorer, drag and drop the link field onto the design surface.
2. Double-click the section where you had placed the link field. This creates an event-handling method for the

section's Format event.
3. Add code to the Format event to,

ActiveReports 14 899

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Parse the URL out of the Link field
Assign it to the HyperLink property of TextBox
Remove the URL markers from the text displayed in TextBox

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Format event.

Dim iStart As Integer
Dim sHTML As String
If textBox1.Text <> "" Then
 iStart = InStr(1, textBox1.Text, "#", CompareMethod.Text)
 sHTML = Right(textBox1.Text, (Len(textBox1.Text) - iStart))
 sHTML = Replace(sHTML, "#", "", 1, -1, CompareMethod.Text)
 textBox1.HyperLink = sHTML
 textBox1.Text = Replace(textBox1.Text, "#", "", 1, -1, CompareMethod.Text)
End If

To write the code in C#

C# code. Paste INSIDE the Format event.

int iStart;
string sHTML;
if (textBox1.Text != "")
 {
 iStart = textBox1.Text.IndexOf("#",0);
 sHTML = textBox1.Text.Substring(iStart, textBox1.Text.Length - iStart);
 sHTML = sHTML.Replace("#", "");
 textBox1.HyperLink = sHTML;
 textBox1.Text = textBox1.Text.Replace("#", "");
 }

To create a hyperlink that jumps to a bookmark
1. From the Report Explorer, drag and drop a field onto the design surface.
2. Double-click the section where you had placed the field. This creates an event-handling method for the section's

Format event.
3. Add the following code inside the Format event.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste JUST ABOVE the Format event.

Public pBM As New BookmarksCollection()
Dim iEntry As Integer

Visual Basic.NET code. Paste INSIDE the Format event.

ActiveReports 14 900

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Me.Detail1.AddBookmark(Me.textBox1.Text)
Me.txtEntry.HyperLink = "toc://" + pBM(iEntry - 1).Label
Me.txtEntry.Text = pBM(iEntry - 1).Label
Me.txtPage.Text = pBM(iEntry - 1).PageNumber

To write the code in C#

C# code. Paste JUST ABOVE the Format event.

public BookmarksCollection pBM = new BookmarksCollection();
int iEntry;

C# code. Paste INSIDE the Format event.

this.detail.AddBookmark(this.textBox.Text);
this.txtEntry.HyperLink = "toc://" + pBM[iEntry - 1].Label;
this.txtEntry.Text = pBM[iEntry - 1].Label;
this.txtPage.Text = pBM[iEntry - 1].PageNumber.ToString();

To display the page number of the bookmark in the table of contents
1. Select the gray area outside the report and right-click to choose Properties option from the context menu.
2. In the Properties Window that appears, click the Events button to get the list of events for the report.
3. Select the FetchData event from that list and double-click it. This creates an event-handling method for the

report's FetchData event in the code behind.
4. Add code to the handler to retrieve information to populate the report fields.

The following example shows what the code for the method looks like.

To write the code in Visual Basic

Visual Basic.NET code. Paste INSIDE the FetchData event.

If iEntry > pBM.Count - 1 Then
 eArgs.EOF = True
Else
 eArgs.EOF = False
 iEntry += 1
End If

To write the code in C#

C# code. Paste INSIDE the FetchData event.

if (iEntry > pBM.Count - 1)
{
 eArgs.EOF = true;
}
else
{
 eArgs.EOF = false;

ActiveReports 14 901

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 iEntry += 1;
}

Add and Save Annotations
In a section report, you can save a report containing annotations along with the report data into an RDF file. You can also
add annotations at run time. The following steps demonstrate how to accomplish these tasks in code.

These steps assume that you have already added a Section Report (code based) template in a Visual Studio project. See
Quick Start for more information.

To save annotations
The following example shows how to add a Save Annotated Report button to the viewer and save a report with
annotations in RDF.

1. From the Visual Studio toolbox, drag a Button control onto the viewer.
2. Set the Text property of the button to Save Annotated Report.
3. Double-click the button. This creates an event-handling method for the button Click event.
4. Add code to the click handler to save the document to an RDF file. See Save and Load RDF Report Files for more

information on loading the saved RDF file into the viewer.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the button Click event.

Me.Viewer1.Document.Save("C:\UserAnnotations.rdf")

To write the code in C#

C# code. Paste INSIDE the button Click event.

this.viewer1.Document.Save("C:\\UserAnnotations.rdf");

To add annotations in code
The following example shows how to add annotations at run time and save the report data and annotations to an RDF file.

1. Double-click the title bar of the Form in which you host the viewer. This creates an event-handling method for the
Form_Load event.

2. Add code to the handler to run the report, add annotations, display the report in the viewer, and save it into an
RDF file.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste ABOVE the class.

Imports GrapeCity.ActiveReports.Document.Section.Annotations

Visual Basic.NET code. Paste INSIDE the Form Load event.

 Dim rpt As New SectionReport1

ActiveReports 14 902

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 'Run the report first.
 rpt.Run()

 'Assign the viewer.
 Me.Viewer1.Document = rpt.Document

 'Create an annotation and assign property values.
 Dim circle As New AnnotationCircle
 circle.Color = System.Drawing.Color.GreenYellow
 circle.Border.Color = System.Drawing.Color.Chartreuse

 'Add the annotation.
 circle.Attach(1,1) 'screen location
 Me.Viewer1.Document.Pages(0).Annotations.Add(circle)

 'Set the size properties. The annotation must be added to the page first.
 circle.Height = 0.25
 circle.Width = 0.50

 'Save annotations with the report in an RDF file.
 rpt.Document.Save("C:\AnnotatedReport.rdf")

To write the code in C#

C# code. Paste ABOVE the class.

using GrapeCity.ActiveReports.Document.Section.Annotations;

C# code. Paste INSIDE the Form Load event.

 SectionReport1 rpt = new SectionReport1();
 //Run the report first.
 rpt.Run();

 //Assign the viewer
 this.viewer1.Document = rpt.Document;

 //Create an annotation and assign property values.
 AnnotationCircle circle = new AnnotationCircle();
 circle.Color = System.Drawing.Color.GreenYellow;
 circle.Border.Color = System.Drawing.Color.Chartreuse;

 //Add the annotation.
 circle.Attach(1,1); //screen location
 this.viewer1.Document.Pages[0].Annotations.Add(circle);

 //Set the size properties. The annotation must be added to the page first.
 circle.Height = 0.25f;
 circle.Width = 0.50f;

ActiveReports 14 903

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 //Save annotations with the report in an RDF file.
 rpt.Document.Save("C:\\AnnotatedReport.rdf");

Common Tasks
Learn to perform common tasks in Section reports with quick how-to topics.

In this section

Inherit a Report Template
Learn how to inherit other reports from a base report as a template

Change Ruler Measurements
Learn how to change ruler measurements

Conditionally Show or Hide Details
Learn how to use conditions to control the display of report's detail section

Use External Style Sheets
Learn how to set custom style values in the Styles page

Insert or Add Pages
Learn how to add and insert pages from one report to another

Add Groups
Learn how to add group data by adding a pair of group header and group footer sections to the report

Embed Subreports
Learn how to embed a subreport into a parent report

Add Code to Layouts Using Script
Learn how to use script to access controls, functions in a class, namespaces, etc.

Save and Load RDF Report Files
Learn how to save and load RDF report files

Save and Load RPX Report Files
Learn how to save and load RPX report files

Print Multiple Copies, Duplex and Landscape
Learn how to modify various printer settings

Inherit a Report Template
In a section layout, you can create a base report as a template from which other reports can inherit. This behavior is similar to
creating a master report and is available in a Section Report (code-based) layout.

Inheriting reports is useful when multiple reports share common features, such as identical page headers and footers. Instead of
recreating the look every time, create template headers and footers once and use inheritance to apply them to other reports.

Use the following instructions to create a base report and inherit it in other reports.

Caution: Base reports and the reports that inherit from them cannot contain controls with duplicate names. You can compile
and run your project with duplicate control names, but you cannot save the layout until you change the duplicate names.

To create a base report
1. In a Visual Studio project, add a Section Report (code-based) and name it rptLetterhead. See Quick Start for more

ActiveReports 14 904

Copyright © 2020 GrapeCity, Inc. All rights reserved.

information.
2. In the report template that appears, add the following controls from the Visual Studio toolbox to the indicated section of

rptLetterhead and set the properties.

Control Section Location Size Miscellaneous

Picture PageHeader 0, 0 in 3, 0.65 in Image = (click ellipsis and navigate to the location of your image file)
PictureAlignment = TopLeft

Label PageHeader 1.16, 0.65 in 1.8, 0.25 in Text = Inheritance
Font = Arial, 15pt, style=Bold

Label PageFooter 0, 0 in 6.5, 0.19 in Text = https://www.grapecity.com
HyperLink = https://www.grapecity.com
Font/Bold = True
Alignment = Center

3. Right-click the gray area below the design surface and choose properties, to open the Properties window.
4. In the Properties window, set the MasterReport property to True. Setting the MasterReport property to True locks the Detail

section.

Caution: Do not set the MasterReport property to True until you have finished designing or making changes to the
report. Setting this property to True triggers major changes in the designer file of the report.

You can use the Page Header and Page Footer sections to design the base report. When you create reports that inherit the layout
from this base report, only the detail section is available for editing.

To inherit layout from a base report
These steps assume that you have already added another Section Report (code-based) template. This report functions like a content
report where you can create the layout of the Detail section.

1. In a Visual Studio project, add a Section Report (code-based) and name it rptLetter.
2. In the Solution Explorer, right-click the new report and select the View Code option to open the code behind of the report.
3. In the code view, modify the inheritance statement as shown below. The content report inherits from the base report instead

of GrapeCity.ActiveReports.SectionReport.

Caution: The existing report layout in the content report is lost once you inherit the base report. Even if you change it
back to GrapeCity.ActiveReports.SectionReport, the original layout in content report will not be retrieved.

To write the code in Visual Basic.NET

Visual Basic.NET code. Replace YourContentReport, YourProjectName and YourMasterReportName with relevant names.

Partial Public Class rptLetter Inherits YourProjectName.rptLetterhead

To write the code in C#

ActiveReports 14 905

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/
https://www.grapecity.com/

C# code. Replace YourContentReport, YourProjectName and YourMasterReportName with relevant names.

public partial class rptLetter : YourProjectName.rptLetterhead

4. Close the reports and from the Build menu on the Visual Studio menu bar, select Rebuild. When you reopen the report, the
inherited sections and controls are disabled.

Note: To apply further changes from the base report to the content report, you might have to rebuild the project again.

Change Ruler Measurements
In a section layout, you can change ruler measurements from inches to centimeters and centimeters to inches. Use the
following instructions to modify ruler measurements at design- time and run-time.

To change ruler measurements at design-time
At design time, you can change the ruler measurements from the Report Settings Dialog.

1. In the Report Explorer, double-click the Settings node.
2. In the Report Settings dialog that appears, click Global Settings.
3. From the Ruler Units dropdown select Centimeters or Inches.

To call a measurement conversion at run-time
Call the CmToInch ('CmToInch Method' in the on-line documentation) method or InchToCm ('InchToCm Method' in
the on-line documentation) method at run-time to change measurements. For example, you can use the following code
when you are working in centimeters and need to convert a Label's position measurements from centimeters to inches at
run-time.

1. On the design surface select the section containing a control like a Label.
2. In the Properties Window, click the Events button to get a list of report events.
3. Select the Format event and double-click to create an event-handling method.
4. Add code like the following to the handler to set the size of the control using centimeters to inches.

ActiveReports 14 906

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste inside the Format event.

Me.Label1.Left = SectionReport1.CmToInch(2)
Me.Label1.Top = SectionReport1.CmToInch(2)

To write the code in C#

C# code. Paste inside the Format event.

this.label1.Left = SectionReport1.CmToInch(2);
this.label1.Top = SectionReport1.CmToInch(2);

Conditionally Show or Hide Details
In a section layout, you can use conditions in the Format event to control the display of report's detail section at run time.

These steps assume that you have already added a Section Report (code-based) template in a Visual Studio project and
connected it to a data source. See Quick Start and Bind Reports to a Data Source for further information.

Note: These steps use the Products table from the NWind database. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

1. From the Report Explorer, drag and drop the following fields onto the detail section of the report and set their
properties in the Properties Window.

Field Name Properties

ProductName Location: 0, 0.104 in
Size: 2.667, 0.2 in

Discontinued Location: 2.667, 0.104 in
Size: 2.021, 0.2 in

ReorderLevel Location: 4.688, 0.104 in
Size: 1.812, 0.2 in

2. Double-click the detail section of the report to create an event-handling method for the Format event.
3. Add the following code to the handler to hide the details of a product which is discontinued.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Detail_Format event.

If Me.txtReorderLevel1.Value = 0 And Me.txtDiscontinued1.Value = False Then
　　　Me.Detail1.Visible = True
　　　Me.txtReorderLevel1.Text = "Need to Reorder"
　　　Me.txtReorderLevel1.ForeColor = System.Drawing.Color.DarkRed
Else
　　　Me.Detail1.Visible = False
End If

ActiveReports 14 907

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To write the code in C#

C# code. Paste INSIDE the detail_Format event.

if (int.Parse(txtReorderLevel1.Value.ToString()) == 0 && txtDiscontinued1.Text ==
"False")
{
this.detail1.Visible = true;
this.txtReorderLevel1.Text = "Need to Reorder";
this.txtReorderLevel1.ForeColor = System.Drawing.Color.DarkRed;
}
else
{
this.detail1.Visible = false;
}

4. In Form1 of the Visual Studio project, add a Viewer control and load the report you created above in it. See
Windows Forms Viewer for further details.

5. Press F5 to debug and see a report with discontinued products hidden from view.

Use External Style Sheets
In a section layout, you can set custom style values in the Styles page of the Report Settings Dialog, and then apply the
styles to controls using the ClassName property from the Properties Window.

You can also apply these same styles to controls in other reports, by exporting them to a XML file of type *.reportstyle and
selecting it in other reports using the Report Settings dialog.

Note: You can apply styles to the CheckBox, Label, TextBox, and ReportInfo controls only.

ActiveReports 14 908

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To modify or create a style and save it to an external style sheet
1. In the Report Explorer, right-click the Settings node and select Show.
2. In the Report Settings dialog that appears, go to the Styles page. On the Styles page, there are four predefined

styles: Normal, Heading1, Heading2 and Heading3.
3. Click any of these styles in the list to modify them using the fields on the right, or click the New button to add a

new style.
4. Click the Export styles to file button to save the existing styles in a style sheet.
5. In the Save As dialog that appears, navigate to the location where you want to save the style sheet, provide an

name for the file and click the Save button to save it as an external *.reportstyle file.
6. In the Report Settings dialog, click the OK button to close the dialog and save the styles in the current report.

To load and apply an external style sheet at design time
1. In the Report Explorer, right-click the Settings node and select Show.
2. In the Report Settings dialog that appears, go to the Styles page.
3. On the Style page, click the Import styles from file button.
4. A message box warns that current styles will be deleted. Click Yes to continue.
5. In the Open dialog that appears, navigate to the *.reportstyle file that you want to use and click the Open button

to load the external style sheet.
6. On the design surface, select the control you want to apply the style to and right-click to choose Properties.
7. In the Properties Window, from the Class Name property drop down select a style to apply (like Heading1).

To load an external style sheet at run time and apply it
1. Right-click the gray area outside the design surface and select Properties.
2. In the Properties Window that appears, click the Events button. A list of report events appear.
3. Select the ReportStart event and double click to create an event-handling method.
4. Add the following code to the handler to load an external style sheet.

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Me.LoadStyles("C:\MyStyleSheet.reportstyle")

C# code. Paste INSIDE the ReportStart event.

this.LoadStyles(@"C:\MyStyleSheet.reportstyle");

To apply a style to a control at run time
The following steps assume that you have already loaded an external style sheet to the report.

1. On the design surface select the section containing the control.
2. In the Properties Window, click the Events button. A list of report events appear.
3. Select the Format event and double click to create an event-handling method.
4. Add the following code to the handler to apply a style to a control.

Visual Basic.NET code. Paste INSIDE the Format event.

Me.TextBox.ClassName = "Heading1"

C# code. Paste INSIDE the Format event.

ActiveReports 14 909

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.textBox.ClassName = "Heading1";

Insert or Add Pages
In a section layout, you can run multiple reports, merge their entire page collection or specific portions and view it as a
single report. You can save the document containing merged reports to an RDF file or even export them.

These steps assume that you have already placed a Viewer control on a Windows Form and your Visual Studio project
contains two section layout (code based) reports (rptOne and rptTwo). See Quick Start and Using the Viewer for more
information.

To add pages from one report to another
To add an entire report to another, use code like the one in the example below to iterate through the entire pages
collection of a report and append it to the first report. The Add ('Add Method' in the on-line documentation) of the
PagesCollection takes one parameter (value), which references a report document page.

1. In the design view of the Form containing the Viewer, double-click the title bar of the Form to create an event-
handling method for the Form_Load event.

2. Add the following code to the handler to add the entire rptTwo page collection to rptOne.

The following example shows what the code for the Add() method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim i As Integer
Dim rpt As New rptOne()
rpt.Run()
Dim rpt2 As New rptTwo()
rpt2.Run()
For i = 0 To rpt2.Document.Pages.Count - 1
rpt.Document.Pages.Add(rpt2.Document.Pages(i))
Next
Viewer1.Document = rpt.Document

To write the code in C#

C# code. Paste INSIDE the Form Load event.

int i;
rptOne rpt1 = new rptOne();
rpt1.Run();
rptTwo rpt2 = new rptTwo();
rpt2.Run();
for(i = 0; i < rpt2.Document.Pages.Count; i++)
{
rpt1.Document.Pages.Add(rpt2.Document.Pages[i]);
}

ActiveReports 14 910

Copyright © 2020 GrapeCity, Inc. All rights reserved.

viewer1.Document = rpt1.Document;

To add a range of pages from one report to another
To add a range of pages from one report to another, use the AddRange ('AddRange Method' in the on-line
documentation). This method has two overloads, each with one parameter. The first overload takes an array of page
objects which you can use to append only the specified pages from the second report onto the first (as in the example
below).

1. In the design view of the Form containing the Viewer, double-click the title bar of the Form to create an event-
handling method for the Form_Load event.

2. Add the following code to the handler to use the AddRange() method to add pages from rptTwo to rptOne.

The following example shows what the code for the AddRange() method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim rpt1 As New rptOne()

rpt1.Run()

Dim rpt2 As New rptTwo()

rpt2.Run()

rpt1.Document.Pages.AddRange(New GrapeCity.ActiveReports.Document.Section.Page()
{rpt2.Document.Pages(1), rpt2.Document.Pages(2)})

Viewer1.Document = rpt1.Document

To write the code in C#

C# code. Paste INSIDE the Form Load event.

rptOne rpt1 = new rptOne();
rpt1.Run();
rptTwo rpt2 = new rptTwo();
rpt2.Run();
rpt1.Document.Pages.AddRange(new GrapeCity.ActiveReports.Document.Section.Page[]
{rpt2.Document.Pages[0],rpt2.Document.Pages[1]});
viewer1.Document = rpt1.Document;

To insert pages from one report into another

ActiveReports 14 911

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To insert pages from one report to another, use the Insert ('Insert Method' in the on-line documentation) that takes
two parameters, an index, which determines where to insert the pages in the main report, and a value which references
the report page to insert.

1. In the design view of the Form containing the Viewer, double-click the title bar of the Form to create an event-
handling method for the Form_Load event.

2. Add the following code to the handler to insert page 1 of rptTwo at the beginning of rptOne.

The following example shows what the code for the Insert() method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim rpt1 As New rptOne()

rpt1.Run()

Dim rpt2 As New rptTwo()

rpt2.Run()

rpt1.Document.Pages.Insert(0, rpt2.Document.Pages(0))

Viewer1.Document = rpt1.Document

To write the code in C#

C# code. Paste INSIDE the Form Load event.

rptOne rpt1 = new rptOne();

rpt1.Run();

rptTwo rpt2 = new rptTwo();

rpt2.Run();

rpt1.Document.Pages.Insert(0, rpt2.Document.Pages[0]);

ActiveReports 14 912

Copyright © 2020 GrapeCity, Inc. All rights reserved.

viewer1.Document = rpt1.Document;

To insert a new page at a specific report location
To insert a new blank page at a specific location in the report, use the InsertNew ('InsertNew Method' in the on-line
documentation) which takes one parameter, index, which specifies the page after which you want to insert a new blank
page.

1. In the design view of the viewer form, double-click the title bar of the Form to create an event-handling method for
the Form_Load event.

2. Add the following code to the handler to insert a blank page at the beginning of rptOne.

The following example shows what the code for the InsertNew() method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim rpt1 As New rptOne()

rpt1.Run()

rpt1.Document.Pages.InsertNew(0)

Viewer1.Document = rpt1.Document

To write the code in C#

C# code. Paste INSIDE the Form Load event.

rptOne rpt1 = new rptOne();

rpt1.Run();

rpt1.Document.Pages.InsertNew(0);

viewer1.Document = rpt1.Document;

Add Groups
In a section report, you can group data by adding a pair of group header and group footer sections to the report. These
sections appear immediately above and below the detail section.

ActiveReports 14 913

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Caution: You cannot add a header section without a corresponding footer section. If you try to do so in code, the
results are unstable.

You can set the properties for the GroupHeader and GroupFooter sections in their corresponding dialogs. Following is a
list of properties you can set through the options in these dialogs. Each option in the GroupHeader dialog corresponds to
a property in the properties window. To access the properties directly, select the section and open the properties window.
See the associated property names in parenthesis with each dialog option below.

GroupHeader Dialog

To access the GroupHeader dialog, right click the group header and in the Properties window under the properties list
where the commands are displayed, click the Property dialog link. See Properties Window for further information on
commands.

General

Name (Name): Indicates the name of the GroupHeader in code. It is unique for a report.
Tag (Tag): Indicates the user-defined information persisted with the GroupHeader section.
Visible (Visible): Checkbox to specify the visibility of the GroupHeader section.
DataField (DataField): Field or expression on which you group the data.

Appearance

Background color (BackColor): Dropdown list to set the background color of the GroupHeader section.

Layout

Insert new page (NewPage): Dropdown list to determine whether a new page is inserted before and/or after
displaying the GroupHeader section.
Insert new column (NewColumn): Dropdown list to determine whether a new column (in a multi-column report)
appears before and/or after displaying the GroupHeader section.
Repeat section (RepeatStyle): Dropdown list to specify whether the GroupHeader section appears with every
column or page that the Detail section or associated footer appears on.
Keep section and its footer on a single page (GroupKeepTogether): Dropdown list to specify whether the
GroupHeader section and its footer appear as a single block on the same page or not.
Keep section on a single page (KeepTogether): Checkbox to specify whether the GroupHeader section appears on
a single page.
Keep section and its footer in a single column (ColumnGroupKeepTogether): Checkbox to specify whether the
GroupHeader section and its footer appear as a single block in the same column.
Keep section underneath the following section (UnderlayNext): Checkbox to specify whether the GroupHeader

ActiveReports 14 914

Copyright © 2020 GrapeCity, Inc. All rights reserved.

section appears in the following section or not. It allows you to show group header information inside the group
details, so long as you keep the BackColor property of the Detail section set to Transparent.
Use column layout (ColumnLayout): Checkbox to determine whether the GroupHeader section uses the same
column layout as the Detail section.
Can increase to accommodate contents (CanGrow): Checkbox to specify whether the height of the GroupHeader
section can grow when its controls extend beyond its original height.
Can decrease to accommodate contents (CanShrink): Checkbox to specify whether the height of the
GroupHeader section can adjust to the total height of controls placed in it.

GroupFooter Dialog

To access the GroupFooter dialog, right click the group footer and in the Properties window under the properties
list where the commands are displayed, click the Property dialog link. See Properties Window for further information on
commands.

General

Name (Name): Indicates the name of the GroupFooter in code. It is unique for a report.
Tag (Tag): Indicates the user-defined information persisted with the GroupFooter section.
Visible (Visible): Checkbox to specify the visibility of the GroupFooter section.

Appearance

Background color (BackColor): Dropdown list to set the background color of the GroupFooter section.

Layout

Insert new page (NewPage): Dropdown list to determine whether a new page is inserted before and/or after
displaying the GroupFooter section.
Insert new column (NewColumn): Dropdown list to determine whether a new column (in a multi-column
report) appears before and/or after displaying the GroupFooter section.
Keep section on a single page (KeepTogether): Checkbox to determine whether the GroupFooter section appears
on a single page.
Use column layout (ColumnLayout): Checkbox to specify whether the GroupFooter section uses the same column
layout as the Detail section.
Print at the bottom of page (PrintAtBottom): Checkbox to specify whether the GroupFooter section is printed at
the bottom of the page immediately before the PageFooter section.
Can increase to accommodate contents (CanGrow): Checkbox to specify whether the height of the GroupFooter
section can grow when its controls extend beyond its original height.
Can decrease to accommodate contents (CanShrink): Checkbox to specify whether the height of the GroupFooter

ActiveReports 14 915

Copyright © 2020 GrapeCity, Inc. All rights reserved.

section can adjust to the total height of controls placed in it.

When you run the report, it renders the group header, followed by all related instances of the detail section, and then the
group footer. It renders a new group header section for each instance of the grouping field.

Controls in the group header render once for each instance of the group, so you can place the column header labels to
describe the data in the detail fields here.

Multiple Grouping
In a section report, you can nest group header and footer pairs and group each on a different field. You can add up to 32
groupings in one report.

Note: As with any group header and footer pair, group your data on the fields that you specify in the DataField
('DataField Property' in the on-line documentation) property of the group header, but in the order of your
groups. For example: SELECT * FROM Customers ORDER BY GroupHeader1DataField,
GroupHeader2DataField, GroupHeader3DataField

See the image below for the order in which report sections appear on the report. GroupHeader1 in the image was added
first and appears above the other two group headers, while its pair GroupFooter1, appears below the other two group
footers.

When you run a report with multiple groupings like the one above, the sections print in the following order:

1. ReportHeader1 prints once and does not repeat.
2. PageHeader1 prints once at the top of each page.
3. GroupHeader1 prints once for the first value its DataField returns.
4. GroupHeader2 prints once for the first value its DataField returns within the context of GroupHeader1's DataField

value.
5. GroupHeader3 prints once for the first value its DataField returns within the context of GroupHeader2's DataField

value.
6. Detail1 prints once for each record that falls within the context of GroupHeader3's DataField value.
7. GroupFooter3 prints once at the end of the records that fall within the context of GroupHeader3's DataField value.
8. GroupHeader3 may print again, if more values return within the context of GroupHeader2's DataField value.
9. Each time GroupHeader3 prints again, it is followed by Detail1 (once for each related record) and GroupFooter3.

10. GroupFooter2 prints once after GroupFooter3.
11. GroupHeader2 may print again, if more values return within the context of GroupHeader1's DataField value.
12. Each time GroupHeader2 prints again, it is followed by Detail1 (once for each related record) and GroupFooter2.
13. GroupFooter1 prints once after GroupFooter2.

ActiveReports 14 916

Copyright © 2020 GrapeCity, Inc. All rights reserved.

14. GroupHeader1 prints once for the second value its DataField returns, followed by GroupHeader2, and so on in a
pattern similar to the one above.

15. ReportFooter1 prints once on the last page where the data displayed in the report ends.
16. PageFooter1 prints once at the bottom of each page. Also, its position within groups varies.

Note: At design time, although the PageFooter section is located above the ReportFooter section, at run
time it appears after the ReportFooter section on the last page.

With many groupings, you might find the need to rearrange the order of your groups. If your report has more than one
group, you can right-click the report surface, and select Reorder Groups. This opens the Group Order dialog, where you
can drag the groups and set them in any order you want.

Alternatively, you can also click the Reorder Groups button in the ActiveReports toolbar, to open the Group Order dialog.
See Toolbar for further information.

In a section report, you can set grouping on a field or a field expression. Use the following steps to understand grouping
in a section report.

These steps assume that you have already added a Section Report (xml-based) or Section Report (code based) template
and connected it to a data source. See Quick Start for further information.

1. Right-click the design surface of a report and select Insert, then Group Header/Footer. Group Header and Footer
sections appear immediately above and below the detail section.

2. With the GroupHeader section selected, go to the Properties window and set the DataField ('DataField Property'
in the on-line documentation) to a field on which you want to group the data. For example, Country from
Customers table in the NWind database.

Note: You can also set a field expression in the DataField property. For example, =Country + City.

3. Drag and drop the grouping field onto the GroupHeader section to see the grouping field while previewing the
report.

4. Drag and drop data fields onto the detail section. All the data placed inside the detail section gets grouped
according to grouping field.

5. Preview the report to see the result.

The following image shows a customer list grouped on the Country field.

ActiveReports 14 917

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tip: In a section report, data is grouped in the order in which it is fetched in the raw form. Therefore, for best results,
while setting the SQL query in your report data source, order the data by the grouping field. For example., SELECT *
FROM Customers ORDER BY Country

Embed Subreports
To embed a subreport into a parent report, you add two reports (one parent and one child report) to a Visual Studio
project, and from the ActiveReports 14 Section Report toolbox, drag the SubReport control onto the parent report. The
following steps take you through the process of adding a subreport in a section report.

These steps assume that you have already added a Section Report (code-based) template in a Visual Studio project. See
Quick Start for further information.

To add code to create an instance of the child report in the parent
report

1. Double-click the gray area around the parent report to create an event-handling method for the ReportStart
event.

2. Add code like the following to the handler to create a new instance of the child report.

To write the code in Visual Basic

Visual Basic.NET code. Paste JUST ABOVE the ReportStart event.

Dim rpt As rptYourChildReportName

Visual Basic.NET code. Paste INSIDE the ReportStart event.

rpt = New rptYourChildReportName()

To write the code in C#

C# code. Paste JUST ABOVE the ReportStart event.

private rptYourChildReportName rpt;

C# code. Paste INSIDE the ReportStart event.

rpt = new rptYourChildReportName();

ActiveReports 14 918

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Caution: It is recommended that you do not create a new instance of the subreport in the Format event. Doing so
creates a new subreport each time the section Format code is run, using a lot of memory.

To add code to display the child report in a subreport control on a
parent report

1. Add the SubReport control onto the design surface of the parent report.
2. Double-click the detail section of the report to create a detail_Format event.
3. Add code like the following to the handler to display a report in the SubReport control.

To write the code in Visual Basic

Visual Basic.NET code. Paste INSIDE the Format event.

Me.SubReport1.Report = rpt

To write the code in C#

C# code. Paste INSIDE the Format event.

this.subReport1.Report = rpt;

Add Code to Layouts Using Script
In a section report, you can use script to access controls, functions in a class, namespaces, etc. You can also create classes
inside the script to call methods or add code to a report's script from a Windows Form. The following sections illustrate
simple scripting scenarios with examples.

These steps assume that you have already added a Section Report (code based) template in a Visual Studio project. See
Adding an ActiveReport to a Project for more information.

To access controls in script
To add script to a report to access a textbox named TextBox1 in the detail section and assign the text "Hello" to it:

1. On the script tab of the report, drop down the Object list and select Detail. This populates the Event drop-down
list with section events.

2. Drop down the Event list and select Format. This creates script stubs for the event.

To access a textbox in the detail section in VB.NET script

Visual Basic.NET script. Paste INSIDE the Detail Format event.

Me.TextBox1.Text = "Hello"

Or

Visual Basic.NET script. Paste INSIDE the Detail Format event.

ActiveReports 14 919

Copyright © 2020 GrapeCity, Inc. All rights reserved.

CType(rpt.Sections("Detail1").Controls("TextBox1"), TextBox).Text = "Hello"

To access a textbox in the detail section in C# script

C# script. Paste INSIDE the Detail Format event.

this.textBox1.Text = "Hello";

Or

C# script. Paste INSIDE the Detail Format event.

((TextBox)rpt.Sections["detail"].Controls["TextBox1"]).Text = "Hello";

To give a script access to functions in a class in your project
Using the AddNamedItem method, you can allow the script to access functions in a class file within your project. This
allows you to keep secure information such as a database connection string or a SQL query string in the code instead of
saving it in the RPX file.

1. In the Code View of the Form, add a class to your project named clsMyItem.

To add a class in Visual Basic.NET

Visual Basic.NET code.

Public Class clsMyItem
End Class

To add a class in C#

C# code.

public partial class clsMyItem
{
}

2. Add a public function to your class using code like the following:

To create a public function in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the new class.

Public Function getMyItem() As String
 getMyItem = "Hello"
End Function

To create a public function in C#

C# code. Paste INSIDE the new class.

public string getMyItem()
{

ActiveReports 14 920

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 return "Hello";
}

3. Go to the design view of the report and double-click the gray area around the design surface to create an event-
handling method for the ReportStart event.

4. Add the following code to the handler:

To access the class in Visual Basic.NET

Visual Basic.NET code. Paste before or in the ReportStart event.

Me.AddNamedItem("myItem", new clsMyItem())

To access the class in C#

C# code. Paste before or in the ReportStart event.

this.AddNamedItem("myItem", new clsMyItem());

5. From the Visual Studio toolbox, drag and drop a TextBox control onto the detail section of the report.
6. Go to the script tab and drop down the Object list to select Detail. This populates the Event drop-down list with

section events.
7. Drop down the Event list and select Format. This creates script stubs for the event.
8. Add the following script to the event to access a control on the report and populate it using the named item.

To access the control in VB.NET script

VB.NET script. Paste INSIDE the Detail Format event.

Me.TextBox1.Text = myItem.getMyItem()

Or

VB.NET script. Paste INSIDE the Detail Format event.

CType(rpt.Sections("Detail1").Controls("TextBox1"), TextBox).Text =
myItem.getMyItem()

To access the control in C# script

C# script. Paste INSIDE the Detail Format event.

this.textBox1.Text = myItem.getMyItem();

Or

C# script. Paste INSIDE the Detail Format event.

((TextBox)rpt.Sections["detail"].Controls["textBox1"]).Text = myItem.getMyItem();

9. Go to the preview tab to view the result.

To access namespaces
By using the AddScriptReference method, you can gain access to .NET or custom namespaces. This is only necessary if

ActiveReports 14 921

Copyright © 2020 GrapeCity, Inc. All rights reserved.

you need a reference, such as System.Data.dll, that is not initialized in the project before the script runs.

To access a namespace in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form code. Replace YourReportName with the name of your report.

Private Sub runReport()
 Dim rpt as new YourReportName
 rpt.AddScriptReference("System.Data.dll")
 rpt.Run()
End Sub

To access a namespace in C#

C# code. Paste INSIDE the Form code. Replace YourReportName with the name of your report.

private void runReport()
{
 YourReportName rpt = new YourReportName;
 rpt.AddScriptReference("System.Data.dll");
 rpt.Run();
}

Note: If you are using the custom assemblies, they must have Strong Name and registered to GAC folder.

If you want to use custom assemblies in the Script section of the Designer, then you need to add the assembly reference
to a report before loading it into the report designer. To do this, follow these steps:

1. Create a custom assembly with the strong name and register it to GAC.
2. Create a new sample with a section report (XML-based).
3. Add the report designer to the form.
4. Add the following code to the Form_Load event.

To access a namespace in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form code. Replace YourReportName with the name of your report.

Dim rpt As SectionReport = New SectionReport()
Dim xtr As System.Xml.XmlTextReader = New
System.Xml.XmlTextReader("..\..\SectionReport2.rpx")
 rpt.LoadLayout(xtr)
 xtr.Close()
 rpt.AddScriptReference("ClassLibrary1.dll")
 designer1.Report = rpt

To access a namespace in C#

C# code. Paste INSIDE the Form code. Replace YourReportName with the name of your report.

SectionReport rpt = new SectionReport();
System.Xml.XmlTextReader xtr = new
System.Xml.XmlTextReader(@"..\..\SectionReport2.rpx");

ActiveReports 14 922

Copyright © 2020 GrapeCity, Inc. All rights reserved.

rpt.LoadLayout(xtr);
xtr.Close();
rpt.AddScriptReference(@"ClassLibrary1.dll");
designer1.Report = rpt;

5. Run the sample.
6. Open the Script section of the designer.

You can now use the custom assemblies reference in the Script section of the Desginer.

To add code to a report's script from a Windows Form
Using the AddCode method in the Code View of the Form, you can add code into the script. The AddCode method allows
you to add actual code segments to the script at run time. This is useful for allowing secure information, such as a
database connection string or SQL query string, to be used inside the script without saving it in the RPX file.

1. Go to the Code View of your report and add a public function like the following:

To add code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the report class.

Public Function addThisCode() As String
 Dim sCode As String = "Public Function ShowACMessage() As String" +
Environment.NewLine + "ShowACMessage = ""my Added Code""" + Environment.NewLine +
"End Function"
 addThisCode = sCode
End Function

To add code in C#

C# code. Paste INSIDE the report class.

public string addThisCode()
{
 string sCode = "public string ShowACMessage(){return \"my Added Code\";}";
 return sCode;
}

2. In the design view of your report double-click the gray area around the design surface to create an event-handling
method for the ReportStart event.

3. Add the following code to the handler:

To access the class in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Me.AddCode(addThisCode())

To access the class in C#

C# code. Paste INSIDE the ReportStart event.

ActiveReports 14 923

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this.AddCode(addThisCode());

4. Go to the script tab and drop down the Object list to select Detail. This populates the Event drop-down list with
section events.

5. Drop down the Event list and select Format. This creates script stubs for the event.
6. Add the following script to the event:

To write the script in Visual Basic.NET

VB.NET script. Paste INSIDE the Detail1_Format event.

Me.TextBox1.Text = ShowACMessage()

Or

VB.NET script. Paste INSIDE the Detail1_Format event.

CType(rpt.Sections("Detail1").Controls("TextBox1"), TextBox).Text = ShowACMessage()

To write the script in C#

C# script. Paste INSIDE the detail_Format event.

this.textBox1.Text = ShowACMessage();

Or

C# script. Paste INSIDE the detail_Format event.

((TextBox)rpt.Sections["detail"].Controls["textBox1"]).Text = ShowACMessage();

To create classes inside the script to call methods
If the script requires a method to be called, you can construct a class inside the script.

1. Go to the script tab and add the following code at the top:

To create a class inside the script in VB.NET script

VB.NET script. Paste INSIDE the script tab.

Public Class MyFuncs
 Public Sub New()
 End Sub
 Public Function ShowMyString() As String
 Return "This is my string"
 End Function
End Class

To create a class inside the script in C#

C# script. Paste INSIDE the script tab.

ActiveReports 14 924

Copyright © 2020 GrapeCity, Inc. All rights reserved.

public class MyFuncs
{
 public MyFuncs()
 {
 }
 public string ShowMyString()
 {
 return "This is my string";
 }
}

2. On the script tab, now drop down the Object list and select Detail. This populates the Event drop-down list with
section events.

3. Drop down the Event list and select Format. This creates script stubs for the event.
4. Add the following script to the event:

To create a class inside the script in VB.NET script

VB.NET script. Paste INSIDE the Detail1_Format event.

Dim f As MyFuncs = New MyFuncs()
Me.TextBox1.Text = f.ShowMyString

Or

VB.NET script. Paste INSIDE the Detail1_Format event.

Dim f As MyFuncs = New MyFuncs()
CType(rpt.Sections("Detail1").Controls("TextBox1"), TextBox).Text = f.ShowMyString

To create a class inside the script in C#

C# script. Paste INSIDE the detail_Format event.

MyFuncs f = new MyFuncs();
this.textBox1.Text = f.ShowMyString();

Or

C# script. Paste INSIDE the detail_Format event.

MyFuncs f = new MyFuncs();
((TextBox)rpt.Sections["detail"].Controls["textBox1"]).Text = f.ShowMyString();

Note: Use the examples with the "this" (C#) and "Me"(Visual Basic.NET) keywords, as they are recommended rather
than the ones with "rpt".

Save and Load RDF Report Files
ActiveReports allows reports to be saved in their own standard format called an RDF file (Report Document Format). In

ActiveReports 14 925

Copyright © 2020 GrapeCity, Inc. All rights reserved.

this format, the data is static. The saved report displays the data that is retrieved when you run the report. You can save a
report to an RDF file and load it into the viewer control.

To save a report as a static RDF file
1. Double-click the title bar of the Windows Form to create an event-handling method for the Form_Load event.
2. Add the following code to the handler to save the report.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Dim rpt As New YourReportName()
rpt.Run()
rpt.Document.Save(Application.StartupPath + \NewRDF.RDF)

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

YourReportName rpt = new YourReportName();
rpt.Run();
rpt.Document.Save(Application.StartupPath + \\NewRDF.RDF);

To load a saved RDF file into the ActiveReports viewer
1. Double-click the title bar of the Windows Form to create an event-handling method for the Form_Load event.
2. Add the following code to the handler to load the saved report.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Viewer1.Document.Load("Location of the .RDF File")

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

viewer1.Document.Load(@"Location of the .RDF File");

Note: The Windows Form Viewer can display RDF files made with any version of ActiveReports, including COM
versions.

To save or load report files to a memory stream
1. Double-click the title bar of the Windows Form to create an event-handling method for the Form_Load event.
2. Add the following code to the handler to save the report to a memory stream and load the memory stream into

the ActiveReports viewer.

The following examples show what the code for the method looks like.

ActiveReports 14 926

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form_Load event.

Dim strm As New System.IO.MemoryStream()
Dim rpt As New YourReportName()
rpt.Run()
rpt.Document.Save(strm)
Dim theBytes(strm.Length) As Byte
strm.Read(theBytes, 0, Int(strm.Length))
strm.Position = 0
Viewer1.Document.Load(strm)

To write the code in C#

C# code. Paste INSIDE the Form_Load event.

System.IO.MemoryStream strm = new System.IO.MemoryStream();
YourReportName rpt = new YourReportName();
rpt.Run();
rpt.Document.Save(strm);
byte[] theBytes = new byte[strm.Length];
strm.Read(theBytes, 0, (int)strm.Length);
strm.Position =0;
viewer1.Document.Load(strm);

Save and Load RPX Report Files
Although ActiveReports writes report layouts in either C# or Visual Basic.NET, you can save the layout of your report as a
report XML (RPX) file for portability. If you make changes to the RPX file and load it back into an ActiveReport in Visual
Studio, you can see the changes you made reflected in the C# or Visual Basic.NET code in the
YourReportName.Designer.vb or YourReportName.Designer.cs file.

Caution: When you load an RPX layout into a report object, it overwrites everything in the report object. In order to
avoid overwriting important layouts, add a new blank ActiveReport and load the RPX file onto it.

To save a report as an RPX file at design time
1. From the Visual Studio Report menu, select Save Layout.
2. In the Save As dialog that appears, set the file name and select the location where you want to save it. The file

extension is *.rpx.
3. Click the Save button to save the report layout and close the dialog.

Note: When you save a layout that contains a dataset, ActiveReports saves the data adapter and data connection in
the component tray, but not the dataset itself. When the saved layout is loaded into another report, you can
regenerate the dataset with the data adapter and data connection.

ActiveReports 14 927

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To load an RPX file at design time
1. From the Visual Studio Report menu, select Load Layout.
2. In the Open dialog that appears, navigate to the location of the .rpx file and select it.
3. Click the Open button to load the report layout.

To save a report as an RPX file at run time
Use the SaveLayout method to save your report layout at run time.

Note: When you save a report layout, ActiveReports only saves the code in the script editor to the file. Any code
behind the report in the .cs or .vb file is not saved to the RPX file.

1. Right-click the Windows Form and select View Code to see the code view for the Windows form.
2. Add the following code to the Form class to save the report.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form class.

Dim rpt As New SectionReport1()
Dim xtw As New System.Xml.XmlTextWriter(Application.StartupPath + "\report.rpx",
Nothing)
rpt.SaveLayout(xtw)
xtw.Close()

To write the code in C#

C# code. Paste INSIDE the Form class.

SectionReport1 rpt = new SectionReport1();
System.Xml.XmlTextWriter xtw = new System.Xml.XmlTextWriter(Application.StartupPath
+ "\\report.rpx", null);
rpt.SaveLayout(xtw);
xtw.Close();

Save report layouts before they run. If you save a layout after the report runs, you also save any dynamic changes
made to properties or sections in the report. To avoid this when you call SaveLayout inside the report code, use the
ReportStart event.

Note: The SaveLayout method uses utf-16 encoding when you save to a stream, and utf-8 encoding when you
save to a file.

To load an RPX file into the ActiveReports viewer at run time
1. Right-click on the Windows Form and select View Code to see the code view for the Windows form.
2. Add the following code to the form class to load a report.

ActiveReports 14 928

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The following examples show what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form class.

Dim rpt As New GrapeCity.ActiveReports.SectionReport()
' For the code to work, this report.rpx must be stored in the bin\debug folder of
your project.
Dim xtr As New System.Xml.XmlTextReader(Application.StartupPath + "\report.rpx")
rpt.LoadLayout(xtr)
xtr.Close()
Viewer1.Document = rpt.Document
rpt.Run()

To write the code in C#

C# code. Paste INSIDE the Form class.

GrapeCity.ActiveReports.SectionReport rpt = new
GrapeCity.ActiveReports.SectionReport();
// For the code to work, this report.rpx must be stored in the bin\debug folder of
your project.
System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Application.StartupPath
+ "\\Sample.rpx");
rpt.LoadLayout(xtr);
xtr.Close();
viewer1.Document = rpt.Document;
rpt.Run();

Print Multiple Copies, Duplex and Landscape
In a section report, you can modify various printer settings or print multiple copies of a report at design time and at run
time.

Printer Settings
At design time, you can set up duplex printing, page orientation, collation, and page size in the Printer Settings tab of
the Report Settings Dialog.

To set up duplex printing in Printer Settings

1. In the Report Explorer, double-click the Settings node.
2. In the Report Settings dialog that appears, click Printer Settings.
3. On the Printer Settings page, next to Duplex, select one of the following options:

Printer Default: The report uses the default settings of the selected printer.
Simplex: Turns off duplex printing.
Horizontal: Prints horizontally on both sides of the paper.
Vertical: Prints vertically on both sides of the paper.

ActiveReports 14 929

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Click OK to return to the report.

To use code to set up duplex printing

1. Double-click the gray area below the design surface to create an event-handling method for the report's
ReportStart event.

2. Add the following code to the handler to set up duplexing.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Me.PageSettings.Duplex = System.Drawing.Printing.Duplex.Horizontal

To write the code in C#

C# code. Paste INSIDE the ReportStart event.

this.PageSettings.Duplex = System.Drawing.Printing.Duplex.Horizontal;

To set page orientation on the Printer Settings page

1. In the Report Explorer, double-click the Settings node.
2. In the Report Settings dialog that appears, click Printer Settings.
3. On the Printer Settings page, in the Orientation section, select either Default, Portrait or Landscape.
4. Click OK to return to the report.

To use code to change page orientation

1. Double-click the gray area below the design surface to create an event-handling method for the report's
ReportStart event.

2. Add the following code to the handler to change the page orientation of the report for printing.

Note: Page orientation can only be modified before the report runs. Otherwise, changes made to the page
orientation are not used during printing.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Me.PageSettings.Orientation =
GrapeCity.ActiveReports.Document.Section.PageOrientation.Landscape

To write the code in C#

C# code. Paste INSIDE the ReportStart event.

this.PageSettings.Orientation =
GrapeCity.ActiveReports.Document.Section.PageOrientation.Landscape;

ActiveReports 14 930

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Multiple Copies
You can print multiple copies using the Print dialog in the Preview tab or in the Viewer, or you can use code to set the
number of copies to print.

To set multiple copies in the print dialog

1. With a report displayed in the viewer or in the preview tab, click Print.
2. In the Print dialog that appears, next to Number of copies, set the number of copies that you want to print.

To use code to set multiple copies

1. Double-click in the gray area below the design surface to create an event-handling method for the report's
ReportStart event.

2. Add the following code to the handler to set multiple copies of the report for printing.

The following example shows what the code for the method looks like for printing five copies.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Me.Document.Printer.PrinterSettings.Copies = 5

Visual Basic.NET code. Paste INSIDE the ReportEnd event.

Me.Document.Printer.Print()

To write the code in C#

C# code. Paste INSIDE the ReportStart event.

this.Document.Printer.PrinterSettings.Copies = 5;

C# code. Paste INSIDE the ReportEnd event.

this.Document.Printer.Print();

Localize and Deploy
ActiveReports uses an English locale by default, and includes localization resources for Japanese and Russian locales. You
can also localize all of the components into any language you need. GrapeCity may, from time to time and on the
agreement of users who localize components, include additional locales with future hot fixes and service packs. If you are
willing to share your localized resources with other users, please inform technical support staff so that they can pass on
your resource files to development.

There are several ways to deploy your ActiveReports applications. See the topics listed below for more information on
customizing, localizing and deploying your applications.

Localize Reports, TextBoxes, and Chart Controls

ActiveReports 14 931

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Learn how to localize individual textboxes, chart controls, and entire reports.
Localize ActiveReports Resources

Learn to localize ActiveReports dialogs, error messages, and images.
Localize the End User Report Designer

Learn to localize UI strings, error messages, and images in Windows Forms Designer control.
Localize the Viewer Control

Learn to localize the strings and images in the Windows Forms Viewer Control.
Deploy Windows Applications

Learn to deploy ActiveReports Windows applications.
Deploy Web Applications

Learn to deploy ActiveReports Windows applications.
Configure HTTPHandlers in IIS 8 and IIS 10

Learn to deploy ActiveReports Windows applications.

Localize Reports, TextBoxes, and Chart Controls
In a section layout report, the Report object, TextBox control, and Chart control have a public Culture property that allows
you to localize data when the OutputFormat property is set to D (date), C (currency), or other .NET formats.

Note: The default value for the Culture property is (default, inherit). For the Report object, this is the culture of the
current thread and for the TextBox control and the ChartControl, this is the culture of the Report object.

In a page layout report, the Report object, TextBox control, and Chart control all have a Language property that works in
the same way. The default value for the Language property is Default, which is the culture of the current thread.

Design Time
At design time, you can set the culture or language in the Visual Studio Properties window.

To localize a Report at design time

1. Click the gray area around the design surface to select the Report in the Properties window.
2. In the Properties window, drop down the Culture or Language property and select the culture that you want to

apply to the report.

To localize a TextBox control at design time

1. Click the TextBox control that you want to localize to select it.
2. In the Properties window, drop down the Culture or Language property and select the culture that you want to

apply to the textbox.

To localize a Chart control at design time

1. Click the Chart control to select it.
2. In the Properties window, drop down the Culture or Language property and select the culture that you want to

apply to the chart.

Run Time
You can also specify a culture in code for section reports. For a list of System.Globalization culture codes, see Cultures.

ActiveReports 14 932

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To localize a Report at run time

1. Double-click the gray area around the design surface, to create an event handling method for the ReportStart
event.

2. In the code view of the report that appears, paste code like the following.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event.

YourReportName.Culture =
System.Globalization.CultureInfo.CreateSpecificCulture("en-US")

To write the code in C#

C# code. Paste INSIDE the ReportStart event.

YourReportName.Culture =
System.Globalization.CultureInfo.CreateSpecificCulture("en-US");

To localize a TextBox at run time

1. On the design surface, double-click the section containing the TextBox control that you want to localize to create
an event handling method for the section Format event.

2. In the code view of the report that appears, paste code like the following inside the Format event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Format event.

TextBox.Culture = System.Globalization.CultureInfo.CreateSpecificCulture("en-US")

To write the code in C#

C# code. Paste INSIDE the Format event.

textBox.Culture = System.Globalization.CultureInfo.CreateSpecificCulture("en-US");

To localize a Chart at run time

1. On the design surface, double-click the section containing the ChartControl that you want to localize to create an
event handling method for the section Format event.

2. In the code view of the report that appears, paste code like the following in the Format event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Format event.

ChartControl.Culture = System.Globalization.CultureInfo.CreateSpecificCulture("en-
US")

To write the code in C#

ActiveReports 14 933

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C# code. Paste INSIDE the Format event.

chartControl.Culture = System.Globalization.CultureInfo.CreateSpecificCulture("en-
US");

Localize ActiveReports Resources
You can localize all of the UI strings, error messages, and images that appear in ActiveReports in included resource files,
and alter and run a batch file to localize each resource.

To localize the designer control

All of the localization files are located in C:\Program Files (x86)\GrapeCity\ActiveReports 14\Localization. The topic
illustrates localization taking End User Report Designer as an example.

Specify the culture you want to use in the batch files.

1. Start Notepad or another text editor.
2. Open *.bat file for each resource you want to localize and change the Culture value to the culture you want to use.
3. Save and close each file.

Localize strings (and images) in the resource files.

1. Copy all the files for the resources you want to localize from the Localization folder: C:\Program Files
(x86)\GrapeCity\ActiveReports 14\Localization.

2. Paste these files to a local folder. For example, if you want to localize the designer, copy the following files to a
local folder, say D:\Localize\.

ARDesigner.zip
ARDesigner.bat
NameComplete.exe
NameComplete.exe.config
Localize.bat
publickey.snk

3. Extract the zip file of the resource (ARDesigner.zip).
4. In the folder extracted, open each subfolder and change the strings in each of the *.resx files.

For example, D:\Localize\ARDesigner\ARDesigner\Res\ARDesigner\Dialogs\DatasourceDialog.resx

Tip: Strings are located between <value> and </value> tags in the resource files.

5. If you want to change the images, rename your localized images to the names of the ones in the Res\Resources
subfolder and replace them with your localized images.

Run the batch file.

1. From the Start menu, type cmd in the text box.
2. Navigate to the local directory by typing cd D:\Localize\ and press Enter.
3. Type the name of the *.bat file and press Enter to run the file. The NameCompleter.exe application runs, and

creates the following.
A SatelliteAssembly folder inside the resource subfolder.
A language subfolder with the name of the culture (say ja) you set inside the SatelliteAssemby folder.
A localized GrapeCity.ActiveReports.AssemblyName.resources.dll file inside the language subfolder.

ActiveReports 14 934

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Add verification entry for the assembly by running following command:
sn.exe -Vr "ja\GrapeCity.ActiveReports.Design.Win.resources.dll".

5. Copy the language subfolder and paste it into the Debug folder of your application.

Note: Before you can distribute or put your localization in the Global Assembly Cache (GAC), you must first
send the localized GrapeCity.ActiveReports.AssemblyName.resources.dll file to GrapeCity and get it signed with
a strong name. Then you can drag the language subfolder with the signed dll file into
C:\WINDOWS\ASSEMBLY, or distribute it with your solution.

Test your localized application on a machine that does not share the culture of the localized DLLs.

1. Add the following code in the form's constructor just before the InitializeComponent method is called.
2. Replace the "ja-JP" in the example code with the culture you specified in the *.bat file.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the form's constructor just before the InitializeComponent method.

System.Threading.Thread.CurrentThread.CurrentUICulture = New
System.Globalization.CultureInfo("ja-JP")

To write the code in C#

C# code. Paste INSIDE the form's constructor just before the InitializeComponent method.

System.Threading.Thread.CurrentThread.CurrentUICulture = new
System.Globalization.CultureInfo("ja-JP");

Localize the End User Report Designer
You can localize all of the UI strings, error messages, and images that appear in the ActiveReports Windows Forms
Designer control in included resource files, and alter and run a batch file to localize the assembly. See topic Localize
ActiveReports Resources for localizing the End User Report Designer.

Localize the Viewer Control
You can localize all of the strings and images that appear in the Windows Forms Viewer control in included resource files,
and alter and run a batch file to localize the control.

To localize the viewer control

All of the localization files are located in C:\Program Files (x86)\GrapeCity\ActiveReports 14\Localization.

Specify the culture you want to use in the batch file.

1. Start Notepad or another text editor.
2. Open the WinViewer.bat file and change the Culture value to the culture you want to use.
3. Save and close the file.

Localize strings (and images) in the resource files.

ActiveReports 14 935

Copyright © 2020 GrapeCity, Inc. All rights reserved.

mailto:powersupport@gcGrapeCity.com?subject=Need to have localized resource dll signed.

1. Copy the following files required for the WebViewer from the Localization folder: C:\Program Files
(x86)\GrapeCity\ActiveReports 14\Localization:

WinViewer.zip
WinViewer.bat
NameComplete.exe
NameComplete.exe.config
Localize.bat
publickey.snk

2. Paste these files to a local folder, say D:\Localize\.
3. Extract WinViewer.zip file.
4. In the folder extracted, open each subfolder and change the strings in each of the *.resx files.

For example, D:\Localize\WinViewer\WinViewer\Res\ActiveReports\Viewer\Win\FlatViewer.resx
5. If you want to change the images, rename your localized images to the names of the ones in the Res\Resources

subfolder and replace them with your localized images.

Run the batch file.

1. From the Start menu, type cmd in the text box.
2. Navigate to the local directory by typing cd D:\Localize\ and press Enter.
3. Type WinViewer.bat and press Enter to run the file. The NameCompleter.exe application runs, and creates the

following.
A SatelliteAssembly folder inside the WinViewer folder.
A language subfolder with the name of the culture (say ja) you set inside the SatelliteAssemby folder.
A localized GrapeCity.ActiveReports.Viewer.Win.resources.dll file inside the language subfolder.

4. Add verification entry for the assembly by running following command:
 sn.exe -Vr "ja\GrapeCity.ActiveReports.Design.Win.resources.dll".

5. Copy the language subfolder and paste it into the Debug folder of your application.

Note: Before you can distribute or put your localization in the Global Assembly Cache (GAC), you must first
send the localized GrapeCity.ActiveReports.Viewer.Win.resources.dll file to GrapeCity and get it signed with a
strong name. Then you can drag the language subfolder with the signed dll file into C:\WINDOWS\ASSEMBLY.

Test your localized application on a machine that does not share the culture of the localized DLL.

1. Add the following code in the form's constructor just before the InitializeComponent method is called.
2. Replace the "ja" in the example code with the culture you specified in the WinViewer.bat file.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the form's constructor just before the InitializeComponent method.

System.Threading.Thread.CurrentThread.CurrentUICulture = New
System.Globalization.CultureInfo("ja")

To write the code in C#

C# code. Paste INSIDE the form's constructor just before the InitializeComponent method.

System.Threading.Thread.CurrentThread.CurrentUICulture = new
System.Globalization.CultureInfo("ja");

ActiveReports 14 936

Copyright © 2020 GrapeCity, Inc. All rights reserved.

mailto:powersupport@gcGrapeCity.com?subject=Need to have localized resource dll signed.

Deploy Windows Applications

Before you begin
Before deploying a Windows application, there are a few settings that can be helpful.

On report files, in the Properties window, change the Copy to Output Directory property to Copy always.
For ActiveReports references, change the Copy Local property to True. This puts all of the needed reference
assemblies into the Release folder when you build your project.

It is also good to be sure that all of the references you need for your reports are included. Here is a table listing features
and required DLLs.

Features and References

These assemblies are added automatically when you add controls to forms or report controls to code-based section
reports, but Visual Studio does not do this with XML-based (RPX and RDLX) reports.

Feature Required Assembly

Export:
Excel, Html, Image/Tiff, Pdf, Word/Rtf, Text/Xml

GrapeCity.ActiveReports.Export.*.dll
(replace * with Excel, Html, Image, Pdf, Word, or Xml)

Viewer control (or printing without the Viewer control) GrapeCity.ActiveReports.Viewer.Win.dll

Designer, Toolbox, or ReportExplorer control GrapeCity.ActiveReports.Design.Win.dll

XCopy Deployment
1. Open your project in Visual Studio, and set the Solution Configuration to Release.
2. From the Build menu, select Build Solution.
3. In Windows Explorer, navigate to the project's bin directory, and copy the files from the Release folder into a zip

file.
4. Distribute the zip file.

MSI Installer Deployment
To create an installer project

1. Open an existing ActiveReports project or create a new one.
2. From the Visual Studio Build menu, select Build YourActiveReportsProjectName to build your report project.
3. From the File menu, select Add, then New Project to open the Add New Project dialog.
4. In the Add New Project dialog under Project Types, expand the Other Project Types node and select Setup and

Deployment.
5. Under Visual Studio Installer, select Setup Project, rename the file and click OK. The ProductName that you

enter determines the name that is displayed for the application in folder names and in the Programs and
Features control panel item.

6. In the File System editor that appears, under File System on Target Machine, select the Application Folder.

Note: To show the File System editor at any time, drop down the View menu and select Editor, then File
System.

ActiveReports 14 937

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. From the Visual Studio Action menu, select Add, then Project Output.
8. In the Add Project Output Group dialog that appears, choose your ActiveReports project name from the drop-

down list.
9. In the list, select Primary Output and click OK. This adds all of the existing assembly dependencies to your project.

10. If you want to add other ActiveReports DLLs to the installer (e.g. if you use OleObjects on reports, you need to
include the Interop.dll), in the Solution Explorer, right-click the installer project name, select Add, then Assembly.

Note: If you would rather use the ActiveReports .msm file, please contact our technical support team.

11. In the Select Component dialog that appears, select any components that you want to add and click the OK
button.

12. From the Visual Studio Build menu, select Build YourInstallerProjectName to build your Installer project.

To deploy the installer application

1. Select the Installer project in the Solution Explorer.
2. From the Visual Studio Project menu, click Install.
3. The Installer application runs and installs the project on your computer. The distributable exe and msi setup files

appear in your installer project Debug folder.

Deploy Web Applications
Follow this guide to deploy ActiveReports Web projects to your Web server. For Web projects using the Professional
Edition HttpHandlers, see Configure HTTPHandlers in IIS 8 and IIS 10.

Before you begin
To deploy ActiveReports Web projects, you must have access to the Microsoft .NET Framework version 4.6.2 or higher and
the coordinating version of ASP.NET, or ASP.NET Core with .NET Core 2.1 and above. You must also have access to
Internet Information Services version 8 or higher, and you need administrative access to the server.

It is also good to be sure that all of the references you need for your reports are included. Here is a table listing features
and required DLLs.

Features and References

These assemblies are added automatically when you add controls to forms or report controls to code-based section
reports, but Visual Studio does not do this with XML-based (RPX and RDLX) reports.

Feature Required Package

Export: Excel GrapeCity.ActiveReports.Export.Excel
GrapeCity.ActiveReports.Core.Export.Excel.Page

Export: HTML GrapeCity.ActiveReports.Export.Html
GrapeCity.ActiveReports.Core.Export.Html.Page

Export: Image GrapeCity.ActiveReports.Export.Image
GrapeCity.ActiveReports.Core.Export.Image.Page

Export: PDF GrapeCity.ActiveReports.Export.Pdf
GrapeCity.ActiveReports.Core.Export.Pdf.Page

Export: Word/RTF GrapeCity.ActiveReports.Export.Word.dll

ActiveReports 14 938

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/forums/activereports

Export: XML GrapeCity.ActiveReports.Export.Xml

Export: CSV/JSON GrapeCity.ActiveReports.Core.Export.Text.Page

WebViewer or HttpHandlers (Pro Edition only) GrapeCity.ActiveReports.Web
Grapecity.ActiveReports.Web.Viewer

JSViewer GrapeCity.ActiveReports.Aspnetcore.Viewer
GrapeCity.ActiveReports.Aspnet.Viewer

Web Designer GrapeCity.ActiveReports.Aspnetcore.Designer
GrapeCity.ActiveReports.Aspnet.Designer

Other packages that are required for deploying web applications are as follows:

GrapeCity.ActiveReports
GrapeCity.ActiveReports.Core.Rdl
Newtonsoft.Json
Gcef.Data.DataEngine
Gcef.Data.VBFunctionLib
Gcef.Data.ExpressionInfo
Grapecity.DataVisualization
GrapeCity.ActiveReports.Core.Rendering
GrapeCity.ActiveReports.Core.Drawing.Gdi
GrapeCity.ActiveReports.Core.DataProviders
GrapeCity.ActiveReports.Chart
GrapeCity.ActiveReports.Document

To install prerequisites on the server

Follow Microsoft's instructions to install each of the following on your Web server:

The Microsoft .NET Framework version 4.6.2 or higher
ASP.NET version 4.6.2 or higher (must be the same version as the Framework)
ASP.NET Core with .NET Core 2.1 and above.
Internet Information Services (IIS) version 8

To map your application to a virtual directory

1. Make sure your project is deployed to a virtual directory in IIS.
2. To map requests from the page with the WebViewer control to your virtual directory, paste the <base> tag with

a virtual directory name inside the <head> tag of the page containing the WebViewer control. In this case, all
requests to backend assemblies will include the specified virtual directory name. For example,

<head>
 <base href="/VirtDirName/">
</head>

To set permissions on the server

Depending on your project, you may need to set permissions to allow ActiveReports access to data or folders.

Some examples of required permissions on the server:

ActiveReports 14 939

Copyright © 2020 GrapeCity, Inc. All rights reserved.

If you are saving files (e.g. PDF or RDF exports) to a folder on Windows machines, the ASPNET user ID needs Write
access to that folder.
Windows is user configurable, so use the name assigned to the ASPNET user instead.
If your application reads anything from any folder, assign Read access to it.
If your reports run on any networked data source (e.g. SQL, Access, etc.) assign Read access to it.
If you use CacheToDisk, assign IsolatedStorageFilePermission to it.

Configure HTTPHandlers in IIS 8 and IIS 10
HttpHandlers are included in the Professional edition of ActiveReports to allow you to quickly and easily display reports in
the browser.

Follow these steps to configure the ActiveReports HTTP handlers in IIS so that you can link directly to reports in your Web
applications. Once the handlers are configured, you can automatically run a report and view it in the browser from a URL.

Note: The WebViewer, the JSViewer, and the Web Designer are supported only in the Integrated pipeline mode. You
will get PlatformNotSupportedException on using these in Classic pipeline mode.

Classic Mode
If any part of your Web application is not supported in Integrated Mode, you can run it using the Classic .NET AppPool.

To run your Web application in the Classic .NET Application Pool

1. In the Control Panel, open Administrative Tools, then Internet Information Services (IIS) Manager.
2. In the Internet Information Services (IIS) Manager window that appears, in the left pane under Connections, expand

the Sites node and select the Web application you want to configure.
3. To the right of the Handler Mappings pane that appears, under Actions, click Basic Settings.
4. In the Edit Site dialog that appears, click the Select button.
5. In the Select Application Pool dialog that appears, drop down the Application pool, select Classic .NET AppPool,

and click OK.
6. Back in the Edit Site dialog, click OK to accept the changes.

To configure ActiveReports HTTP handlers to enable report linking in your Web applications

1. In the Control Panel, open Administrative Tools, then Internet Information Services (IIS) Manager.
2. In the Internet Information Services (IIS) Manager window that appears, in the left pane under Connections, expand

the Sites node and select the Web application you want to configure.
3. In the site's Home pane that appears, under IIS, double-click Handler Mappings.
4. To the right of the Handler Mappings pane that appears, under Actions, click Add Script Map.
5. In the Add Script Map dialog that appears, enter the information from the first row of the table below.

Note: If you have a 64 bit app pool, add script mappings for the 64 bit version of the aspnet_isapi.dll by
navigating to C:\Windows\Microsoft.NET\Framework64\v*\aspnet_isapi.dll.

Request path Executable Name

*.Web aspnet_isapi.dll version to match your app pool ActiveReports 14 Cache Item Script Mapping

*.rpx aspnet_isapi.dll version to match your app pool ActiveReports 14 RPX Script Mapping

*.rdlx aspnet_isapi.dll version to match your app pool ActiveReports 14 RDLX Script Mapping

ActiveReports 14 940

Copyright © 2020 GrapeCity, Inc. All rights reserved.

*.rdl aspnet_isapi.dll version to match your app pool ActiveReports 14 RDL Script Mapping

6. Click the Request Restrictions button and ensure that the Invoke handler only if request is mapped to check
box is cleared.

7. Click OK to close the window and add the script mapping.
8. Repeat for each script mapping in the table above.

To add handlers without configuring IIS 8 and IIS 10 using the Classic .NET AppPool

1. In your Web application, open the Web.config file and add code like the following between the <system.web> and
</system.web> tags, changing the ActiveReports Version number on each line to match the version installed on
your machine.

Paste inside the <system.web> tags.

<httpHandlers>
 <add verb="*" path="*.rpx"
type="GrapeCity.ActiveReports.Web.Handlers.RpxHandler, GrapeCity.ActiveReports.Web,
Version=14.x.xxxx.0, Culture=neutral, PublicKeyToken=cc4967777c49a3ff" />
 <add verb="*" path="*.rdl"
type="GrapeCity.ActiveReports.Web.Handlers.RdlxHandler,
GrapeCity.ActiveReports.Web, Version=14.x.xxxx.0, Culture=neutral,
PublicKeyToken=cc4967777c49a3ff" />
 <add verb="*" path="*.rdlx"
type="GrapeCity.ActiveReports.Web.Handlers.RdlxHandler,
GrapeCity.ActiveReports.Web, Version=14.x.xxxx.0, Culture=neutral,
PublicKeyToken=cc4967777c49a3ff" />
 <add verb="*" path="*.Web"
type="GrapeCity.ActiveReports.Web.Handlers.WebCacheAccessHandler,
GrapeCity.ActiveReports.Web, Version=14.x.xxxx.0, Culture=neutral,
PublicKeyToken=cc4967777c49a3ff" />
</httpHandlers>

2. In your Web application, open the Web.config file and add code like the following between the
<system.webServer> and </system.webServer> tags depending on the .Net Framework version installed on your
machine.

.Net 4.x

Paste inside the <system.webServer> tags.

<handlers>
 <add name="AR14Rpx" path="*.rpx" verb="*" modules="IsapiModule"
scriptProcessor="%windir%\Microsoft.NET\Framework\v4.x\aspnet_isapi.dll"
preCondition="classicMode,runtimeVersionv4.x,bitness32"/>
 <add name="AR14Rdlx" path="*.rdlx" verb="*" modules="IsapiModule"
scriptProcessor="%windir%\Microsoft.NET\Framework\v4.x\aspnet_isapi.dll"
preCondition="classicMode,runtimeVersionv4.x,bitness32"/>
 <add name="AR14Rdl" path="*.rdl" verb="*" modules="IsapiModule"
scriptProcessor="%windir%\Microsoft.NET\Framework\v4.x\aspnet_isapi.dll"

ActiveReports 14 941

Copyright © 2020 GrapeCity, Inc. All rights reserved.

preCondition="classicMode,runtimeVersionv4.x,bitness32"/>
 <add name="AR14Web" path="*.Web" verb="*" modules="IsapiModule"
scriptProcessor="%windir%\Microsoft.NET\Framework\v4.x\aspnet_isapi.dll"
preCondition="classicMode,runtimeVersionv4.x,bitness32"/>
</handlers>

Note: If you have a 64 bit Web application, change the preCondition attribute on each line to
classicMode,runtimeVersionv4.x,bitness64.

Integrated Mode
To configure ActiveReports HTTP handlers to enable report linking in your Web applications

1. In the Control Panel, open Administrative Tools, then Internet Information Services (IIS) Manager.
2. In the Internet Information Services (IIS) Manager window that appears, in the left pane under Connections, expand

the Sites node and select the Web application you want to configure.
3. In the site's Home pane that appears, under IIS, double-click Handler Mappings.
4. To the right of the Handler Mappings pane that appears, under Actions, click Add Managed Handler.
5. In the Add Managed Handler dialog that appears, enter the information from the first row of the table below.

Request
path

Type Name

*.Web GrapeCity.ActiveReports.Web.Handlers.WebCacheAccessHandler ActiveReports 14 cache item
integrated handler mapping

*.rpx GrapeCity.ActiveReports.Web.Handlers.RpxHandler ActiveReports 14 RPX integrated
handler mapping

*.rdlx GrapeCity.ActiveReports.Web.Handlers.RdlxHandler ActiveReports 14 RDLX integrated
handler mapping

*.rdl GrapeCity.ActiveReports.Web.Handlers.RdlxHandler ActiveReports 14 RDL integrated
handler mapping

6. Click the Request Restrictions button and ensure that the Invoke handler only if request is mapped to check
box is cleared.

7. Click OK to close the window and add the handler mapping.
8. Repeat for each handler mapping in the table above.

To add handlers without configuring IIS 8 or IIS 10 using the DefaultAppPool

In your Web application, open the Web.config file and add code like the following between the <system.webServer> and
</system.webServer> tags, changing the ActiveReports Version number on each line to match the version installed on
your machine.

Paste inside the <system.webServer> tags.

<add verb="*" path="*.Web"
type="GrapeCity.ActiveReports.Web.Handlers.WebCacheAccessHandler,
GrapeCity.ActiveReports.Web, Version=14.x.xxxx.0, Culture=neutral,
PublicKeyToken=cc4967777c49a3ff" name="AR14_WebCacheAccessHandler"
resourceType="Unspecified" preCondition="integratedMode"/>
<add verb="*" path="*.rpx" type="GrapeCity.ActiveReports.Web.Handlers.RpxHandler,

ActiveReports 14 942

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.Web, Version=14.x.xxxx.0, Culture=neutral,
PublicKeyToken=cc4967777c49a3ff" name="AR14_RpxHandler" resourceType="Unspecified"
preCondition="integratedMode"/>
<add verb="*" path="*.rdl,*.rdlx"
type="GrapeCity.ActiveReports.Web.Handlers.RdlxHandler, GrapeCity.ActiveReports.Web,
Version=14.x.xxxx.0, Culture=neutral, PublicKeyToken=cc4967777c49a3ff"
name="AR14_RdlxHandler" resourceType="Unspecified" preCondition="integratedMode"/>

Note: If you have a 64 bit Web application, change the preCondition attribute on each line to
integratedMode,runtimeVersionv4.x,bitness64.

Samples and Walkthroughs
To understand some of the more complex tasks you can accomplish using ActiveReports, you can open included sample
projects, or you can follow walkthroughs, step-by-step tutorials that walk you through every step required to create a
specific type of report.

Topic Content

Samples Browse brief descriptions of included samples, and follow links that open sample projects in Visual
Studio.

Walkthroughs Look through tutorials that teach you all of the steps involved in creating various types of ActiveReports
projects, from the basic report through more complex unbound reports and Web options.

Samples
The ActiveReports 14 samples are available on GitHub. These samples are categorized under three folders - Samples,
OnlineSamples, and WebSamples, and further based on features.

Samples

Sample Description

Advanced Page and RDL Reports

Calendar This sample demonstrates using Calendar data region in reports.

Custom Chart This sample demonstrates using custom report item - Radar chart in a report.

Custom data Provider This sample demonstrates how to create a project using custom data provider
and how to pull data from a comma separated value (CSV) file.

Custom Pdf Export This sample demonstrates exporting reports to PDF format using third-party
assemblies.

Custom Resource Locator This sample showcases a custom implementation of the resource locator to
load pictures from the user's "My Pictures" directory.

Custom Tile Provider This sample demonstrates how to create a custom tile provider.

ActiveReports 14 943

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/

Svg Image This sample illustrates using SVG as image format in ActiveReports.

RTF Control This sample illustrates using RTF control in Page/RDL reports.

Oracle Data Provider This sample illustrates using Oracle Data Provider as data source for designing
Page/RDL reports.

Section Reports

Custom Drill Through This sample demonstrates using hyperlinks and the viewer hyperlink event to
simulate drill-down from one report to another.

Custom Word Export This sample demonstrates exporting Section report to Word format using
third-party assemblies.

 API Page and RDL Reports

Create Report This sample demonstrates how to create a page report layout in code. It
further shows creating a table control, adding table rows and table columns
inside it, adding cells inside the table rows and columns and adding text
boxes inside the cells.

Digital Signature Pro This sample demonstrates how to add digital signatures when exporting to
PDF format.

Export This sample demonstrates how to export Page and RDL reports to different
export formats.

Layers This sample demonstrates how to use Layers in a report.

Report Wizard This sample demonstrates how to create a custom Report Wizard that allows
you to select a report from the list of multiple reports and then allows you to
select the data that you want to display in the selected report.

Stylesheets This sample demonstrates how to work with embedded and external style
sheets in Page and RDL reports.

Section Reports

Charting This sample demonstrates chart types used in different scenarios, in both
bound and unbound modes.

Cross Section Controls This sample demonstrates the use of the cross section lines and boxes.

Cross Tab Report This sample demonstrates using unbound data, conditional highlighting and
distributing data across columns to create a cross-tab view and data
aggregation.

Custom Annotation This sample demonstrates adding the Custom Annotation button to the
report Viewer toolbar and adding a new annotation to the report.

Digital Signature Pro This sample demonstrates adding the Custom Annotation button to the
report Viewer toolbar and adding a new annotation to the report.

Export This sample demonstrates how to export to different export formats using
code.

Inheritance This sample demonstrates using the method that inherits a report at run time

ActiveReports 14 944

Copyright © 2020 GrapeCity, Inc. All rights reserved.

and design time.

Print Multiple Pages per
Sheet

This sample demonstrates printing a document with multiple pages per sheet
by using the common PrintDocument class of the NET.Framework.

Style Sheets This sample demonstrates changing styles at run time to provide a different
look to a same report.

Sub Report This sample demonstrates using subreports in an ActiveReports report.

Summary This sample demonstrates how to display summarized data in a section
report.

Data
Binding

Page and RDL Reports

CSV Data Source This sample demonstrates how to connect to a CSV data source.

DataSet DataSource This sample demonstrates how to use a dataset as a data source for a report.

Json Data Source This sample demonstrates how to use the Json data provider at run time and
add a web service for authentication.

Object Data Source This sample demonstrates how to use Object provider for binding a report.

OData Data Source This sample demonstrates how to use OData EndPoint for binding a report.

OleDb Data Source This sample demonstrates how to connect to an OleDb data source at run
time and pass data to the report using LocateDataSource event.

Xml Data Source This sample demonstrates how to connect to a XML data source at run time
and pass data to the report using LocateDataSource event.

Section Reports

Bound Data This sample demonstrates binding to ADO.NET Data objects.

IList Binding This sample demonstrates creating a custom collection that stores data from
the database in the List. The custom collection is displayed by binding data to
the DataGridView control by using the DataSource property of this control.

LINQ This sample demonstrates how to use LINQ in an ActiveReports report.

Unbound Data This sample demonstrates how to create a dataset for a section report and
use the FetchData event to populate the Fields collection to display the report
unbound data.

XML This sample demonstrates how to create a report with XML data, using a
SubReport or using the XML hierarchical structure.

Designer
Pro

Map This sample demonstrates how to work with Map control in ActiveReports.

End User Designer This sample demonstrates a custom end-user report designer that can be
integrated in your applications to allow users to modify report layouts.

Reports Gallery This sample demonstrates customizing End User Designer application to
display a list of categorized reports.

Table of Contents This sample demonstrates how to use TableofContents control in
ActiveReports.

ActiveReports 14 945

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Desktop WPF Viewer This sample demonstrates using WPF Viewer in a WPF application.

Win Viewer This sample demonstrates using Win Viewer in a Windows Form application.

Web Custom Preview The sample demonstrates exporting an ActiveReports report to the HTML or
PDF format in your Web application.

Web Samples

Sample Description

JSViewer
Angular(Core)

This sample demonstrates the use of the GrapeCity ActiveReports JSViewer with an Angular 8 app
and ASP.NET Core back end.

JSViewer MVC This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an ASP.NET MVC 5 back
end.

JSViewer
MVC(Core)

This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an ASP.NET MVC Core
back end.

JSViewer
React(Core)

This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an ReactJS app and
ASP.NET Core back end.

JSViewer
Vue(Core)

This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an VueJS app and
ASP.NET Core back end.

JSViewer Blazor The sample demonstrates the use of the GrapeCity ActiveReports JSViewer and the Blazor
Framework that allows building client-side web applications with C#.

Web Designer
MVC

This sample demonstrates Web Designer with an ASP.NET MVC 5 back end.

Web Designer
MVC(Core)

This sample demonstrates Web Designer with an ASP.NET MVC Core back end.

Web Designer
Angular(Core)

This sample demonstrates Web Designer with an Angular 8 app and ASP.NET Core back end.

WebViewer Pro This Active Reports Web Pro Sample demonstrates the use of Professional Edition ASP.NET features,
such as HTTP handlers, parameterized reports, and more.

Online Samples

Sample Description

Financial Portfolio This sample demonstrates visualizing stock data with a Candlestick Chart.

Plant Performance This sample demonstrates how to visualize the Plant Performance KPIs using the Map control.

ReportsGallery_Angular This sample demonstrates a variety of RDL, Page, and Section reports along with their
descriptions.

ActiveReports 14 946

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Samples
The samples in Samples14 folder demonstrate report designing features that cover desktop, designer, API as well
as advanced features. Download these samples from following link:

https://github.com/activereports/Samples14

Note: When you preview a sample report in the Preview tab of the ActiveReports Designer in Visual Studio, or in a
Standalone Designer, you will get the "*.mdb is not a valid path" error. This error appears because the report data
source uses the relative path from the Bin>Debug folder of the Sample.

Each sample has a C# and a Visual Basic.NET code example for Visual Studio. You can also see the comments within the
sample projects throughout code.

Sample Description

Advanced Page and RDL Reports

Calendar This sample demonstrates using Calendar data region in reports.

Custom Chart This sample demonstrates using custom report item - Radar chart in a report.

Custom data Provider This sample demonstrates how to create a project using custom data provider
and how to pull data from a comma separated value (CSV) file.

Custom Pdf Export This sample demonstrates exporting reports to PDF format using third-party
assemblies.

Custom Resource Locator This sample showcases a custom implementation of the resource locator to
load pictures from the user's "My Pictures" directory.

Custom Tile Provider This sample demonstrates how to create a custom tile provider.

Svg Image This sample illustrates using SVG as image format in ActiveReports.

RTF Control This sample illustrates using RTF control in Page/RDL reports.

Oracle Data Provider This sample illustrates using Oracle Data Provider as data source for designing
Page/RDL reports.

Section Reports

Custom Drill Through This sample demonstrates using hyperlinks and the viewer hyperlink event to
simulate drill-down from one report to another.

Custom Word Export This sample demonstrates exporting Section report to Word format using
third-party assemblies.

 API Page and RDL Reports

Create Report This sample demonstrates how to create a page report layout in code. It
further shows creating a table control, adding table rows and table columns
inside it, adding cells inside the table rows and columns and adding text
boxes inside the cells.

Digital Signature Pro This sample demonstrates how to add digital signatures when exporting to

ActiveReports 14 947

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14

PDF format.

Export This sample demonstrates how to export Page and RDL reports to different
export formats.

Layers This sample demonstrates how to use Layers in a report.

Report Wizard This sample demonstrates how to create a custom Report Wizard that allows
you to select a report from the list of multiple reports and then allows you to
select the data that you want to display in the selected report.

Stylesheets This sample demonstrates how to work with embedded and external style
sheets in Page and RDL reports.

Section Reports

Charting This sample demonstrates chart types used in different scenarios, in both
bound and unbound modes.

Cross Section Controls This sample demonstrates the use of the cross section lines and boxes.

Cross Tab Report This sample demonstrates using unbound data, conditional highlighting and
distributing data across columns to create a cross-tab view and data
aggregation.

Custom Annotation This sample demonstrates adding the Custom Annotation button to the
report Viewer toolbar and adding a new annotation to the report.

Digital Signature Pro This sample demonstrates how to add digital signatures when exporting to
PDF format.

Export This sample demonstrates how to export to different export formats using
code.

Inheritance This sample demonstrates using the method that inherits a report at run time
and design time.

Print Multiple Pages per
Sheet

This sample demonstrates printing a document with multiple pages per sheet
by using the common PrintDocument class of the NET.Framework.

Style Sheets This sample demonstrates changing styles at run time to provide a different
look to a same report.

Sub Report This sample demonstrates using subreports in an ActiveReports report.

Summary This sample demonstrates how to display summarized data in a section
report.

Data
Binding

Page and RDL Reports

CSV Data Source This sample demonstrates how to connect to a CSV data source.

DataSet DataSource This sample demonstrates how to use a dataset as a data source for a report.

Json Data Source This sample demonstrates how to use the Json data provider at run time and
add a web service for authentication.

Object Data Source This sample demonstrates how to use Object provider for binding a report.

ActiveReports 14 948

Copyright © 2020 GrapeCity, Inc. All rights reserved.

OData Data Source This sample demonstrates how to use OData EndPoint for binding a report.

OleDb Data Source This sample demonstrates how to connect to an OleDb data source at run
time and pass data to the report using LocateDataSource event.

Xml Data Source This sample demonstrates how to connect to a XML data source at run time
and pass data to the report using LocateDataSource event.

Section Reports

Bound Data This sample demonstrates binding to ADO.NET Data objects.

IList Binding This sample demonstrates creating a custom collection that stores data from
the database in the List. The custom collection is displayed by binding data to
the DataGridView control by using the DataSource property of this control.

LINQ This sample demonstrates how to use LINQ in an ActiveReports report.

Unbound Data This sample demonstrates how to create a dataset for a section report and
use the FetchData event to populate the Fields collection to display the report
unbound data.

XML This sample demonstrates how to create a report with XML data, using a
SubReport or using the XML hierarchical structure.

Designer
Pro

Map This sample demonstrates how to work with Map control in ActiveReports.

End User Designer This sample demonstrates a custom end-user report designer that can be
integrated in your applications to allow users to modify report layouts.

Reports Gallery This sample demonstrates customizing End User Designer application to
display a list of categorized reports.

Table of Contents This sample demonstrates how to use TableofContents control in
ActiveReports.

Desktop WPF Viewer This sample demonstrates using WPF Viewer in a WPF application.

Win Viewer This sample demonstrates using Win Viewer in a Windows Form application.

Web Custom Preview The sample demonstrates exporting an ActiveReports report to the HTML or
PDF format in your Web application.

Advanced
The samples in the Advanced folder describe advanced features separately for:

Page and RDL Reports
Section Reports

Page and RDL Reports
This section discusses following samples describing various features in Page and Rdl reports:

ActiveReports 14 949

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Calendar
This sample demonstrates using Calendar data region in reports.

Custom Chart
This sample demonstrates using custom report item - Radar chart in a report.

Custom Data Provider
This sample demonstrates how to create a project using custom data provider and how to pull data from a comma
separated value (CSV) file.

Custom Pdf Export
This sample demonstrates exporting reports to PDF format using third-party assemblies.

Custom Resource Locator
This sample showcases a custom implementation of the resource locator to load pictures from the user's "My
Pictures" directory.

Custom Tile Provider
This sample demonstrates how to create a custom tile provider.

Svg Image
This sample illustrates using SVG as image format in ActiveReports.

RTF Control
This sample illustrates using RTF control in Page/RDL reports.

Oracle Data Provider
This sample illustrates using Oracle Data Provider as data source for designing Page/RDL reports.

Calendar
The Calendar control is now moved to samples to allow customers to continue using this data region for displaying date-
based data or events in a calendar format.

Sample Location

ActiveReports 14 950

Copyright © 2020 GrapeCity, Inc. All rights reserved.

..\Samples14\Advanced\PageAndRDL\Calendar

Details

This sample consists of following projects; all data and files are taken from the Calendar data region itself:

CalendarComponent: It implements ICustomReportItem interface to render Calendar, IDataRegion interface for
data binding, and IImageRenderer interface to render calendar content range to the canvas.
CalendarDesigner: The designer is inherited from CustomReportItemDesigner class. It implements property
initialization, glyph drawing, and evaluation utils.
TestDesignerPro: This is the default start up project. On running this project, an RDL report with a calendar is
displayed on the designer. You can also drag and drop and use the Calendar data region available on the toolbox.
TestViewer: On running this project, a calendar is rendered on Windows Forms Viewer.
Tests: It contains code for proper functioning of the sample.

Customers who are required to use calendar should now compile and distribute CalendarComponent and
CalendarDesigner assemblies. Binding should be done through GrapeCity.ActiveReports.config file (see test applications).

Custom Chart
This sample illustrates creating custom report item - Radar Chart. The ICustomReportItem interface is used to implement
custom control, which is radar chart. The designer inherited from CustomReportItemDesigner class allows the chart to
be available on the designer. The sample uses shared data source Nwind.rdsx.

Sample Location

ActiveReports 14 951

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\CustomChart\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\CustomChart\C#

Details

When you run this sample, an RDL report 'Radar.rdlx' with Radar chart is displayed on the designer. Go to the Preview tab
of the designer to view the report with data pulled from Nwind.rdsx.

The sample consists of following projects:

RadarChart: It implements ICustomReportItem interface to render Radar chart and IDataRegion for data
binding. The IImageRenderer interface renders data to image; this renderer accesses custom data grouping (note
that series property name should be same as that defined in designer) and reads values for the chart series.

RadarDesigner: The designer is inherited from CustomReportItemDesigner class. To render one series, one data
grouping is added in the Initialize method. Custom properties called DataSetName and SeriesValue are added
which can be changed in the designer, see classes DataSetNamesConverter and RadarValuesConverter. For
design-time rendering, RadarControlGlyph class implements overriding ControlGlyph property of the designer
and rendering stub data. In this glyph, the MovableBehavior method implements moving and resizing of the chart
control.

TestDesignerPro: This is the default start up project. On running this project, an RDL report with Radar chart is
displayed on the designer. You can change the chart properties from the Properties pane. You can also drag and
drop and use the Radar Chart control available on the toolbox.

TestViewer: On running this project, Radar chart is rendered on Windows Forms Viewer.

The custom report item (RadarChart) and its designer (RadarDesigner) are defined in GrapeCity.ActiveReports.config
file placed in test application projects.

Custom Data Provider
The Custom Data Provider sample demonstrates how to create a project that use a custom data provider and how to pull
data from a comma separated value (CSV) file. This sample is part of the ActiveReports Professional Edition.

ActiveReports 14 952

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\CustomDataProvider\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\CustomDataProvider\C#

Details

When you run this sample, a DesignerForm displaying the DemoReport.rdlx report in ActiveReports Designer and a
HelperForm explaining the steps to connect a report to the comma separated value (CSV) file appears.

In the ActiveReports Designer, you can add a dataset with a comma separated values (CSV) file. For adding this file,in the
Report Explorer, expand the DataSources node, right-click the node for the data source and select Add DataSet. In the
DataSet dialog that appears, under Query section, go to the Query String field and click the drop-down arrow to display
the custom query editor. In the custom query editor, click the Select CSV File button and select the Categories.csv file
kept within the project.

Go to the Preview tab of the Designer to view the report with the data pulled from the custom data provider.

The sample consists of following three projects:

CustomDataProvider: It contains following items:

CsvColumn: This class represents information about fields in the data source.
CsvCommand: This class provides the IDbCommand implementation for the .NET Framework CSV Data Provider.
CsvConnection: This class provides an implementation of IDbConnection for the .NET Framework CSV Data
Provider.
CsvDataProviderFactory: This class implements the DataProviderFactory for .NET Framework CSV Data Provider.
CsvDataReader: This class provides an implementation of IDataReader for the .NET Framework CSV Data Provider.

CustomDataProviderUI: It contains following items:

CSVFileSelector: This is the form that contains the Select CSV File button. This button is displayed in the CSV data
provider query editor when you open the DataSet dialog and under Query, in the Query String field and click the
drop-down arrow to display the custom query editor. Clicking the Select CSV File button allows you to select the
Categories.csv file that is used as a custom data provider for the sample report.
QueryEditor: This is the class that reads the content of the specified file and builds the CSV data provider query
string.

CustomDataProviderUITest: It contains following items:

Categories.csv: This is the comma separated values (CSV) file that serves as a custom data provider for the sample
report. This file is selected in the Please, select CSV File dialog that appears when you click the Select CSV File
button in the Query String field under Query in the DataSet dialog.
DemoReport.rdlx: The DemoReport.rdlx displays the custom data. This report contains one Table data region
with the TextBox controls, which display the name, the role and the city information of an employee.
DesignerForm: This is the main form of this sample that appears when you run the sample. On this form, you can
connect the sample report to a custom data provider by adding a dataset with a comma separated values (CSV)
file. Right-click the form and select View Code to see the code implementation for the ActiveReports Designer.
Grapecity.ActiveReports.config: The configuration file that configures the project to use the custom data provider.
HelperForm: This form appears on top of the main DesignerForm when you run the sample. This form contains the
explanatory text with the steps on how to bind the sample report to the comma separated value (CSV) file. You can

ActiveReports 14 953

Copyright © 2020 GrapeCity, Inc. All rights reserved.

close the Help form by clicking the X button in the upper-right corner of the form.

Custom Pdf Export
This sample shows how to implement simple exports to custom formats (which is not available in ActiveReports right
now). The sample uses third-part library to show export to PDF.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\CustomPdfExport\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\CustomPdfExport\C#

Details

When you run this sample, you see a testing application form, which splits to Windows Forms Viewer and PDF Viewer. You
can choose a report and a Pdf export option, click 'Preview as PDF' and view the report in the viewers, and 'Save as PDF' to
save the report as Pdf. The sample consists of following projects:

PdfRendering: It implements IRenderingExtension and IDrawingCanvas interfaces for customized export to PDF
format.
TestApplication: This is the default start up project to compare and debug custom export.

Custom Resource Locator
The Custom Resource Locator sample demonstrates a custom implementation of the resource locator to load pictures
from the user's Pictures or My Pictures directory. In general, you can use a resource locator in a report to find any
resources that a report may require.

ActiveReports 14 954

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\CustomResourceLocator\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\CustomResourceLocator\C#

Details

When you run this sample, you see the MainForm with the list of images from the Pictures or My Pictures directory.
Select any image and click the Show Report button. A report with the selected image opens in the PreviewForm.

Caution: To run this sample properly, you must have image files in your pictures directory. If the directory does not
contain any pictures, you should add them to the folder manually.

The sample consists of:

Resources folder: This folder contains the Description.rtf file that contains a summarized content of the resource
locator that gets displayed inside the RichTextBox control on the MainForm at run time. This folder also
contains the NoImage.bmp image file that is used if there is no image in the pictures directory.

DemoReport.rdlx: The DemoReport.rdlx displays the selected image. This report contains two TextBox
controls and one Image control, which display the image name, the image type and the image at run time after you
click the Show Report button on the MainForm.

MainForm: This is the main form of this sample that appears when you run the sample. This form contains the
RichTextBox, the ListView and the Button controls. The RichTextBox control displays the summarized information
saved in the Description.rtf file about the resource locator and the sample. The ListView control gets populated
with the images located in the My Pictures directory; the Button control is used to generate the report with the
selected image. Right-click the form and select View Code to see how to load text in the RichTextBox control and
images in the ListView control. It also contains code that displays the DemoReport.rdlx on the showReport_Click
event.

MyPicturesLocator: This file is an internal class that contains code that looks for resources in the My Pictures
directory.
PreviewForm: This form uses the ActiveReports Viewer control to display the DemoReport.rdlx with the selected
image. Right-click the form and select View Code to see how to load the report into the Viewer.

ActiveReports 14 955

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Custom Tile Provider
The CustomTileProvider sample demonstrates how to create a custom tile provider using IMapTileProvider and IMapTile
interface and configure it in a Map Control which is placed on a RDL report. This sample makes use of two projects -
CustomTileProviders and TileProviderEndUserDesigner in a single Visual Studio solution. The CustomTileProviders project
contains the tile server configurations for the tile providers, whereas the TileProviderEndUserDesigner project references
the created CustomTileProviders project assemblies.

Note: CustomTileProvider is for use with the Professional Edition license only. An evaluation message is rendered
when used with the Standard Edition license.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\CustomTileProvider\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\CustomTileProvider\C#

Details

When you run this sample, the ActiveReports End User Designer appears with an overlaying Help-Creating a Custom Tile
Provider dialog. This dialog gives you step-by-step instructions to create a new tile provider for a Map control with
custom settings.
 The End User Designer displays a RDL report containing a Map control with MapQuest set as the default tile provider. To
change the existing tile provider, double-click on the Map control to display the existing tile layer and right click to select
Edit. In the Map Tile Properties - General dialog that appears, click the Provider drop-down to select the tile provider
you want to apply to the Map control. Go to the Preview tab to view the data in the selected tile provider. You can choose
from the following tile provider options:

Google-Sample
Cloud-Made Sample
MapQuest-Sample
OpenStreetMap-Sample

ActiveReports 14 956

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: The Microsoft Bing Map server offers static map images. This requires an Application key for authentication.
The default key provided by ActiveReports is for demo purpose and can not be used by 3rd party applications. In
order to obtain a Bing Map Key, ssee HowTo - Create a Bing Map Account and HowTo - Get a Bing Map Key.

The sample consists of two projects:

CustomTileProviders: It contains following classes:

CloudMadeTileProvider: This class implements the IMapTileProvider interface and contains the settings for the map
tile images provided from https://cloudmade.com.

GoogleMapsTileProvider: This class implements the IMapTileProvider interface and contains the settings for the
map tile images provided from https://www.google.com/maps.

MapQuestTileProvider: This class implements the IMapTileProvider interface and contains the settings for the map
tile images provided from https://www.mapquest.com/.

MapTile: This class represents a single map tile, implementing the IMapTile interface. For more information on
ImapTile interface, see Add a Custom Tile Provider.

OpenStreetMapTileProvider: This class implements the IMapTileProvider interface and contains the settings for the
map tile images provided from https://www.openstreetmap.org.

WebRequestHelper: This class picks the raw data from the tile providers and loads them into the
System.IO.MemoryStream class.

TileProviderEndUserDesigner: It contains following files:

CustomTileProvider.rdlx: This report contains the Map control that visualizes the oil production in different parts of
the world on a virtual earth background. The map control uses the color rule set on a polygon layer to differentiate
parts of world as per their oil production capacity. These colors are defined using a color rule which is described in
the legend at run time. The report gets the data from Factbook.rdsx shared data source.

DesignerForm.cs: This is the main form that gets displayed when you run the sample. This form uses multiple
controls like the ToolStripPanel, ToolStripContainerPanel, SplitContainer, Designer, Toolbox, ReportExplorer and
PropertyGrid controls to create a customized End User Designer. It also contains code to load
CustomTileProvider.rdlx report into the Designer.

GrapeCity.ActiveReports.config: This configuration file contains the settings for the various tile providers, and is
located in the same folder as the EndUserDesigner.exe file for the tile provider settings to work.

HelperForm.cs: This form uses the HelperForm class to display a screen containing step-by-step instructions for the
user to create a custom tile provider.

Svg Image
This sample illustrates using SVG (Scalable Vector Graphics) as image format in ActiveReports through third-party
assembly, Svg (SVG Rendering Library, see in NuGet packages). The use of SVG for rendering improves the precision of
graphics significantly, so that even complex graphics look sharp and crisp.

ActiveReports 14 957

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/creating-a-bing-maps-account?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/getting-a-bing-maps-key?redirectedfrom=MSDN
https://cloudmade.com/
https://www.google.com/maps
https://www.mapquest.com/
https://www.openstreetmap.org/#map=4/21.84/82.79

Sample Location

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\SvgImage\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\SvgImage\C#

Details

When you run this sample, an RDL report with an SVG image is displayed. You may need to install Svg library; the steps
are as follows:

1. Open "Package Manager Console".
2. Use "Install-Package -Id Svg" command.
3. Select the project in the Solution Explorer and click Refresh in toolbar.

The sample consists of the following projects:

SvgImage: It implements IReportItem and IGraphicsRenderer interfaces to create custom SVG image report item,
SvgImage.

SvgDesigner: The designer is inherited from CustomReportItemDesigner class. For design-time rendering,
SvgControlGlyph class implements overriding ControlGlyph property of the designer. In this glyph, the
MovableBehavior method implements moving and resizing of the Svg Image control.

TestDesignerPro: This is the default startup project. On running this project, an RDL report with an SVG image is
displayed on the designer. You can change its properties from the Properties pane. You can also drag and drop
and use the SVGImage control available on the toolbox.

ActiveReports 14 958

Copyright © 2020 GrapeCity, Inc. All rights reserved.

TestViewer: On running this project, an SVG image is rendered in the Windows Forms Viewer.

RTF Control
This sample shows using a custom control, RichTextBox, to preview RTF directly in Page/RDL reports without need for
conversion to HTML.

Just drag and drop the RichTextBox control to the design area, press F2 or Enter or double click the control to enable edit
mode, and input the RTF.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\RtfControl\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\RtfControl\C#

Details

To run the sample, set TestViewer or TestDesignerPro as startup project.

TestDesignerPro: This is the default startup project. On running this project, an RDL report with RichTextBox is

ActiveReports 14 959

Copyright © 2020 GrapeCity, Inc. All rights reserved.

displayed on the designer. You can change its properties from the Properties pane or use the control available on
the toolbox.
TestViewer: On running this project, an RichTextBox is rendered in the Windows Forms Viewer.

Note that this sample is implemented based on WinForms RichTextBox control that provides display features similar to
WordPad RTF, such as:

Images
Color text and background
Font size and styles
Text alignment
Standard commands like copy/paste and undo/redo

The following hotkeys and shortcuts are supported in edit mode:

Ctrl + A: Select all content
Ctrl + C: Copy selected content
Ctrl + X: Cut selected content
Ctrl + V: Paste content from clipboard
Ctrl + B: Toggle bold style of selected text
Ctrl + I: Toggle italic style of selected text
Ctrl + U: Toggle underline style of selected text
Ctrl + T: Toggle strikeout style of selected text
Ctrl + Z: Undo
Ctrl + Shift + Z or Ctrl + Y: Redo
Ctrl + Backspace: Delete the word left to the cursor
Ctrl + Delete: Delete the word right to the cursor
Escape: Exit edit mode without saving changes
Alt + Enter: Exit edit mode with saving changes

Oracle Data Provider
Use this sample if you want to connect to the Oracle Data Provider, which is otherwise not available since
System.Data.OracleClient is deprecated.

ActiveReports 14 960

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\PageAndRDL\OracleDataProvider\VB.NET

C#

..\Samples14\Advanced\PageAndRDL\OracleDataProvider\C#

Details

When you run this sample, a blank DesignerForm for RDL report is displayed. Connect to the Oracle data provider as
follows:

1. Add a data source.

ActiveReports 14 961

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the Report Datasource dialog, select Type as Oracle Managed Data Access.
3. Enter the connection string.

Sample Oracle Connection String

provider=ORACLE;data source=in-data-sql/orcl.grapecity.net;user id=user1;password=password@123;

Now, proceed the report designing by pulling the data from Oracle data provider.

The sample consists of following:

TestDesignerPro.csproj: This is the default start up project.

GrapeCity.ActiveReports.config: Located inside the startup project, it is a configuration file that contains the settings for
using the oracle data provider:

DisplayName to reference data provider and Type to use the oracle custom data provider as mandatory fields
AdapterType implemented in 'OracleConnectionAdapter' class and SchemaProviderType implemented
in 'GeneralOracleSchemaProvider' class for additional features.

OracleConnectionAdapter.cs: This class provides features related to parameters such as handling multi-value paramaters
and parameterized queries.

GeneralOracleSchemaProvider.cs: This class generates DataSchema to enable visual query designer support.

Section Reports
This section discusses following samples describing various features in Section reports:

CustomDrillThrough
Demonstrates using hyperlinks and the viewer hyperlink event to simulate drill-down from one report to another.

CustomWordExport
Demonstrates exporting Section report to Word format using third-party assemblies.

Custom Drill Through
The Hyperlinks and DrillThrough sample consists of three reports and a ViewerForm. The reports use the Hyperlink event
of the Viewer control to pass a value from the Hyperlink property of a TextBox control to a Parameter value in a more
detailed report.

ActiveReports 14 962

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\Section\CustomDrillThrough\VB.NET

C#

..\Samples14\Advanced\Section\CustomDrillThrough\C#

Details

When you run this sample, a report displaying bound fields with a link created on CustomerID is displayed in a Viewer
control. DrillThrough feature allows users to navigate to another report containing detailed data. Clicking the CustomerID
hyperlink takes you to the second report which displays detailed information of the selected CustomerID. On further
clicking the OrderID hyperlink the third report displaying the details of the selected order is opened in the Viewer. This
feature enables the users to systematically go through the detailed data of the desired CustomerID.

Note: To run this sample, you must have Nwind.mdb downloaded from GitHub in ..\Samples14\Data\NWIND.mdb.

The sample consists of:

ViewerForm: This form contains only the Viewer control. Right-click the form and select View Code to see the code that
allows multiple ViewerForms to display for the reports, and see the Form Load event for the code that loads the main
report into the viewer. See the Viewer Hyperlink event for the code that collects a string value from the Hyperlink
property of the clicked TextBox on the main report and passes it into the customerID Parameter of the report
DrillThrough1, or collects a numeric value and passes it to the orderID Parameter of the report DrillThrough2. This code
then runs the report with the parameter value and displays it in another instance of the ViewerForm.

DrillThroughMainReport: The main report that is loaded in the ViewerForm by default uses the PageHeader and Detail
sections.

PageHeader section: This section contains three Label controls to serve as column headers for the details, and a
CrossSectionBox control. For more information, see Cross Section Controls.

Detail section: The Detail section has the BackColor property set to Thistle, and its RepeatToFill property set to
True. This ensures that the background color reaches all the way to the bottom of the page when there is not
enough data to fill it. Right click on the form, select View code to see the Connection String and SQL Query that
provide data for the bound fields. The Detail section has three bound TextBox controls that display a list of
customer information. Select CustomerID and you will see that the HyperLink property is not set in the Properties
window. To see the code that assigns the data from the TextBox to its HyperLink property, right-click the report
and select View Code. The HyperLink property is set in the Detail BeforePrint event.

PageFooter Section: This section is not in use, so it is hidden by setting the Visible property to False. This section
cannot be deleted, because its related PageHeader section is in use.

Note: This hyperlink does not work in Preview mode, because it relies on code in the ViewerForm to pass the
value to DrillThrough1 report's parameter.

DrillThrough1 Report: This report looks similar to the DrillThroughMain report, but the main difference is that it has a
CustomerID parameter in its SQL Query.

GroupHeader section: Since this report only displays order information for the CustomerID from the clicked

ActiveReports 14 963

Copyright © 2020 GrapeCity, Inc. All rights reserved.

hyperlink, the PageHeader section could have been used, but this report uses the GroupHeader section. To make
this section print at the top of each page, the RepeatStyle property is set to OnPage. This section consists of five
label controls to serve as column headers for the Detail section and a CrossSectionBox control.

Detail section: Right click on the form, select View code to see the parameter in the SQL Query that collects the
value from the ViewerForm. Parameters in SQL Queries are denoted by the <% and %> symbols that trigger
ActiveReports to add them to the report's Parameters collection. For more information, see Parameters. The Detail
section has five bound TextBox controls that display a list of order information for the customer. Select OrderID
and you will see that the HyperLink property is not set in the Properties window. To see the code that assigns the
data from the TextBox to its HyperLink property, right-click the report and select View Code. The HyperLink
property is set in the Detail BeforePrint event.

GroupFooter section: This section is not in use, so it is hidden by setting the Visible property to False. This section
cannot be deleted, because it is related GroupHeader section is in use.

DrillThrough2 Report: Like DrillThrough1, this report has a parameter in a SQL Query, but unlike the other two reports,
this one has no hyperlink. It displays order details for the OrderID value passed into it from the clicked hyperlink in
DrillThrough1.

GroupHeader section: Like in the previous report, this section contains Label controls to serve as column headers
for the details, and a CrossSectionBox control.

Detail section: Right click on the form, select View code to see the parameter in the SQL Query that collects
the value from the ViewerForm.

Custom Word Export
This sample shows how to export Section report to Word (DOCX) format using third party assemblies.

Sample Location

Visual Basic.NET

..\Samples14\Advanced\Section\CustomWordExport\VB.NET

ActiveReports 14 964

Copyright © 2020 GrapeCity, Inc. All rights reserved.

C#

..\Samples14\Advanced\Section\CustomWordExport\C#

Details

When you run this sample, a Windows Form is displayed that prompts you to select the report type and the Word export
format type. Please note that we are not going to support any third party assemblies or projects. This sample
demonstrates the idea on creating custom exports to satisfy different requirements.

API
The samples in the API folder describe creating reports and implementing various features through code in Page, RDL,
and Section reports.

Page and RDL Reports
Section Reports

Page and RDL Reports
This section contains:

CreateReport
This sample demonstrates how to create a page report layout in code. It further shows creating a table control,
adding table rows and table columns inside it, adding cells inside the table rows and columns and adding text boxes
inside the cells.

DigitalSignaturePro
This sample demonstrates how to add digital signatures when exporting to PDF format.

Export
This sample demonstrates how to export Page and RDL reports to different export formats.

Layer
This sample demonstrates how to use Layers in a report.

ReportWizard
This sample demonstrates how to create a custom Report Wizard that allows you to select a report from the list of
multiple reports and then allows you to select the data that you want to display in the selected report.

Stylesheets
This sample demonstrates how to work with embedded and external style sheets in Page and RDL reports.

Create Report
The Create Report sample demonstrates how to create a RDL report using code and display it in the ActiveReports
Designer.

ActiveReports 14 965

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\API\PageAndRDL\CreateReport\VB.NET

C#

..\Samples14\API\PageAndRDL\CreateReport\C#

Details

When you run this sample, the ActiveReports Designer appears with a RDL report that is bound to a database. To view the
report, go to the Preview tab of the Designer.

Note: To run this sample, you must have access to the Reels.mdb. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb

The sample consists of:

ReportsForm: This is the main form of the sample that contains the Designer, ReportExplorer, PropertyGrid, Toolbox and
ToolStrip controls, used to create the ActiveReports Designer at run time. See Creating a Basic End User Report Designer
(Pro Edition) for information on creating a basic ActiveReports Designer. Right-click the form and select View Code to see
how to set up the Designer and attach the ReportExplorer, PropertyGrid and Toolbox controls to it. It also contains code
that loads a layout created in the LayoutBuilder class to a page report object; then loads the page report object to a
stream, which is loaded to the Designer.

Constants: This file is an internal class that contains string values that are required for creating a dataset of the report.

Layout: This file is an internal class that contains code for creating a RDL report layout and adding a data source and a
dataset to it.

Digital Signature Pro
This sample demonstrates how you can digitally sign or set time stamp for a page/rdl report when exporting it to PDF
format using the PDF Rendering Extension.

ActiveReports 14 966

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Sample Location

Visual Basic.NET

..\Samples14\API\PageAndRDL\DigitalSignaturePro\VB.NET

C#

..\Samples14\API\PageAndRDL\DigitalSignaturePro\C#

Details

When you run this sample, the Invoice report is displayed in the Viewer control.

Clicking the Generate Digitally Signed PDF button in the Viewer toolbar creates a PDF file with a time stamp or digital
signatures, based on the settings you have specified in the Viewer toolbar. You can change the content of signatures in
the Signature Format box and you can add the time stamp to the generated pdf file by checking the Set TimeStamp
checkbox, in the Viewer toolbar.

When you click the Generate Digitally Signed PDF button, a dialog for saving the destination file appears. After you
indicate the location for a new PDF file, the PDF report file is created. Digital signature certificates dynamically reference
and use GrapeCity.pfx, included in the project. Also, digital signatures dynamically load and use the gc.bmp file that you
can find in the Image folder of this sample project.

Note: To run this sample, you must have Nwind.mdb downloaded from GitHub in ..\Samples14\Data\NWIND.mdb.

Image folder: This folder stores the gc.bmp file with the GrapeCity logo that digital signatures dynamically load and
use.
Catalog report: It shows a multi page layout spread over four pages in the report. The layout in Page1 and Page2
contains Image, Label and Textbox controls to display introductory text. The layout on Page3 contains a List data
region with TextBox controls and a Table to display product details for each product category. The layout on Page4
uses Textbox, Shape and Line controls amongst others to create an Order Form, which a user is to fill manually.
GrapeCity.pfx: In order to create a digital signature, you must have a valid PKCS#12 certificate (*.pfx) file. For
information on creating a self-signed certificate, see the Adobe Acrobat Help topic "Create a self-signed digital ID."
You can also create a PFX file from the Visual Studio command line. For more information and links to SDK
downloads, see https://www.source-code.biz/snippets/vbasic/3.htm.
PDFDigitalSignature form: This is the main form of the Sample that uses the ActiveReports Viewer control in the
bottom section of the form, and a panel docked to the top contains the Create Digitally Signed PDF button, the

ActiveReports 14 967

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://helpx.adobe.com/acrobat/using/digital-ids.html#create_a_self_signed_digital_id
https://www.source-code.biz/snippets/vbasic/3.htm

Signature Format box with the drop-down list and the Set TimeStamp checkbox.

Clicking the Generate Digitally Signed PDF button opens a dialog for saving the destination file. After you
indicate the location for a new PDF file, the PDF report file is created.

The drop-down list of the Signature Format box contains the following options.

Invisible - the invisible pdf digital signature.
Text - the pdf digital signature that contains text only.
Image - the pdf digital signature that contains graphics only.
ImageText - the pdf digital signature that contains text and graphics.

Checking the Set TimeStamp checkbox allows you to add the time stamp to the signature of the generated pdf
file. The time stamp contains the Time Stamp Server address, its login and password information.

Right-click PDFDigitalSignature in the Solution Explorer and select View Code to see the code implementation
for the pdf digital signature options.

Resource.resx: This file contains the string for the message box that appears after the PDF file is generated and the
string for the message box that appears when the free service limitation is exceeded.

Export
This sample illustrates how to export to different export formats using code. The available export formats are PDF, XLSX,
CSV, DOCX, MHT and JSON.

Sample Location

Visual Basic.NET

..\Samples14\API\PageAndRDL\Export\VB.NET

C#

..\Samples14\API\PageAndRDL\Export\C#

Details

When you run this sample, the Export Form is displayed. The Export Form contains the Report Name and Export Type
combo boxes along with the Export button.

The sample consists of ExportForm. It exports the selected report in the selected export format.
On running the application, select a report for export in the Report Name combo box. In the Export Type combo box,
you can select one of the following formats for export - PDF, XLSX, CSV, DOCX, MHT and JSON. Clicking the Export
button opens the Save As dialog where you can specify the name of the exported file. By default, the exported file is
saved in the Documents folder.

Layers
The Layers sample demonstrates how to work with Layers in four different reporting scenarios.

ActiveReports 14 968

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location
Details
ReportForm
Reports Folder

Sample Location

Visual Basic.NET

..\Samples14\API\PageAndRDL\Layers\VB.NET

C#

..\Samples14\API\PageAndRDL\Layers\C#

Details

When you run this sample, the End User Designer shows a list of .rdlx reports on the bottom left of the form. Expand the
Reports node to view reports under it and double-click a report to load it into the designer. Once the report is loaded in
the designer, a Layers List window showing all the Layers used in the report is displayed as a tab next to the Report
Explorer tab. See Working with Layers for further details on the Layers List window.

ReportForm

This is the main form that appears when you run the Layers sample. This form uses controls such as Designer,
ReportExplorer, LayerList, Toolbox, PropertyGrid, ToolStripPanel, ToolStripContentPanel and TreeView to create a
customized report designer.

Right-click the form and select View Code to see how to set up the report designer. It also contains code that
adds reports to the TreeView control, loads a report into the Designer when it is double-clicked in the Reports node, and
shows the Layer List window if the report type is Page or RDL.

Reports Folder

AccountStatementSheet.rdlx: This report uses the XML data source connection to provide custom data. Controls such as
Image, FormattedTextBox, Table and Label are used to display the statement of an account holder. The FormattedTextBox
control contains text in HTML tags to display the content.

This report is contains three Layers besides the Default Layer with the following controls and TargetDevice settings.

ActiveReports 14 969

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Layer Name Target Device Description

Default All This is a default layer. It does not contain any control.

Layer1 Screen Contains the Header and Footer section.

Layer2 Screen, Paper Contains a FormattedTextBox control to display the account information of the
account holder.

Layer3 All Contains a Table data region and an OverflowPlaceHolder control to display the
account transactions.

SalesRevenueReport.rdlx: This report uses the Reels shared data source connection to provide the data. The layout of
the report uses a Chart data region to graphically display sales and profit for each month and two Table data regions to
display the chart data. The first Table data region (Layer2) contains the sales revenue for each month and the second
Table data region (Layer3) lists down the detailed figures for the monthly sales along with a DataBar to visually depict the
profits.

This report contains three Layers besides the Default Layer with the following controls and TargetDevice settings.

Layer Name Target Device Description

Default All This is a default layer. It does not contain any control.

Layer1 All Contains a Chart data region to display the annual sales by month.

Layer2 Paper Contains a Table data region to display the sales by month. Visibility of this Layer has
been set to hidden.

Layer3 Screen, Export Contains a Table data region to display the detailed sales and a DataBar to depict the
profits.

SchoolStudentReportCard.rdlx: This report uses the XML data source connection to provide custom data. This
report includes an Image control that acts as a background layout of the report. It also includes a few TextBox controls to
display the name and the grades obtained by the student.

This report contains two Layers besides the Default Layer with the following controls and TargetDevice settings.

Layer Name Target Device Description

Default All This is a default layer. It does not contain any control.

Layer1 Screen, Export Contains an Image control with an image of a school graduation certificate.

Layer2 All Contains few TextBox controls to display the name and grades obtained by the
student.

UserConferenceLabels.rdlx: This report uses the Nwind shared data source connection to provide data. This report uses
the Image, TextBox, BarCode and Label controls to create a layout for the User Conference 2014 ticket.

This report contains two Layers besides the Default Layer with the following controls and TargetDevice settings.

Layer Name Target Device Description

default All This is a default layer. It does not contain any control.

ActiveReports 14 970

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Layer1 Screen, Export Contains Image controls to display the conference logo and sponsors and Label
controls to display conference name and details.

Layer2 All Contains bound TextBox fields to display the conference attendee details and a
BarCode control to display a unique BarCode for each attendee.

Report Wizard
The Report Wizard sample demonstrates how to create and customize a report, using the report wizard.

Sample Location

Visual Basic.NET

..\Samples14\API\PageAndRDL\ReportWizard\VB.NET

C#

..\Samples14\API\PageAndRDL\API\ReportWizard\C#

Details

When you run this sample, the form with the Report Wizard appears. On the Select Report Type page, select the report
type you want to analyze and click the Next button.

On the next Choose grouping options page of the wizard that appears, you are asked to choose a field for grouping the
report data and click the Next button. You can also enable the checkbox at the bottom of the page if you like to include
the last detail of the report as separate group. If you leave it unchecked, the checkbox automatically adds the last detail to
a previous group.

On the next Select output fields page of the wizard that appears, you are asked to choose the fields you want to display
in your report and click the Next button. On the next Summarization and Review page, you can review the settings you
have selected previously. You can also set the summary options if you want to display a grand total or a sub-total in the
report. Finally, when you click the Finish button, the GrapeCity Unified ReportDesigner appears and displays the report.

The sample consists of following items:

MetaData folder: This folder contains two internal classes, FieldMetaData and ReportMetaData. The FieldMetaData
class contains information on the fields used in the report string values. This file provides this information when required
by the application. Similarly, the ReportMetaData class contains information on the reports used in this sample. This
file provides this information when required by the application.

Resources folder: This folder contains images and icons used by the Report Wizard API.

UI folder:

WizardSteps: This folder contains templates of the Report Wizard pages, which get displayed inside the Panel

ActiveReports 14 971

Copyright © 2020 GrapeCity, Inc. All rights reserved.

control on the WizardForm at run time.
DesignerForm: This form appears when you click the Finish button on the last page of the Report Wizard. This form
uses the ToolStripPanel, ToolStripContentPanel, Designer, Toolbox, ReportExplorer and a PropertyGrid controls
to create the Unified ReportDesigner.
Right-click the form and select View Code to see how to set the designer and create a blank page report. It also
contains code that attaches the Toolbox, ReportExplorer and PropertyGrid controls to the Designer, inserts
DropDown items to the ToolStripDropDownItem, sets their functions, and checks for any modifications that have
been made to the report in the designer.
DragDropListBox: This file contains code to override methods that enable and handle the drag-and-drop feature in
the ListBox, which appears on the wizard page where you select the grouping and the output fields. Thus, instead
of selecting a field and clicking the Add button in the ListBox control, you can directly drag fields as well.
TipControl: This file contains the design of the Tip that appears on the first page of the report wizard.
WizardDialog: This is the main form that appears when you run the sample. It uses the PictureBox,
two Labels, Panel and two Button controls to create the Report Wizard. The PictureBox displays the logo while the
two Label controls display the Page Title and Page Description respectively. The Panel control loads the design of
different pages of the Report Wizard. The two Button controls handle the last page and next page functions. Right-
click the form and select View Code to see how to define functions of different controls used on the form.

Constants: This is an internal class that contains fields in string values that can be summarized.

GenreSales.rdlx-master: This is the master report for the Genre Sales report. It uses the Image, two Textbox
and ContentPlaceholder controls to design the report. The Image control displays the logo on the top of the report while
the two Textbox controls display the report execution time and page number information respectively. The
ContentPlaceholder control displays its content report.

LayoutBuilder: This is the internal class file that contains code for creating the layout of both child reports and loading
data in it.

Reports.xml: This XML file is used as a database to provide data for the reports in this sample.

ReportWizardState: This is the internal class file that contains code for handling the UI of the Report Wizard.

StoreSales.rdlx-master: This is the master report for the Store Sales report. It uses the Image, two Textbox
and ContentPlaceholder controls to design the report. The Image control displays the logo on the top of the report while
the two Textbox controls display the report execution time and page number information respectively. The
ContentPlaceholder control displays its content report.

Stylesheets
The Stylesheets sample demonstrates how to work with embedded and external style sheets in Page and RDL reports.

ActiveReports 14 972

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\API\PageAndRDL\Stylesheets\VB.NET

C#

..\Samples14\API\PageAndRDL\Stylesheets\C#

Details

When you run this sample, the main StyleSheetsForm interface displaying the following options appears:

1. Choose Report: Select the type of report you want to display in the Viewer.
2. Choose Style: Select a style sheet; embedded or external to apply to the report.

Click on Run Report button to load the report with the selected options in the Viewer. See Styles for more information
about style sheets.
StyleSheetsForm: This is the main form of the sample that displays reports in the ActiveReports Viewer control in the
bottom section of the form, and options such as Choose report, Choose style and Run report button at the top of the
form.

DeliverySlip.rdlx: This is a Page report, that contains TextBox, Label, Container controls and two Table data regions to
display the invoice information. The report uses Theme1.rdlx-theme file and BaseStyle as an embedded style sheet. Some
TextBox controls on the report also use the Sum function to display the total price information for each invoice. This
report uses the Seikyu2 shared data source.

ReorderList.rdlx: This is an RDL report, that contains Table data region to display data from Reels shared data source.
The Reels logo in the report is embedded within the Reels.rdlx-theme.

External Stylesheet: Following external style sheets are provided in this folder:

External Stylesheet Location - ..\Samples14\API\PageAndRDL\Stylesheets\Reports

BaseStyle.rdlx-styles
FaxSheetStyle.rdlx-styles
HighContrastStyle.rdlx-styles
ModernStyle.rdlx-styles

ActiveReports 14 973

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Section Reports
This section discusses following samples:

Charting
This sample demonstrates chart types used in different scenarios, in both bound and unbound modes.

Cross Section Controls
This sample demonstrates the use of the cross section lines and boxes.

Cross Tab Report
This sample demonstrates using unbound data, conditional highlighting and distributing data across columns to
create a cross-tab view and data aggregation.

Custom Annotation
This sample demonstrates adding the Custom Annotation button to the report Viewer toolbar and adding a new
annotation to the report.

Digital Signature Pro
This sample demonstrates how to sign digitally or set time stamp for a section report when exporting it to PDF
format.

Export
This sample demonstrates how to export to different export formats using code.

Inheritance
This sample demonstrates using the method that inherits a report at run time and design time.

Print Multiple Pages per Sheet
This sample demonstrates printing a document with multiple pages per sheet by using the common PrintDocument
class of the NET.Framework.

Style Sheets
This sample demonstrates changing styles at run time to provide a different look to a same report.

Sub Report
This sample demonstrates using subreports in an ActiveReports report.

Summary
This sample demonstrates how to display summarized data in a section report.

Charting
The Charting sample provides an option to choose from various chart types and a button to display the selected chart in a
Viewer control.

Sample Location

Visual Basic.NET

ActiveReports 14 974

Copyright © 2020 GrapeCity, Inc. All rights reserved.

..\Samples14\API\Section\Charting\VB.NET

C#

..\Samples14\API\Section\Charting\C#

Details

Chart type combobox

Select from the following ChartType options.

2D Bar Chart - Use this chart to compare values of items across categories.
3D Pie Chart - Use this chart to display data in 3D format to depict how percentage of each data item contributes
to a total percentage. Selecting this ChartType provides an option to set the Direction of rotation of 3D Pie chart to
Clockwise or Counterclockwise.
3D Bar Chart - Use this chart to compare values of items across categories and to display the data in a 3D format.
Finance Chart -Use this chart to display the stock information using High, Low, Open and Close values. The size of
the wick line is determined by the High and Low values, while the size of the bar is determined by the Open and
Close values.
Stacked Area Chart - Use this chart to demonstrate how each value contributes to the total.

Report Display button
Click this button to display the selected chart type in a Viewer control.

Note: To run rpt2DBar, rpt3DPie and rpt3DBar report, you must have access to the Nwind database. The NWIND.mdb
file can be downloaded from GitHub: ..\Samples14\Data\NWIND.mdb.

ViewerForm
The ViewerForm contains the Viewer control, with the Dock property set to Fill. This enables the viewer to automatically
resize along with the form. Right-click the form and select View Code to see the code used to run the report and display
it in the viewer.

rpt2DBar report
Displays bar chart on a report. Retrieves the data to be displayed in a chart from Orders table in Nwind.mbd database.
Settings for chart data source can be done using the Chart DataSource dialog.

rpt3DBar report
Displays 3D bar chart on a report. Retrieves the data to be displayed in a chart from Orders table in Nwind.mbd database.
Generates a DataSet for the chart in ReportStart event and sets it in DataSource property of Chart control.

rpt3DPie report
Displays 3D pie chart on a report. Retrieves the data to be displayed in a chart from each of the Employees, Categories,
Products, Orders, Order Details tables in Nwind.mdb database. Generates a DataTable for the chart in a ReportStart event
and sets it in DataSource property of Chart control. Rotational direction of 3D pie chart can be set to Clockwise or
Counterclockwise.

rptCandle report
Displays candle chart on a report. Chart data is set at design time using DataPoint Collection Editor. DataSource
property is not used for this chart.

rptStackedArea report
Displays stacked area chart on a report. Chart data is set at design time using DataPoint Collection Editor. DataSource
property is not used for this chart.

ActiveReports 14 975

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Cross Section Controls
This CrossSectionControls sample displays the invoice report of a company in detail. This sample uses the CrossSectionBox
and CrossSectionLine controls to demonstrate the lines and display the Invoice report in a tabular form. It includes
a ViewerForm with three tabs, three Viewer controls and an Invoice report to highlight several report features. Run the
project and click the tab to see these features in action.

Sample

Visual Basic.NET

..\Samples14\API\Section\CrossSectionControls\VB.NET

C#

..\Samples14\API\Section\CrossSectionControls\C#

Details

When you run this sample, a form with three different tab options and each tab option displaying a report in a Viewer
control is displayed. Click any tab option at the bottom of the form to display the selected tab feature applied to the
report in a Viewer control. Select from the following tab options.

Cross Section Controls
Draws table style gridlines easily through multiple sections without any gap.

Detail RepeatToFill
The Detail RepeatToFill tab has the RepeatToFill property set to True. This ensures that the formatting (alternating
purple and white rows and CrossSection controls) fills space as needed to keep the same layout between pages.

GroupFooter PrintAtBottom
The GroupFooter section has the PrintAtBottom property set to True. This pulls the GroupFooter section to the bottom of
the page, just above the PageFooter section.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

ViewerForm: The ViewerForm has three tabs-Cross Section Controls, Detail RepeatToFill, GroupFooter
PrintAtBottom, each with an ActiveReports Viewer control on it. Right-click the form and select View Code to see
the code used to change the Invoice report's section properties at run time.
Invoice Report: The Invoice report demonstrates the usage of the following features.

ActiveReports 14 976

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

PageHeader Section: This section contains Shape, Label and TextBox controls. The Shape control provides a
border around the Order ID and Order Date fields and labels. The orderDateTextBox has the
OutputFormat property set to d to display a short date. The Label controls use the BackColor, ForeColor,
and Font properties to add a distinctive style to the report.
customerGroupHeader: The CrossSectionBox control is hosted in the GroupHeader section, and spans the
Detail section to end in the GroupFooter section, forming a rectangle around the details of the invoice at
run time. Three of the CrossSectionLine controls are hosted in the GroupHeader section, and span the Detail
section to end in the GroupFooter section, forming vertical lines between columns of invoice details at run
time.

Note: If you try to drop a CrossSectionBox or CrossSectionLine control into a section other than a header or
footer, the mouse pointer changes to unavailable, and you cannot drop the control.

Two of the TextBox controls use a CalculatedField in the DataField property.

Tip: In the Report Explorer, expand the Fields node, then Calculated to see all of the calculated fields. Select
BillingAddress or ShippingAddress to take a look at the Formula used in the Properties window.

The Line control is used below the column header labels to draw a horizontal line across the width of the report. (It
is not visible at design time unless you make the Height of the GroupHeader section larger.) The DataField
property of the customerGroupHeader section is set to the OrderID field, so that the section (followed by related
details and GroupFooter) prints once per order.

Detail section: This section contains four bound TextBox controls. The four TextBox controls display each
row of data associated with the current GroupHeader OrderID. The OutputFormat property of the UnitPrice
and Total fields is set to C to display currency. The Line control is used below the TextBox controls to draw
horizontal lines across the width of the report under each row of data. (It is not visible at design time unless
you make the Height of the Detail section larger.) Right-click the report and select View Code to see the
code used in the Detail Format event to create a colored bar (in this case, purple bar) report by alternating
the BackColor property of the section. Click the Data Source Icon on the Detail band to view the
Connection String used in the report.
customerGroupFooter section: This section has the NewPage property set to After so that a new page is
printed for each OrderID (the associated GroupHeader's DataField). The Subtotal TextBox uses the following
properties.

The DataField property uses a Total CalculatedField.
The SummaryFunc property is set to Sum, to add the values of the field in the detail section.
The SummaryGroup property is set to the name of the customerGroupHeader, to reset the
summary value each time the GroupHeader section runs.
The SummaryRunning property is set to Group so that the value accumulates for the group rather
than for the entire report or not at all.
The SummaryType property is set to GrandTotal.

Right-click the report and select View Code to see the code used in the customerGroupFooter Format
event to calculate the value for the Grand Total TextBox, and to format it as currency.

PageFooter section: The ReportInfo control uses a FormatString property value of Page {PageNumber}
of {PageCount}, one of the preset values you can use for quick page numbering.

Tip: In order to easily select a control within the report, in the Report explorer, expand the section node
and select the control. The control is highlighted in the Report Explorer and on the report design
surface.

ActiveReports 14 977

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Cross Tab Report
The CrossTabReport sample displays hierarchical information in a cross tabular structure. This sample consists of a
StartForm with an ActiveReports Viewer control and a ProductWeeklySales report.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\CrossTabReport\VB.NET

C#

..\Samples14\API\Section\CrossTabReport\C#

Details

When you run the sample, a report displaying a list of weekly sales for current week, month, quarter or year for each
product category is displayed in the Viewer control. The values highlighted in red represent negative values.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

StartForm

The Viewer control has the Dock property set to Fill. This ensures that the viewer resizes along with the form at run time.
Right-click the form and select View Code to see the code used to run the report and display it in the viewer.
ProductWeeklySales Report:

ProductWeeklySales Report

This report features a number of accumulated values using summary function property settings and calculated values in
the code.The summary function displays a list of summary values only for weekly sales total in group footer without
displaying the Detail section. By setting the Height property of Detail section to 0 and/or hiding the Detail section by
setting Visible property to False, you can create a summary report that only displays sections other than the Detail
section.
Based on the order date of Detail section data, you can determine whether it will be included in a week, month, quarter,
year or previous year's quarter and set the values by sorting in unbound fields. Value of each unbound field is
automatically summarized by each Field placed in the group footer section.

ActiveReports 14 978

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

ReportHeader section: This section of the report features static controls including Labels, a Picture, a Line, and a
Shape control. The report header prints only once on the first page of the report, thus report title, company
information, and a logo are added in this section.
PageHeader section: The page header section contains static Label controls that print at the top of each page and
serve as column headers for the group header sections.
ghCategory section: This group header section has the DataField property set to CategoryName. This setting, along
with data sorted by the same field, produces a report grouped by category. The section contains one bound
TextBox control to display the category name at the beginning of each group. The section's UnderlayNext property
is set to True so that the category prints to the left of the top line of data instead of above it.
ghProduct section: Although this group header contains no controls and is hidden by setting the Height property
to 0 and Visible property to False, it still performs two important functions. First, the DataField property is set to
ProductName, to sort the data inside each category by product, and second, the related group footer section
displays the bulk of the data for the report.
Detail section: The detail section of this report is hidden by setting the Height property to 0 and Visible property to
False, but it does contain four bound fields whose values are used in the code. In the Detail Format event, the value
from the hidden txtDetProduct TextBox is collected and passed to the _sProductName variable. For more
information on section events, see Section Report Events.
gfProduct section: This group footer section displays the bulk of the data for the report in TextBox controls
that have values passed in code, or are bound to fields from the report's Fields collection (see FetchData and
DataInitialize events in the code) using the DataField property. In the gfProduct Format event for the inner group
footer section, the product name collected from the Detail Format event is passed to the txtProduct TextBox. The
Value for the txtPQTDChange TextBox is calculated by subtracting the prior year's quarter-to-date sales figure
from the current quarter-to-date sales figure. The BackColor of the txtPQTDChange TextBox is set to Red if the
value is negative. The total units and sales for each product is summarized using the following properties.

SummaryFunc: Sum (the default value)
Adds values rather than counting or averaging them.
SummaryGroup: ghProduct
Summarizes the values that fall within the current product group.
SummaryRunning: None (the default value)
Ensures that this value is reset each time the product group changes.
SummaryType: SubTotal
Summarizes the current group rather than a page or report total.

gfCategory section: This group footer section displays totals of the gfProduct data in TextBox controls that have
values passed in code, or are bound to fields from the report's Fields collection (see FetchData and DataInitialize
events in the code) using the DataField property. The total units and sales for each category is summarized using
the following properties.

SummaryFunc: Sum (the default value)
Adds values rather than counting or averaging them.
SummaryGroup: ghCategory
Summarizes the values that fall within the current category group.
SummaryRunning: None (the default value)
Ensures that this value is reset each time the category group changes.
SummaryType: SubTotal
Summarizes the current group rather than a page or report total.

PageFooter section: This section is not used, so it is hidden by setting the Height property to 0 and/or Visible
property to False. Otherwise, it would print at the bottom of each page. The section cannot be deleted,
because the related PageHeader section is in use.

ActiveReports 14 979

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ReportFooter section: This section is not used, so it is hidden by setting the Height property to 0 and/or Visible
property to False. Otherwise, it would print once at the end of the report. The section cannot be deleted, because
its related ReportHeader section is in use.

Custom Annotation
The Custom Annotation sample demonstrates how to add the Custom Annotation button to the Viewer toolbar and
depicts the method to add any annotation (seal image in this case) to the report. Only one annotation can be used per
page.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\CustomAnnotation\VB.NET

C#

..\Samples14\API\Section\CustomAnnotation\C#

Details

When you run the sample, the report appears in the Viewer control. The Viewer control toolbar contains the Custom
Annotation button that opens the report annotation.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

AnnotationForm: Add Custom Annotation button in Form_Load event. The behavior on clicking the Custom
Annotation button is mentioned in the description of the Click event.
Annotation report:

ghOrderID section
Product order receipt is grouped according to OrderID.
Detail section
Use RepeatToFill property to output empty rows till the end and perform page break group wise.
GFOrderID section
This group footer section displays the bulk of the data for the report in TextBox controls that have values
passed in code, or are bound to fields from the report's Fields collection (see FetchData and DataInitialize
events in the code) using the DataField property. The total units and sales for each product are summarized
using the following properties:

SummaryFunc: Sum (the default value) adds values rather than counting or averaging them.

ActiveReports 14 980

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Caution: SummaryFunc has no effect unless the SummaryType property is set to either SubTotal
or GrandTotal.

SummaryGroup: ghOrderID summarizes the values that fall within the current order id.
SummaryRunning: None (the default value) ensures that this value is reset each time the order id
changes.
SummaryType: SubTotal summarizes the current group rather than a page or report total.

Resources folder: This folder holds the icon used for adding annotation (seal image) to the report.
Resource1.resx: This file contains the string for the message box that appears when Custom Annotation button is
clicked again to add the annotation.

Digital Signature Pro
This sample demonstrates how you can digitally sign or set time stamp for a section report when exporting it to PDF
format.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\DigitalSignaturePro\VB.NET

C#

..\Samples14\API\Section\DigitalSignaturePro\C#

Details

When you run this sample, the Invoice report is displayed in the Viewer control.

Clicking the Generate Digitally Signed PDF button in the Viewer toolbar creates a PDF file with a time stamp or digital
signatures, based on the settings you have specified in the Viewer toolbar. You can change the content of signatures in
the Signature Format box and you can add the time stamp to the generated pdf file by checking the Set TimeStamp
checkbox, in the Viewer toolbar.

When you click the Generate Digitally Signed PDF button, a dialog for saving the destination file appears. After you
indicate the location for a new PDF file, the PDF report file is created. Digital signature certificates dynamically reference
and use GrapeCity.pfx, included in the project. Also, digital signatures dynamically load and use the gc.bmp file that you
can find in the Image folder of this sample project.

Note: To run this sample, you must have access to the Nwind database. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

ActiveReports 14 981

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Image folder: This folder stores the gc.bmp file with the GrapeCity logo that digital signatures dynamically load and
use.
Invoice report: The Invoice report is the Sample report that uses three GroupHeader sections, a Detail section and a
GroupFooter section as well as a label in the PageFooter section to display data. See The Bound Data Sample topic
for details on the Invoice report.
GrapeCity.pfx: In order to create a digital signature, you must have a valid PKCS#12 certificate (*.pfx) file. For
information on creating a self-signed certificate, see the Adobe Acrobat Help topic "Create a self-signed digital ID."
You can also create a PFX file from the Visual Studio command line. For more information and links to SDK
downloads, see https://www.source-code.biz/snippets/vbasic/3.htm.
PDFDigitalSignature form: This is the main form of the Sample that uses the ActiveReports Viewer control in the
bottom section of the form, and a panel docked to the top contains the Create Digitally Signed PDF button, the
Signature Format box with the drop-down list and the Set TimeStamp checkbox.

Clicking the Generate Digitally Signed PDF button opens a dialog for saving the destination file. After you
indicate the location for a new PDF file, the PDF report file is created.

The drop-down list of the Signature Format box contains the following options.

Invisible - the invisible pdf digital signature.
Text - the pdf digital signature that contains text only.
Image - the pdf digital signature that contains graphics only.
ImageText - the pdf digital signature that contains text and graphics.

Checking the Set TimeStamp checkbox allows you to add the time stamp to the signature of the generated pdf
file. The time stamp contains the Time Stamp Server address, its login and password information.

Right-click PDFDigitalSignature in the Solution Explorer and select View Code to see the code implementation
for the pdf digital signature options.

Resource.resx: This file contains the string for the message box that appears after the PDF file is generated and the
string for the message box that appears when the free service limitation is exceeded.

Export
This sample illustrates how to export to different export formats using code. The available export formats are PDF, XLSX,
RTF, MHT and CSV.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\Export\VB.NET

C#

..\Samples14\API\Section\Export\C#

Details

ActiveReports 14 982

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://helpx.adobe.com/acrobat/using/digital-ids.html#create_a_self_signed_digital_id
https://www.source-code.biz/snippets/vbasic/3.htm

When you run this sample, the Export Form is displayed. The Export Form contains the Report Name and Export Type
combo boxes along with the Export button.

The sample consists of ExportForm. It exports the selected report in the selected export format.

On running the application, select a report for export in the Report Name combo box. In the Export Type combo box,
you can select one of the following formats for export - PDF, XLSX, RTF, MHT and CSV. Clicking the Export button opens
the Save As dialog where you can specify the name of the exported file. By default, the exported file is saved in the
Documents folder.

Inheritance
This sample explains the method to inherit a report at run time and design time. The Inheritance sample solution is
composed of two classes - the parent class and the child class for both inheritance at run time and design time.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\Inheritance\VB.NET

C#

..\Samples14\API\Section\Inheritance\C#

Details

When you run the sample, the report is created and displayed, providing you with the choice of two options - Inheritance
Report created at RunTime and Inheritance Report created at Design Time. By clicking a button on the form, you get
a report that inherits another class at run time or at design time.

Inheritance Report created at RunTime
The rptInheritBase class is the inheritance class for the generated report when the Inheritance Report created at
RunTime button is clicked on the form. The rptInheritBase class inherits the SectionReport class of the
GrapeCity.ActiveReports namespace as parent class. It is possible to use DataInitialize event or FetchData event in this
class and also possible to load csv file and set values for csv files. It defines the CsvPath property which gets csv file path.
The rptInheritChild class inherits the rptInheritBase class and is a class which only defines the report design. By adding the
event handler for inheritance in the constructor and setting for csv file in CsvPath property, it is possible to perform
rendering of data executed by event of BaseReport which is the inheritance class.

Inheritance Report created at Design Time

ActiveReports 14 983

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The rptDesignBase class is the inheritance class for the generated report when the Inheritance Report created at Design
Time button is clicked on the form. The rptDesignBase class inherits SectionReport class of the GrapeCity.ActiveReports
namespace as parent class. Using this class, you can place any control (ReportInfo controls etc. to display report title, page
number, page count) you wish to inherit in PageHeader section and PageFooter section. The rptDesignChild class is
inherited from rptDesignBase class. It only defines the design of Detail section. PageHeader section and PageFooter
section use the design of rptDesignBase class which is an inherited class. DataSource setting can be performed from
rptDesignChild class.

Caution: If you have not run the project even once, an error occurs when you try to open the report designers of the
inherited classes rptInheritChild or rptDesignChild from the solution explorer. In case this error occurs, Build the
project once before opening the report.

ViewerForm: Creates an instance of specified report and display the report in Viewer control.
rptDesignBase: The rptDesignBase class that defines the layout of PageHeader section and PageFooter section.
rptDesignChild: The rptDesignChild designer defines the layout on Detail section and sets the value of DataField
property of the controls placed in Detail section. Also set the data source to output using Report Data Source
dialog.
rptInheritBase: The class to set values for data field and rendering of csv file using DataInitialize event FetchData
event.
rptInheritChild: The designer that sets layout for each control and it's DataField property.

Print Multiple Pages per Sheet
The PrintMultiplePagesPerSheet sample demonstrates how you can print a document with multiple pages per sheet using
the common PrintDocument class or PrintOptions class from .NET Framework. This sample project consists of the
PrintMultiplePagesForm and the Invoice report.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\PrintMultiplePagesPerSheet\VB.NET

C#

..\Samples14\API\Section\PrintMultiplePagesPerSheet\C#

Details

When you run this sample, you will see the PrintMultiplePagesForm with the Invoice report. On this form, you can select

ActiveReports 14 984

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the number of pages to be printed on each sheet using the Select Numer of Pages to Print on One Sheet ComboBox.
You can also select from PrintMultiple Pages using PrintOptions API and PrintMultiple Pages using Custom Code
tabs options and click the Print button on each of these tab to print the selected number of pages in one sheet.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

PrintMultiplePagesForm: This form contains the ActiveReports Viewer control. The Dock property of the viewer is
set to Fill so that it resizes automatically with the form at run time. The top section of Viewer contains a panel
in which two tabs, ComboBox control, Label and two Print buttons are placed. ComboBox control lets you select
the number of pages per sheet (2,4 or 8)and the Print button in PrintMultiple Pages using PrintOptions API and
PrintMultiple Pages using Custom Code tab, print the selected number of pages in one sheet. The form also has
two dialogs - dlgPrint and PrintDocument which assist in displaying the Print dialog box and printing the
document.
Right-click and select View Code to see the code that displays the Invoice report when the form loads. Also the
code demonstrates the different ways of printing a document - the Print button in PrintMultiple Pages using
Custom Code tab uses the PrintDocument class and the Print button in PrintMultiple Pages using PrintOptions
API tab uses the PrintOptions class.
Invoice report: The Invoice report uses a PageHeader section, GroupHeader section, Detail section, GroupFooter
section as well as a PageFooter section to display data in a Label control.

Style Sheets
This sample demonstrates how you can change styles at run time to provide a different look to a same report. The project
includes two reports, three report styles and a form containing the ActiveReports Viewer control and other controls that
allow you to select any combination of styles and reports.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\Stylesheets\VB.NET

C#

..\Samples14\API\Section\Stylesheets\C#

Details

ActiveReports 14 985

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Choose Report
Choose between the type of report, Categories and Product List, you want to display in the Viewer control.

Choose Style
Choose between Classic, Colored and External style sheet options to apply the style to the selected report.
Clicking the Choose button option for External style sheet displays the Open dialog that shows only *.reportstyle files,
and passes the selected reportstyle path and file name string to the externalStyleSheet variable.

Run Report button
Click this button to display the selected report with the applied style in a Viewer control. Clicking this button creates an
SectionReport object, assigns the selected report to it, and assigns a path and file name string to the styleSheet variable. It
then assigns the style sheet to the report using the LoadStyles(styleSheet) method, runs the report, and displays it in the
viewer.

The sample consists of:

Report Style Sheets: Look in Solution Explorer to see several *.reportstyle files. These are XML-based files that hold
styles that you can apply to TextBox, Label, CheckBox, and ReportInfo controls on ActiveReports. Double-click one
to open it. Each reportstyle contains a set of values for each of the standard style names:

Normal
Heading1
Heading2
Heading3
DetailRecord
ReportTitle

When you select one of these style names on a report control, ActiveReports retrieves the style values, such as font
size and color, from the specified style sheet when it runs the report.

For more information on creating your own style sheets, see Use External Style Sheets.

Reports: Two reports, CategoryReport and ProductsReport, are included in this sample so that you
can apply styles in different ways. Open one of the reports, and select the TextBox and Label controls on it to see
which style is used for each.
StyleSheetsForm: The form in this project features radio buttons for choosing the report and style you want, a
Choose button that opens a standard Windows Open dialog where you can select a reportstyle, and a Run report
button that runs the selected report, applies the selected reportstyle, and displays the results in the ActiveReports
viewer control below.
To see how all of this works, right-click the form and select View Code.

Choose Button Click Event

This event contains code that sets up an Open dialog that shows only *.reportstyle files, and passes the selected
reportstyle path and file name string to the externalStyleSheet variable.

Run Report Button Click Event

This event contains code that creates an empty SectionReport object, assigns the selected report to it, and assigns
a path and file name string to the styleSheet variable. It then assigns the style sheet to the report using the
LoadStyles(styleSheet) method, runs the report, and displays it in the viewer.

Sub Report

ActiveReports 14 986

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The SubReports sample demonstrates how SubReport control can be used to generate nested and hierarchical reports.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\SubReport\VB.NET

C#

..\Samples14\API\Section\SubReport\C#

Details

When you run this sample, the blank Viewer form appears, with the drop-down list of the sample reports on the top of the
form. Select the report from the drop-down list to have it displayed in the Viewer control. You can select from the
following options.

Simple SubReport - the basic sample report that demonstrates how to embed a report into another report. On
selecting this report, rptSimpleMain report is displayed. The Detail section of this report contains the bound
Textbox control to display the Category Name information and the Subreport control to display data from
rptSimpleSub.
Nested SubReport - the report demonstrates how to nest subreports to display main, child, and grandchild levels
in a report. It uses rptNestedParent, rptNestedChildMain, and rptNestedChildSub reports.
Hierarchical SubReport - the main report dataset with the SHAPE statement defines the hierarchical structure of
the report that uses a subreport. It uses rptHierarchicalMain and rptHierarchicalSub reports.
SubReport using the data set that contains relationship - the main report having dataset with the relation that
is defined in code, in the DataSet.Relations property of the main rptDSRelationParent report. It uses
rptDSRelationParent, rptDSRelationChildMain, and rptDSRelationChildSub reports.
Master-detail report containing a SubReport - the sample report that demonstrates how to create a master
detail report that uses a subreport. It uses rptMasterMain and rptMasterSub reports.
Bookmark in SubReport - the sample report that uses bookmarks from the subreport. It uses rptBookmarkMain
and rptBookmarkSub reports.
Use a parameter in the SubReport - the sample report demonstrates how to set up a parameter in the data
source of the subreport. See rptParamMain and rptParamSub for details.
To view the Dataset with multiple tables using SubReports - the sample report with the dataset that contains
multiple data tables. The main report uses subreports to output multiple tables in a single report. See
rptUnboundDSMain and rptUnboundDSSub for details.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

ActiveReports 14 987

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Summary
This sample shows how to use calculated fields and data field expressions for simple calculations in a report.

Sample Location

Visual Basic.NET

..\Samples14\API\Section\Summary\VB.NET

C#

..\Samples14\API\Section\Summary\C#

Details

When you run this sample, The Viewer control with the Select Report drop-down list is displayed. There, you can select
one of the two reports - OrdersReport or DataFieldExpressionsReport, and click the Load Report button to display the
report in the Viewer.

The OrdersReport shows how to use calculated fields, where the field values are calculated in code. A custom field is
added to the Fields collection in the DataInitialize event and the field value is calculated in the FetchData event.

The DataFieldExpressionsReport demonstrates the use of data field expressions for simple calculations within the same
section of the unbound report using known Fields collection values. These data field expressions cannot be used with the
built in summary functions of ActiveReports 14.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

The sample consists of the StartForm and two reports - OrdersReport and DataFieldExpressionsReport.

StartForm: The Viewer control has the Dock property set to Fill. This ensures that the viewer resizes along with the
form at run time. Right-click the form and select View Code to see the code used to run the report and display it in
the viewer.
OrdersReport: The report shows the ProductID, UnitPrice, Quantity, Discount, Extended Price and Total value for
each OrderID. The Extended Price value is a calculated field that displays the result of the formula specified in
FetchData event.
The OrdersReport uses a GroupHeader section, a Detail section and a GroupFooter section as well as a Label in the
PageFooter section to display data.

Note: Except for the Detail section, all sections come in header and footer pairs. Unused sections have their

ActiveReports 14 988

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Height properties set to 0 and their Visible properties set to False.

ghOrderID section

This group header section has the DataField property set to OrderID. This setting, along with data sorted by the
same field, displays a report grouped by OrderID. The section contains one bound TextBox control to display
the OrderID at the beginning of each group.

Detail section

The Detail section of this report contains 5 bound TextBox controls that render for each row of data of the OrderID.

gfOrderID section

This group footer section displays total of the gfOrderID data in TextBox controls that have values passed in code,
or are bound to fields from the report's Fields collection using the DataField property. The total extended price for
the OrderID is summarized using the following properties:
SummaryFunc: Sum (the default value)
Adds values rather than counting or averaging them.
SummaryGroup: ghOrderID
Summarizes the values that fall within the current OrderID group.
SummaryRunning: Group
Calculates a running summary (each value is the sum of the current value and all preceding values) within the same
group level.
SummaryType: SubTotal
Summarizes the current group rather than a page or report total.

PageFooter section

The page footer section contains a static Label control that prints at the bottom of each page and contains the
note on the number of pages in the report.

DataFieldExpressionsReport: The DataFieldExpressionsReport displays data, using the Fields collection from the
OrderDetail class. The report data under ExtendedPrice is calculated by the data field expression, specified in the
DataField property of the txtExtendedPrice TextBox at the design time. The DataFieldExpressionsReport is an
unbound report that uses the field values from the OrderDetail class for displaying the report data.

PageHeader section

The PageHeader section contains one Label control with the note text and four labels with the names of the report
data fields.

Detail section

The Detail section contains four textboxes that use the Fields collection values to display the report data. The
DataField property of the txtExtendedPrice textbox in the Detail section demonstrates how to format your data
field expression.

OrderDetail class

The OrderDetail class contains data that is used in the fields of the report. When the report is run, the values of
these fields are used to display data of the report. The field values are bound to the fields in the DataInitilize
event and the data is bound to the field values in the FetchData event of the DataFieldExpressionsReport.

ActiveReports 14 989

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Data Binding
The samples in the Data Binding folder demonstrate data binding with various data providers separately for Page/RDL and
Section reports.

Page and RDL Reports
Section Reports

Page and RDL Reports
This section contains:

CSV Data Source
This sample demonstrates how to connect to a CSV data source.

DataSet DataSource
This sample demonstrates how to use a dataset as a data source for a report.

Json Data Source
This sample demonstrates how to use the Json data provider at run time and add a web service for authentication.

Object Data Source
This sample demonstrates how to use Object provider for binding a report.

OData Data Source
This sample demonstrates how to use OData EndPoint for binding a report.

OleDb Data Source
This sample demonstrates how to connect to an OleDb data source at run time and pass data to the report using
LocateDataSource event.

XML Data Source
This sample demonstrates how to connect to a XML data source at run time and pass data to the report using
LocateDataSource event.

CSV Data Source
The CSV Data Source sample demonstrates how to use the CSV data provider in a Page report.

Sample Location

ActiveReports 14 990

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic.NET

..\Samples14\DataBinding\PageAndRDL\CSVDataSource\VB.NET

C#

..\Samples14\DataBinding\PageAndRDL\CSVDataSource\C#

Run-Time Features

When you run this sample, the CSV DataSource window appears. Select a radio button to specify the data format of the
CSV file to use for the data source, and click the Run button to show the report in the viewer. You can choose from the
following CSV data formats:

Delimited Data
No header, column separator is comma
Header exists, column separator is Tab

Fixed width Data
No header
Header exists

Project Details

MainForm

This is the main form that appears when you run this sample. It uses the ActiveReports Viewer control to display the
report at run time, and radio buttons to select the data source settings.

Right-click the form and select View Code to see how to set the data source settings in the connection string, and how
to show the report at run time.

StockList.rdlx

This is the report that gets displayed in the Viewer at run time. The report is bound to the StockList dataset of the CSV
data provider and uses a Table data region and TextBox controls to display the stock list. The stock list is grouped by
CustomerID value.

DataSet DataSource
The DataSetDataSource sample demonstrates how to connect a page report to an unbound data source at run time, using
the DataSet provider with the LocateDataSource event. The reporting engine raises the LocateDataSource event when it
needs input on the data to use.

ActiveReports 14 991

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\PageAndRDL\DataSetDataSource\VB.NET

C#

..\Samples14\DataBinding\PageAndRDL\DataSetDataSource\C#

Run-Time Features

When you run this sample, the Invoice2.rdlx report is displayed in the Viewer control. The report displays the Invoice form
with the list of products along with the product ID, quantity and price of the products.

The report connects to an unbound data source at run time using the LocateDataSource event and the DataSet provider.

Project Details

Invoice.rdlx

In the Report Data Source dialog, the type of the report data source is set to DataSetProvider and the ConnectionString is
left blank. In the DataSet dialog, data fields used on the report are added to the DataSet on the Fields page.

This report uses the Table, TextBox, Label and Shape controls to create an Invoice layout for displaying the customer
transactions. The Container control at the bottom of the report contains a label, a textbox and line control. The textbox
uses the Sum function to display the sum of the values returned by the expression indicated in the Value property.

ViewerForm

This is the main form that appears when you run this sample. It uses the ActiveReports Viewer control to display the
report at run time. The code-behind the form contains the code with the LocateDataSource event that connects the
Invoice2.rdlx report to unbound data and the code that populates fields for the data table.

Json Data Source

ActiveReports 14 992

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Json Data Source sample demonstrates how to use the Json data provider. The sample uses a web service
that requires authentication to access the Json data source at run time.

You must have IIS Express installed on your machine for the Json Data Source sample to run.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\PageAndRDL\JsonDataSource\VB.NET

C#

..\Samples14\DataBinding\PageAndRDL\JsonDataSource\C#

Run-Time Features

The sample consists of two projects: the Windows Application project with a report, MainForm, and DataLayer class that
provides report data; and the Web Application project with a web service that provides access authentication for the
report data at run time.

When you run this sample, you will see the MainForm appear. The MainForm contains the ActiveReports Viewer that
displays a report with a list of Customers from the Json data provider.

Note: To run this sample, you must have access to the customers.json data file. The customers.json file can be
downloaded from GitHub: ..\Samples14\Data\customers.json.

Project Details

JsonDataSource

This is the Windows Application project that contains the MainForm, the sample page report, and the DataLayer file with
the report data.

DataLayer

This file is an internal class that contains code to create the data connection. It provides interaction with the server
containing Json data using HTTP, including the access credentials.

MainForm

This is the main form that appears when you run this sample. It uses the ActiveReports Viewer control to display the
report at run time.

ActiveReports 14 993

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Right-click the form and select View Code to see how to load and show the report at run time.

testReport.rdlx

This is the report that gets displayed in the Viewer at run time. The report contains the embedded Json schema as the
data source.

It uses the Table data region to display data from the Json data source, the Customers sample data file.

WebService

This is the Web Application project that contains the web service used to retrieve data from the Json data source for the
sample report at run time.

BasicAuthHttpModule

This file is the public class that provides access authentication when the report connects to the Json data source at run
time.

Service.asmx

This is the web service required to access the Json data provider.

Web.config

This is the web configuration file for configuring your web application.

Object Data Source
The Object Data Source sample demonstrates how to use Object provider for binding a report that contains a subreport.

Sample Location
Run-Time Features
Project Details

Sample Location

ActiveReports 14 994

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Visual Basic.NET

..\Samples14\DataBinding\PageAndRDL\ObjectDataSource\VB.NET

C#

..\Samples14\DataBinding\PageAndRDL\ObjectDataSource\C#

Run-Time Features

When you run this sample, the MainForm with the ActiveReports Viewer appears. The viewer displays the report where
YearReleased column is a part of the main report (ObjectsReport.rdlx) whereas other columns such as ID, Title
and MPAA are part of the subreport (SubObjectsReport.rdlx).

Project Details

DataLayer

This file is an internal class that contains code to provide data for the report.

MainForm

This is the main form that appears when you run this sample. It uses the ActiveReports Viewer control to display the
report at run time.

Right-click the form and select View Code to see how to load and show the report at run time.

ObjectsReport.rdlx

This is the report that gets displayed in the Viewer at run time.

The report uses the header with the Textbox to display the report heading and the footer with a Textbox to display the
page number information. The body of the report has the Table data region to display data where only first column is
obtained from the Objects data provider. For that, the Textbox controls of the Table are bound to the Objects data source
in the Value property. For rest three columns, subreport control is used.

SubObjectsReport.rdlx

This is the subreport that is placed on Table data region of the main report.

The report has a Table data region to display data obtained from the Objects data provider. Here also, the Textbox
controls of the Table are bound to the Objects data source in the Value property.

OData Data Source
The OData DataSource sample demonstrates how to use OData EndPoint for binding a report.

Sample Location
Run-Time Features
Project Details

ActiveReports 14 995

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\PageAndRDL\ODataDataSource\VB.NET

C#

..\Samples14\DataBinding\PageAndRDL\ODataDataSource\C#

Run-Time Features

The ODataDataSource sample needs a running ODataEndPoint to obtain data. To run the sample, please perform
the following steps:

1. Right-click solution in Solution Explorer and select Properties.
2. Select Multiple startup projects radio button and Start actions in ODataEndPoint and ObjectDataSourceClient,

or ODataEndPoint and JsonDataSourceClient projects in Startup Project tab.
3. Run the sample again.

Project Details

The sample consists of JsonDataSourceClient and ObjectDataSourceClient projects to render data and ODataEndPoint to
query data.

JsonDataSourceClient

This folder contains the DataLayer, Program and Service classes required for the data connection.

The MainForm is the form that appears when you run this sample if you have previously selected ODataEndPoint and
JsonDataSourceClient projects as startup projects in the sample Properties.

ObjectDataSourceClient

This folder contains the DataLayer, Program and Service classes required for the data connection.

ActiveReports 14 996

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The MainForm is the form that appears when you run this sample if you have previously selected ODataEndPoint and
ObjectDataSourceClient projects as startup projects in the sample Properties.

The Models subfolder contains Movie and Year classes.

ODataEndPoint

This folder contains the AppData and AppStart subfolders required to run the application.

The Controllers subfolder contains the MoviesController and CustomersController files. The MoviesController handles
the user interaction and returns the main view. The CustomersController handles the customer details information that is
displayed when a customer is selected.

The Models subfolder contains the Customer and Movie classes providing data for the report.

Global.asax is the default class that sets global URL routing values for this web application.

Web.config is the configuration file that contains the httpHandlers that allow ActiveReports to process this web
application. Note that you need to manually update version information here when you update your version of
ActiveReports.

OleDb Data Source
The OleDB Data Source sample demonstrates how to use the OleDb data provider for binding a report to data.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\PageAndRDL\OleDbDataSource\VB.NET

C#

..\Samples14\DataBinding\PageAndRDL\OleDbDataSource\C#

Run-Time Features

When you run this sample, the MainForm with the ActiveReports Viewer appears. The Viewer displays the report with the
list of movies, their ratings and the release year information.

Note: To run this sample, you must have access to the Reels.mdb. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.

Project Details

ActiveReports 14 997

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

DataLayer

This file is an internal class that contains code to create a data connection. It creates the OleDb data reader to read
data from the Reels database and add it to an array to provide data for the report.

MainForm

This is the main form that appears when you run this sample. It uses the ActiveReports Viewer control to display the
report at run time.

Right-click the form and select View Code to see how to load and show the report at run time.

OleDBReport.rdlx

This is the report that gets displayed in the Viewer at run time.

The report uses the header with the Textbox to display the report heading and the footer with the Textbox to display the
page number information. The body of the report has the Table data region to display data obtained from the OleDb data
provider. For that, the Textbox controls of the Table are bound to the OleDB data source in the Value property.

Xml Data Source
The XML Data Source sample demonstrates how to use the XML data provider for supplying data to the report.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\PageAndRDL\XmlDataSource\VB.NET

C#

..\Samples14\DataBinding\PageAndRDL\XmlDataSource\C#

Run-Time Features

When you run this sample, you will see the MainForm appear. The MainForm contains the ActiveReports Viewer that
displays a report with data from the xml data provider.

Project Details

BandedListXML.rdlx

ActiveReports 14 998

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This is the main report that gets displayed in the Viewer at run time. It uses the BandedList and Textbox controls,
and the Subreport control inside the BandedList data region to display data.

The BandedList data region uses two groups to group the report data by the fields City and Country.

The Subreport control, placed in the GroupFooter section of the BandedList, displays the CountrySales report.

CountrySales.rdlx

This is the report that gets displayed by the Subreport control of the BandedListXML report.

It uses the Chart data region to display data. The Chart Type property is set to Doughnut (Pie Exploded Doughnut),
which shows the analysis of companies sales amount for different countries.

Section Reports
This section contains:

Bound Data
Demonstrates binding to ADO.NET Data objects.

IList Binding
Demonstrates creating a custom collection that stores data from the database in the List. The custom collection is
displayed by binding data to the DataGridView control by using the DataSource property of this control.

LINQ
The LINQ sample demonstrates how to use LINQ in an ActiveReports report.

Unbound Data
The Unbound Data sample demonstrates how to create a dataset for a section report and use the FetchData event to
populate the Fields collection to display the report unbound data.

XML
This sample demonstrates how to create a report with XML data, using a SubReport or using the XML hierarchical
structure.

Bound Data
The Bound Data sample demonstrates various ways to bind data in a section report.

When you run the sample, the Viewer control displays the form with eight tabs, each with a different data binding
technique. Click to select a tab, and then click the Bind To button to create the report.

Sample Location

Visual Basic.NET

ActiveReports 14 999

Copyright © 2020 GrapeCity, Inc. All rights reserved.

..\Samples14\DataBinding\Section\BoundData\VB.NET

C#

..\Samples14\DataBinding\Section\BoundData\C#

Run-Time Features

The top panel of the MainForm is composed of eight tabs:

Bind to DataSet
Creates a DataSet from the sample database and binds it to a SectionReport object.

Bind to DataReader
Creates a DataReader from the sample database and binds it to a SectionReport object.

Bind to DataView
Creates a DataView from the sample database and binds it to a SectionReport object. This tab contains a ComboBox
which lets you choose the company name from the NWind database.

Bind to DataTable
Creates a DataTable from the sample database and binds it to a SectionReport object.

Bind to SQL Server
Creates a SQL Server DataSource from a SQL server instance and binds it to a SectionReport object. The ComboBox
present in this tab lets you populate the dropdown list with the existing SQL servers on the network.

Bind to OleDb
Creates an Oledb DataSource and binds it to a SectionReport object.

Bind to XML
Creates a XML DataSource from a file and binds it to a SectionReport object. The XML tab also features a Generate XML
button that generates a DataSet and saves it as an XML data file. The generated file is then used as a data source for the
report.

Bind to CSV
Creates a CSV DataSource from a file and binds it to a SectionReport object. You can select the data type of the file from
the following options:

Delimited Data (with or without header)
Fixed width Data (with or without header)

Project Details

MainForm

The MainForm uses the ActiveReports Viewer control in the bottom section of the form, and a panel docked to the top
contains tabs, each with a different data binding technique.

Click to select a tab, and then double-click the button on the tab to jump to the button's Click event in the code.

Invoice Report

The Invoice report uses three GroupHeader sections, a Detail section and a GroupFooter section as well as a label in the
PageFooter section to display data.

Note: Except for the Detail section, all sections come in header and footer pairs. Unused sections have their Height

ActiveReports 14 1000

Copyright © 2020 GrapeCity, Inc. All rights reserved.

properties set to 0 and their Visible properties set to False.

ghOrderHeader

The DataField property of this section is set to OrderID. This setting, in conjunction with data ordered by the OrderID
field, causes the report to print all of the information for one order ID value, including all of the related details and footers,
before moving on to the next order ID. For more information on grouping, see Add Groups.

This section also contains a Picture control, a number of Label controls, and two bound TextBox controls. The TextBoxes
are bound using the DataField property in the Properties window, and the date is formatted using the OutputFormat
property.

ghOrderID

The DataField property of this section is also set to OrderID. This allows subtotal summary functions in the related
GFOrderID section to calculate properly.

This section contains a number of labels and bound text boxes, as well as two Line controls.

ghTableHeader

This section contains only labels for the data to follow in the Detail section.

Detail

This section contains bound TextBox controls. These TextBoxes render once for each row of data found in the current
OrderID before the report moves on to the GroupFooter sections.

GFOrderID

The NewPage property of this section is set to After. This causes the report to break to a new page and generate a new
invoice after this section prints its subtotals.

This section contains several labels and several TextBoxes. Two of the TextBox controls use the following properties to
summarize the detail data: SummaryFunc, SummaryGroup, and SummaryType. For more information, Create a
Summary Report.

The Total TextBox does not use the DataField property or any of the summary properties, or even any code. To find the
functionality of this TextBox, in design view, click the Script tab at the bottom of the report.

PageFooter

This section has one simple Label control. For more information about report sections and the order in which they print,
see Section Report Structure and Section Report Events.

ProductList Report

The ProductList report uses the Header and Detail sections to display data.

The Header section contains a number of Label controls to display column names for the product list.

The Detail section contains four TextBox controls to fetch the product data.

IList Binding

ActiveReports 14 1001

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The IList Binding sample uses CollectionBase class, with implementation of IList interface to create a ProductCollection
class which gets populated from the Products table of the NWind database. The created ProductCollection is used as a
database for binding data to the DataGridView control.The data from ProductCollection class gets displayed using the
DataSource property of DataGridView control. On clicking the Generate Report button, the ProductCollection class is
again used to display the data of the generated report in a Viewer control. Similarly, you can display a report by binding
to the DataSource property of a report.

Data from ProductCollection class displayed in DataGridView control

Generated report displayed in Viewer control

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\Section\IListBinding\VB.NET

C#

..\Samples14\DataBinding\Section\IListBinding\C#

Run-Time Features

When you run this sample, DataGridView, which is a standard Windows Forms control displays the custom collection. To
display a report with the bound custom collection, click the Generate Report button.

ActiveReports 14 1002

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

Project Details

The IList Binding sample consists of two projects: IListBinding and IListBinding.DataLayer.

IListBinding Project

BindIListToDataGridSample

This form contains a DataGridView control, a Label control and a Generate Report button. It displays output results by
binding data of a custom collection to the DataGridView control. On clicking the Generate Report button, ViewerForm
displays a report bound to this custom collection.

IlistReportSample report

The report uses the ReportHeader, GroupHeader1 and Detail sections for the report output.

ReportHeader section
The ReportHeader section contains a Label that displays the title of the report.

GroupHeader1 section
The GroupHeader1 section contains nine Label controls that define the layout of the report data.

Detail section
The Detail section contains TextBox controls to display the report data. Following settings have been performed
to enhance the appearance of the report output.

Change the background color of alternate rows
Use the BackColor property of the Detail section (set in the Format event of the Detail section) to change
the background color of each row for better visibility of the table.
Change the background color for selected rows
Use the BackColor property of the Detail section (set in the Format event of the Detail section) to change the
background color of selected rows. The background color changes when Reorder Level is below Ordered Units.

ViewerForm

Setting the Dock property of the Viewer control to Fill ensures that the viewer resizes along with the form at run time.
Right-click the form and select View Code to see the code used to run the report and display it in the viewer.

IListBinding.DataLayer project

DataProvider Class
Implements the connection to the data base.

Product Class
Defines custom collection class.

ProductCollection Class
Implements the CollectionBase class to create a collection of Product class. The list of this collection stores data from the
Products table.

ActiveReports 14 1003

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

LINQ
The LINQ sample demonstrates how to use LINQ in an ActiveReports report.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\Section\LINQ\VB.NET

C#

..\Samples14\DataBinding\Section\LINQ\C#

Run-Time Features

This sample uses a LINQ Query to sort recordsets in descending order of age. The resultant recordsets are converted to an
IList and used as a datasource for the report which is displayed in Viewer control.

Project Details

ViewerForm

Displays the report output results. ToList method is set in DataSource property of the report to extract objects that use
LINQ.

rptLINQtoObject report

The report DataSource is a list of Person constructor created from generic class. Creates a query to sort in descending
order of Age.

Unbound Data
The Unbound Data sample demonstrates how to create a dataset for a section report and use the FetchData event to
populate the Fields collection to display the report unbound data.

When you run the sample, the Viewer control displays the form with four tabs, each with a different dataset binding
technique. Click to select a tab, and then click the Build Report From button to create the report with unbound data.

ActiveReports 14 1004

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\Section\UnboundData\VB.NET

C#

..\Samples14\DataBinding\Section\UnboundData\C#

Run-Time Features

Unbound data with a DataSet
Creates a data set from the included Northwind sample database inside the SectionReport object and uses the
FetchData event to populate the internal Fields collection to display the report data.
Unbound data with a DataReader
Creates a data reader from the included Northwind sample database inside the SectionReport object and uses the
FetchData event to populate the internal Fields collection to display the report data.
Unbound data with a Text File
Sets the Invoice.txt file as a datasource for the SectionReport object and uses the FetchData event to populate the
internal Fields collection to display the report data.
Unbound data with a Data Array
Creates a data array from the included sample text file inside the SectionReport object and uses the FetchData
event to populate the internal Fields collection to display the report data.

Project Details

MainForm

This is the main form of the sample that uses the ActiveReports Viewer control in the bottom section of the form, and a
panel docked to the top contains four tabs, each with a different data binding technique. Click to select a tab, and then
click the button on the tab to display the report with unbound data.

UnboundDAInvoice report

The Invoice report for the Unbound data with a Data Array option. The report consists of the page header, group
header, detail, group footer and page footer sections. The detail section contains information on the order details, the
group header provides grouping data functions by using its DataField property.

For the details on the Invoice report, see the Bound Data Sample topic.

UnboundDRInvoice report

ActiveReports 14 1005

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Invoice report for the Unbound data with a DataReader option. The report consists of the page header, group
header, detail, group footer and page footer sections. The detail section contains information on the order details, the
group header provides grouping data functions by using its DataField property.

For the details on the Invoice report, see the Bound Data Sample topic.

UnboundDSInvoice report

The Invoice report for the Unbound data with a DataSet option. The report consists of the page header, group header,
detail, group footer and page footer sections. The detail section contains information on the order details, the group
header provides grouping data functions by using its DataField property.

For the details on the Invoice report, see the Bound Data Sample topic.

UnboundTFInvoice report

The Invoice report for the Unbound data with a Text File option. The report consists of the page header, group header,
detail, group footer and page footer sections. The detail section contains information on the order details, the group
header provides grouping data functions by using its DataField property.

For the details on the Invoice report, see the Bound Data Sample topic.

XML
The XML sample displays customer order list using the XML data source. The sample demonstrates how to create a report
with XML data, using a SubReport or using the XML hierarchical structure.

Sample Location

Visual Basic.NET

..\Samples14\DataBinding\Section\XML\VB.NET

C#

..\Samples14\DataBinding\Section\XML\C#

Run-Time Features

When you run the sample, you will be asked to select between the following.

Run Customers XML Report
Demonstrates a two level Master/Detail XML Data Source. Uses a SubReport to print the orders of each customer.
By selecting any of the radio buttons - Show All Data, Show Report where ID = 2301, or Show All Data with an E-Mail
address, you can change the creation option of the generated report.

Customer Orders (Leveled)
Displays customer's orders by using the XML hierarchical structure. The Master/Detail is implemented using the XML

ActiveReports 14 1006

Copyright © 2020 GrapeCity, Inc. All rights reserved.

hierarchy XPath selection patterns without any SubReports.

Project Details

StartForm

This is the main form of the sample. You see this form after you run the project and where you can select how to display
XML data.

Run Customers XML Report
Displays the customers order list by using SubReports.To bind the CustomersOrders report to the XML data source,
the valid XPath expression is entered in the RecordsetPattern field on the XML tab of the Report Data Source
dialog.

Customer Orders (Leveled)
Displays customer's orders by using the XML hierarchical structure, which is demonstrated by the OrdersLeveled
report. To bind this report to XML data, the path to the XML file is entered in the File URL field on the XML tab of
the Report Data Source dialog and also the XML hierarchical structure like "../../@email" is specified in each field.

CustomersOrders report

This report embeds the srptOrders SubReport. Following settings are performed in this report.

Embed the SubReport control
Places the SubReport control in the Detail section and connects it to the Orders SubReport for displaying the
orders list.

OrderItems SubReport

This report binds to the Subreport control of Orders report.

Orders SubReport

This is the report with a SubReport control that is bound to the OrderItems report. Following settings are performed in
this report.

Embed the SubReport control
Places the SubReport control in the Detail section and connects it to the OrderItems report for displaying the list of
orders.
The Report property of the Subreport control is specified in the Orders_ReportStart event.
Set the XML data source included in the SubReport
Indicates a method to retrieve the record set using the NodeList property instead of the RecordsetPattern property
of the XML data source on OrderItems report at design time.
The NodeList property of the XML data source is set in the Detail_Format event.

OrdersLeveled report

Displays the list of customer's orders. Following settings are performed in this report.

Groups data
Groups data using the XPath pattern that represents the hierarchical structure of XML. DataField property of
ghCustomers section and ghOrders section is set at design time.

ViewerForm

ActiveReports 14 1007

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The Viewer control has its Dock property set to Fill. This ensures that the viewer resizes along with the form at run time.
Right-click the form and select View Code to see the code used to run the report and display it in the viewer.

Designer Pro
The samples in the Designer Pro folder demonstrate features provided with the ActiveReports professional edition.

Map
This sample demonstrates how to work with Map control in ActiveReports.

End User Designer
This sample demonstrates a custom end-user report designer that can be integrated in your applications to allow
users to modify report layouts.

Reports Gallery
This sample demonstrates customizing End User Designer application to display a list of categorized reports.

Table of Contents
This sample demonstrates how to use TableofContents control in ActiveReports.

Map
The Map sample demonstrates the basic functioning of the Map control with the help of four reports that explain the
different features of the control. This sample is part of the ActiveReports Professional Edition.

Sample Location

Visual Basic.NET

..\Samples14\DesignerPro\Map\VB.NET

C#

..\Samples14\DesignerPro\Map\C#

Details

When you run this sample, the End User Designer shows a list of .rdlx reports at the bottom left of the form. Expand the

ActiveReports 14 1008

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Reports node to view reports under it and double-click a report to load it into the designer.

Report Form

This is the main form that appears when you run the sample. This form uses the ToolStripPanel, ToolStripContentPanel,
Designer, Toolbox, ReportExplorer and PropertyGrid controls to create a customized ReportDesigner.
Right-click the form and select View Code to see how to set up the designer and create a blank page report. It also
contains code that adds the reports to the TreeView control, loads a report into the Designer when the report is double-
clicked, and checks for any modifications that have been made to the report in the designer.

Reports Folder

OilProducingCountries.rdlx: This report uses the FactBook shared data source connection to provide data.

It contains a Map control that visually displays the oil production in different countries of the world on a virtual earth
background. The map control uses the color rule set on a polygon layer to differentiate parts of world according to their
oil production capacity. These colors are defined using a color rule which is described in the legend at run time.

RomePlaces.rdlx: This report contains a Map control that visually displays famous places in Rome.

The map control uses Google maps in a Tile layer to provide a virtual earth background and a Point layer to plot famous
places on the map using image markers. Clicking the image marker opens the web page for the selected place in
Wikipedia.

StoreSales.rdlx: This report contains a Map control that visually displays the sales of different stores in the US.

The Map control uses the built-in USA map template. The polygon layer defines the country and state boundaries while
the point layer is used to plot store locations. The Point layer uses the marker size rule to differentiate stores according
to their profits. The different sized markers used for plotting stores are defined in a legend that appears on the map at run
time. The point layer also uses the drill-through link (the Action is set to Jump to report) that opens a specific store report
(StoreReport2.rdlx) when the marker is clicked.

StoreReport2.rdlx: This report uses the Reels shared data source connection to provide data.

It opens on clicking a specific store location that is indicated with a marker. The Table data region in the report uses a
drill-down link to display the list of employees in the selected store. The report uses the chart data region to display the
sales for the store. The Reels logo that appears on the report in the Image control is embedded within the Reels theme.

End User Designer
The EndUserDesigner Sample demonstrates how to set up a custom end-user report designer using the Designer,
ReportExplorer, Layer List, ToolBox, ReportsLibrary, and GroupEditor controls. This Sample is part of the
ActiveReports Professional Edition.

Type your Caution Box content here.

ActiveReports 14 1009

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Sample Location

Visual Basic.NET

..\Samples14\DesignerPro\EndUserDesigner\VB.NET

C#

..\Samples14\DesignerPro\EndUserDesigner\C#

Run-Time Features

When you run the sample, the End User Designer appears in the Viewer control. This report designer provides the
functionality of the ActiveReports Designer and supports three types of report layouts: Page Report, RDL Report,
and Section Report.

The End User Designer lets you create report layouts and edit them at design time or runtime. The Designer includes the
Property Window with extensive properties for each element of the report, the Toolbox is filled with report controls, the
Report Explorer with a tree view of report controls, the Reports Library displaying report parts (group of controls) in a
report, and a Group Editor displaying row and column groups for Tablix data region. Page reports and RDL
reports provide the Layer List in a tabbed window with the Report Explorer. The Layer List window displays a list of layers
in the report along with their visibility and lock options.
See Report Parts, Layers, and Tablix for more information. For information on menu items, see ActiveReports Designer.

The project consists of following forms:

ExportForm

This is the form with the Export dialog for Page report, Rdl report and Section report.

A user sees the Export dialog under the Preview tab in the File menu > Export. This dialog allows to select the export
type and to browse for the file location in local folders where the report is exported. See Exporting for details on the type
of export formats supported in Section report, Page report, and RDL report.

Control Name Description

ComboBox cmbExportFormat The Export Format combo box that allows to select options for the report export
type.

Button btnOK The OK button in the lower part of the ExportForm.

Button btnCancel The Cancel button in the lower part of the ExportForm.

PropertyGrid exportPropertyGrid Provides interface for export options of each export type.

ActiveReports 14 1010

Copyright © 2020 GrapeCity, Inc. All rights reserved.

SaveFileDialog exportSaveFileDialog The Save File dialog that allows to specify the file name for saving an
exported report file.

Label lblExport The Export label in the header of the ExportForm.

Label lblExportFormat The Export Format label of the Export Format combo box.

Label lblExportOptions The Export Options label of the Export property grid.

Label lblSelectExportTxt The Select Export text that describes the purpose of the ExportForm.

SplitContainer exportSettings
SplitContainer

Represents a movable bar that divides the display area of the ExportForm
into two resizable panels - the ExportForm header panel and the ExportForm
panel with the Export Format combo box and the Property Grid.

SplitContainer exportHeader
SplitContainer

Represents a movable bar that divides the Export Format section consisting of
the Export Format combo box with the Export Format label and the Property Grid
of ExportForm.

Right-click the ExportForm in the Solution Explorer and select View Code to see the code implementation for the Export
form.

EndUserDesigner form

This is the form with a basic end-user report designer that contains the following elements. These elements are dragged
from the Visual Studio toolbox onto the form.

Control Name Description

Designer reportDesigner The Designer control that allows you to create and modify
a report.

ReportExplorer reportExplorer Gives you a visual overview of the report elements in the
form of a tree view where each node represents a report
element.

TabControl reportExplorerTabControl Represents a movable bar that divides the display area of
the designer into two tabs - the Report Explorer and the
Layer List

PropertyGrid reportPropertyGrid Provides an interface for each element of the report.

Toolbox reportToolbox Displays all of the controls specific to the type of report
that has focus.

LayerList layerList Represents a list of Layers in the report along with their
visibility and lock options.

SplitContainer mainContainer Represents a movable bar that divides the display area of
the Designer into two resizable panels.

SplitContainer designerExplorerPropertyGridContainer Represents a movable bar that divides the display area of
the designer into two resizable panels -the toolbox and
the toolstrip.

SplitContainer bodyContainer Represents a movable bar that divides the display area of
the Viewer into two resizable panels.

ActiveReports 14 1011

Copyright © 2020 GrapeCity, Inc. All rights reserved.

SplitContainer explorerPropertyGridContainer Represents a movable bar that divides the display area of
the designer into two resizable panels - the report
explorer and the property grid.

ToolStripContainer toolStripContainer Provides a central panel on top of the Designer to hold
the Toolstrip element with the menu items.

ReportsLibrary reportsLibrary Displays all reports and included report parts.

GroupEditor groupEditor Shows the row and column groups in a Tablix data region.

Right-click the EndUserDesigner form in the Solution Explorer and select View Code to see the code implementation for
the End User Designer.

Table of Contents
The TableofContents sample demonstrates the basic features of the TableofContents control. This sample is part of the
ActiveReports Professional Edition.

Sample Location

Visual Basic.NET

..\Samples14\DesignerPro\TableOfContents\VB.NET

C#

..\Samples14\DesignerPro\TableOfContents\C#

Details

When you run this sample, the End User Designer appears with a MovieCatalog.rdlx under the Reports node. The report
contains a TableOfContents control which displays a list of movie titles along with their page numbers under each genre.
On clicking the movie title, the details on the selected movie are displayed.

Report Form

This is the main form that appears when you run this sample. This form uses the ToolStripPanel, LayerList, TreeView,
ToolStripContentPanel, Designer, Toolbox, ReportExplorer and PropertyGrid controls to create a customized
ReportDesigner.

ActiveReports 14 1012

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Right-click the form and select View Code to see how to set up the designer. It also contains code that adds the reports
to the TreeView control, loads a report into the Designer when it is double-clicked, and checks for any modifications that
have been made to the report in the designer.

Reports Folder

MovieCatalog.rdlx: This report uses the Reels data source connection to provide data.

The report makes use of TableOfContents, Image, TextBox, Label and List controls to display the layout of the report.
TableofContents control displays an organized hierarchy of movie titles under each genre with two heading levels.
Clicking the genre name or the movie title takes you to the corresponding page number that contains the details. The
Reels logo that appears on the report is embedded within the Reels theme.

Desktop
The samples in Desktop folder demonstrate features of WPF and Win Viewers.

Reports Gallery
This sample demonstrates customizing End User Designer application.

WPF Viewer
This sample demonstrates using WPF Viewer in a WPF application.

Win Viewer
This sample demonstrates using Win Viewer in a Windows Form application.

Reports Gallery
The Reports Gallery sample demonstrates how to customize the End User Designer application by adding the TreeView
control to display a list of categorized reports. At run time, the user can double-click any report out of the three
categories: Page, Rdl, and Section, and load it into the designer.

Sample Location

Visual Basic.NET

..\Samples14\DesignerPro\ReportsGallery\VB.NET

C#

ActiveReports 14 1013

Copyright © 2020 GrapeCity, Inc. All rights reserved.

..\Samples14\DesignerPro\ReportsGallery\C#

Run-Time Features

When you run this sample, the End User Designer appears with a list of report categories at the bottom left of the Form.
Expand each category to view the reports under it and double-click any report to load it into the designer. You can also
go to the Preview Tab to view the report.

Project Details

ReportsForm

This is the main form that appears when you run this sample. This form uses the ToolStripPanel, ToolStripContentPanel,
Designer, Toolbox, ReportExplorer, TreeView, PropertyGrid and LayerList controls to create a customized unified
ReportDesigner.

Right-click the Form and select View Code to see how to set up the designer and create a blank page report. It also
contains code that attaches the Toolbox, ReportExplorer, PropertyGrid and LayerList controls to the Designer, inserts
DropDown items to the ToolStripDropDownItem and sets their functions. Finally, it also contains code that adds the
reports to the TreeView control, loads a report into the Designer when the report is double-clicked, and checks for any
modifications that have been made to the report in the designer.

Reports folder

Reports folder consists of three subfolders - Page Report, RDL Report and Section Report, each containing a set of reports
that highlight the major features of the corresponding report types.

Page Report folder

This folder contains several subfolders that illustrate the use of Page Reports in different scenarios.

DrillDown

AllCustomers report: This report uses the NWind shared data source. It uses the Table data region to display customer's
contact details. The Textbox displaying the CustomerID field in the detail row of the Table is used to set a drill-through
link to navigate to the CustomerDetails report.

Invoice folder

BillingInvoice report: This report uses the NWind shared data source. It showcases a billing invoice layout commonly
used in convenience stores. The report mostly contains Label, TextBox and Line controls in its layout. It also includes an
EAN128FNC1 barcode due to its high reading accuracy.

Invoice1 report: This report uses the NWind shared data source. It includes a BandedList and few TextBox controls to
create the Invoice layout for displaying customer transactions. Both the page and the BandedList control are grouped by
the OrderID field. One of the text boxes in the footer section of the BandedList control uses the Sum function to display
the grand total of all transactions.

Invoice2 report: This report uses the NWind shared data source. It uses a Table, few TextBoxes and Shape controls to
create the Invoice layout for displaying customer transactions. The report page is grouped by the CustomerID field,
therefore all transactions made by a customer appear together based on the ID. One of the text boxes placed inside the
Container control at the bottom of the report uses the Sum function to display the grand total of all transactions.

Invoice_Grouped report: This report uses the NWind shared data source. It uses the Table, few TextBox and Label

ActiveReports 14 1014

Copyright © 2020 GrapeCity, Inc. All rights reserved.

controls to display customer transactions in an Invoice. The data is grouped on the CustomerID field, so that all
transactions made by a customer appear together based on their ID.

Invoice_Parameters report: This report uses the NWind shared data source connection and two datasets to provide data.
It is similar to the Invoice_Grouped report with an additional parameters feature. It uses parameters set on the
CompanyName field to filter data on report preview.

Other

BarCode report: This report demonstrates all barcode types that are supported by ActiveReports. The barcode types are
presented in the Table data region, using a single page layout. The rows of the table use alternate background colors
(grey and white). At run time, the Barcode report displays one page that fits the table with all the sample barcodes.

Catalog report: This report uses the NWind shared data source. It shows a multi page layout spread over four pages in
the report. The layout in Page1 and Page2 contains Image, Label and Textbox controls to display introductory text. The
layout on Page3 contains a List data region with TextBox controls and a Table to display product details for each product
category. The List is grouped by the CategoryID field to filter products by their category and its FixedSize property is set
to fit in excess data. The layout on Page4 (that appears as page 9 at run time) uses Textbox, Shape and Line controls
amongst others to create an Order Form, which a user is to fill manually.

CellMerging report: This report uses the NWind shared data source. This report demonstrates cell merging in Tablix data
region, where cells with same values are merged automatically to avoid showing duplicate values. The row group area
contains three groups that are nested in a parent/child relationship to display the row group data. The Country (parent)
and City group (child) values are merged automatically to remove duplicate data values.

DeliverySlip_theme report: This report uses the Seikyu2 shared data source. It uses the TextBox, Label, Container
controls and two Table data regions to display the invoice information. The report uses two themes and has its CollateBy
property set to ValueIndex to determine the order in which the report pages are rendered. Some TextBox controls on the
report also use the Sum function to display the total price information for each Invoice. The page is grouped on the
EstimateID field, so the invoices are sorted by EstimateID.

EmployeeSales report: This report uses the NWind shared data source. It contains the Chart and Table data regions to
display sales by each employee for the year 1997. A column chart shows the graphical representation of sales by each
employee while the Table lists down the exact sales figures. One of the TextBox controls on the report also uses the Sum
function to display the grand total of all sales.

Enterprise Reports - Marketing Plan Data: This report displays information for the Marketing Plan. The report contains
embedded XML data. Table, TextBox, Line, Image, and Shape controls are used to display data. The status of each task is
represented through color coding using expressions.

IRS-W4 report: This report uses the IRS XML data source to provide data to the report. It mainly contains Textbox,
CheckBox, Shape and Line controls to create the layout of a tax form used in the US.

Letter report: This report uses the NWind shared data source. It contains an Image, FormattedTextBox, Table and an
OverflowPlaceholder controls to create a layout for a letter. The FormattedTextBox control uses text with HTML tags to
display content. The Table displays OrderID with order dates and order amount and is linked with the
OverflowPlaceholder control to display excess data on the same page. The Reels logo, displayed on the report inside the
Image control, is embedded within the Reels theme and the TextBox placed below the Image control uses a Global
expression to display the current date. The layout page is grouped by the CustomerID field to filter data on each report
page according to individual customers.

MyOrdersReport: This report uses MyOrders.csv as a data source to demonstrate the native support for CSV data
providers. It contains a Table data region that displays orders with data fetched from the CSV data source.

PurchaseReport: This report uses the NWind shared data source. It contains the Textbox and Table controls to display
purchase details for each company. The layout page is grouped by the Company_CD field to filter data on each report
page according to the company. The Textbox control placed below each table column uses the Sum function to display

ActiveReports 14 1015

Copyright © 2020 GrapeCity, Inc. All rights reserved.

totals. The FixedSize property of the Table is set to fit in excess data.

ReelsTablix report: This report uses the Reels shared data source. It contains the Tablix data region to display a sales
report for each country, city and media type by year. The Tablix data region uses row grouping to group the data by
Country, City and MediaType, and column grouping to group the data by Years and Quarters.

ResourceConsumptionByYear report: This report uses MostPopulatedCountriesEnergyUsageByYear shared data source.
It illustrates composite charts by using a Chart data region that shows annual Natural Resource Consumption - Oil and
Electricity - versus Population size. Natural Resource Consumption and Population size are plotted on the two Y axes
represented by two different chart types - Column and Line. The report also contains a parameter which lets users choose
the country for which they want to view the data.

SalesReport: This report uses the Reels data source connection and two datasets that fetch data through a Stored
Procedure. The layout of the report uses the Chart to display sales and profit for the selected date range and the Table to
display the numeric values of the same. The table also uses the DataBar function to plot profits graphically. The Reels
logo, displayed on the report inside the Image control, is embedded within the Reels theme. This report also uses two
nullable parameters to select the range of dates.

TablixSample report: This report uses the NWind shared data source. It contains the Tablix data region that displays an
orders report with product category and names showing quarterly and yearly orders. The Tablix uses a nested row
grouping to group the Tablix data region by CategoryName and ProductName, and nested column grouping to group
the Tablix data region by Years and Quarter. The tablix body area displays the aggregate Sum for each category and the
grand total of order amount.

TackSeal report: This report uses the NWind shared data source. It contains the OverflowPlaceholder control and the List
data region to create a columnar display of tack seals with postal barcodes. The List data region has its OverflowName
property set to OverflowPlaceHolder1 and the OverflowPlaceHolder1 control has its OverflowName property set to
OverflowPlaceHolder2 to assure correct display of columnar data display within the report page.

RDL Report folder

This folder contains several subfolders that illustrate the use of RDL Reports in different scenarios.

Dashboard

CallCenterDashBoard report: This report uses the CallCenter shared data source. It contains uses the Bullet control to
indicate when the data is approaching or past a warning range and the Sparkline controls to indicate daily trends in key
pieces of performance and sales data. It also uses the Icon Set data visualizer to indicate the warning levels for key
performance data.

MarketDashBoard report: This report uses the MarketData shared data source. It contains the Sparkline control to
display stock price trends over the last 30 days. The Sparkline allows investors to see trends without knowing what actual
values are associated with each point.

TeamList report: This report uses the FootballStatistics shared data source. It contains the List control that displays a list
of team names with drill-through links to navigate to the TeamStatisticsDashboard.rdlx report that displays the selected
team's statistics.

SalesDashboard report: This report uses the SalesResult shared data source. It consists of two datasets to display
multiple Chart controls and a Tablix data region to visualize the sales performance data. This report illustrates the Galley-
mode feature where all of the report contents can be previewed in a single scrollable page.

Factbook

CountryFacts report: This report uses the Factbook shared data source. It contains a List data region grouped on
CountryID that groups data by Country. The report also contains a map image whose Value property is set to the

ActiveReports 14 1016

Copyright © 2020 GrapeCity, Inc. All rights reserved.

expression with the MapCode data field from the XML data source. It contains a hidden parameter that is used to accept
the Country ID. This report is called in other reports by drill-through links or as a subreport, so the Country ID is passed
silently. The default ID is the World. The dataset has a filter that retrieves only countries, specified by the report parameter.
From each textbox with category under Energy Production / Consumption you can see the Image control that uses the
Icon Set data visualizer to flag energy categories where consumption is greater than production.

LifeExpectancyByGdpAndMedianAge report: This report uses the Factbook shared data source. It contains the Tablix
data region to compare the average life expectancy based on the category where the Median age and GDP fall. The tablix
data region consist of a row group GDP of country and a column group Median Age to display the data.

Top10CountriesByGdp report: This report uses the FactbookSortedByGdp shared data source and shows the Top 10
countries by GDP. It contains a List data region with an image in the Image control that uses the RangeBar function to
create an ad-hoc horizontal bar chart.

Reels

CustomerMailingList report: This report uses the Reels shared data source. It includes a Container control along with
TextBox and Barcode controls to display a mailing list of customers. The Columns property of the Body section is set to 3
to display mailing labels in three columns.

CustomerOrders report: This report uses the Reels shared data source. It contains the List and Table data regions that
group data by CustomerID and SaleID respectively to display order information. The SalesAmount textbox of the Table
has its Value property set to Sum function to calculate the total for each order (as a table group subtotal). The YearTotal
textbox of the Table also has its Value property set to Sum function to calculate the total of pre-tax sales. The Reels logo
that is displayed on the report is embedded within the Reels theme. The page number in the PageHeader section is reset
every time a new customer is displayed. This report also contains a subreport, CustomerOrdersCoupon.rdlx.

DistrictReport: This report uses the Reels shared data source. It contains the Chart and Tablix data region to display the
number of sold items and the profit for each month during the two year span (2004-2005) for the selected district. The
Tablix data region consists of a row group SaleDate and a column group StoreName. The report parameter determines
which district to display and uses the available values from the second report dataset SalesData.The StoreName textbox
in the report body uses the drill-through link (the Action is set to Jump to report) that opens the StoreReport.rdlx with
more information.

DistrictSales report: This report uses the Reels shared data source. It contains the BandedList data region that groups
data by SaleYear, DistrictID and RegionID to display district sales details. Sum function is used to get the total sales at
the District, Region, Year levels and also to display a grand total. The Reels logo that is displayed on the report is
embedded within the Reels theme.

Filmography report: This report uses the Reels shared data source. It contains nested List data regions that group data
by MovieID and MoviePersonID to return a distinct number of movies with the selected actors. The report contains two
cascading parameters that narrow down the number of actors displayed in the list first based on the alphabet with which
the actor's name begins and then based on the actor's name. The Reels logo that is displayed on the report is embedded
within the Reels theme.

GenreSales report: This report uses the Reels shared data source. It contains a Tablix data region to display the units sold
for each genre, in each year and each quarter. The Tablix report data consist of a row group GenreName and a column
group SaleDate.Year to display the data. The report also uses the plain column Chart to display the number of titles sold
for each genre. This report uses the multi value parameter that allows you to select more than one genre for displaying
sales data.

ActiveReports 14 1017

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GenreStatistics report: This report uses the Reels shared data source. Median and Mode aggregate functions are used to
show the middle values in a set of data as well as the most commonly occurring value. It also uses the
ReelsConfidential.rdlx-master report to provide standard page headers and footers. The Reels logo that is displayed on
the report is embedded within the Reels theme.

MonthlySalesReport: This report uses the Reels shared data source. It contains a Table data region that groups data by
DistrictID. The Textbox controls in the Table have their Value property set to expressions to display the total of sales for
each district and region as well as the totals of all districts within a region for a given month. It also uses the Plain Line
Chart with the data grouped and sorted by Day for each SaleDate to display sales and profit for the selected month. This
report uses query based parameters to select the month and region for displaying data. The Reels logo that is displayed
on the report is embedded within the Reels theme.

MovieCatalog report: This report uses the Reels shared data source. It contains the Image, TextBox, TableofContents and
List controls to display the list of movies in a catalog. This report uses the TableofContents control to display, an
organized hierarchy of the report heading levels and labels along with their page numbers, in the body of a report. It also
uses the TextBox and Image control to display the layout of the report. The Reels logo that is displayed on the report is
embedded within the Reels theme.

MovieReport: This report uses the Reels shared data source. It contains four List data regions with groupings. The
MovieList is grouped by MovieID, the GenreList is used to display the genre names and is grouped by GenreID, the
CrewList is used to display the title and is grouped by CrewTitleID, and finally the CastNameList is used to display the
cast and crew and is grouped by MoviePersonID. This report uses cascading parameters. The first parameter asks to
select which letter the movie titles starts with, and then the second parameter asks to select a movie to display. The
CrewName textbox in the report Body uses the drill-through link (the Action is set to Jump to report) that opens
Filmography.rdlx with more information on the selected person. The parameters of this report are passed to the
Filmography.rdlx report. The Reels logo that is displayed on the report is embedded within the Reels theme.

RegionPerformance report: This report uses NWind.mdb database. It contains the Table data region that uses the
Region value to group the report data and the SalesAmount value to sort the report data. It also uses filtering to filter
the report data by the RegionID value. Textbox controls in the Table have their Value properties set to Sum functions to
display the total of sales amount for each region. The Reels logo that is displayed on the report is embedded within the
Reels theme.

ReorderList report: This report uses Reels shared data source. It contains the Table data region without any grouping.
The Table detail row has its BackgroundColor property set to the expression to create a light yellow bar report. The Reels
logo that appears on the report is embedded within the Reels theme.

SalesByMediaType report: This report uses the Reels shared data source. It contains the List data region that is grouped
by Image to display data. The list also includes the Table data region that groups its data by MediaID. The report also
contains the Plain Column Chart to display sales and profit by media type and embedded images for each category. This
report uses the ReelsConfidential.rdlx-master report to render the report page header and footer.

SalesByRegion report: This report uses the Reels shared data source. It contains the Tablix data region and subtotals to
display the number of units sold and profit for each region by year and quarter. The Tablix report data consist of a row
group Region and a column group SaleDate.Year to display the data. The report also uses the Plain Column Chart to
display the annual profit for each region. Data in the Chart is also grouped by Region and SaleDate.Year.

SalesReceipt report: This report uses the Reels shared data source. It contains a Table data region and three Container
controls nested in the List data region. The List is grouped by SaleID to produce the body of the receipt. The
salesTaxLabel and totalSalesTax text boxes use the Sum function that totals the amount due in the list and adds tax to

ActiveReports 14 1018

Copyright © 2020 GrapeCity, Inc. All rights reserved.

the sum of a field for the grand total due. The Reels logo that is displayed on the report is embedded within the Reels
theme.

SalesReport: This report uses the Reels shared data source. It contains a Table and Chart data regions to display totals of
sales and profit for the selected date range. The Table also uses the Data Bar function to plot the profits. The Chart and
Table data is grouped by Month and Year. The Month textbox uses the drill-through link to display
MonthlySalesReport.rdlx with more information on the selected month. This report uses parameters that allow the null
value to select the range of dates. The Reels logo that is displayed on the report is embedded within the Reels theme.

StorePerformance report: This report uses the Reels shared data source. It identifies stores with profits above or below
expectations. It also has two Image controls that display the database images and use the IconSet function. This report
uses the ReelsConfidential.rdlx-master report to render page headers and footers.

StoreReport: This report uses the Reels shared data source. It contains the Table, List and Chart data regions to display
sales for each employee. The Table and Chart data is grouped by EmployeeID. The Table uses hierarchical grouping to
show the relationship between employee and supervisor for each store. The FirstName textbox has its Padding> Left
property set to the Level function that leaves a space 15 pixels wide to the left of the control. This is the drill-down report
where the Visibility > Hidden property of the Table detail row is set to =Fields!Supervisor.Value <> 0 and the Visibility
> ToggleItem property is set to the FirstName data field. The expression in the Visibility > Hidden property calculates
whether the supervisor field returns 0, so only the supervisor's name is displayed initially. By clicking the toggle image
next to the supervisor's name, the rows with details about employees are displayed. The report uses a cascade of
parameter values - Region, District and StoreNumber. Each parameter depends on the value of the previous parameter
and each comes from a separate dataset. The Reels logo that is displayed on the report is embedded within the Reels
theme.

TopPerformers report: This report uses the Reels shared data source. It contains two Table data regions to display the
top and bottom performers based on the movies sales. Each Table data is grouped by MoviePersonID and MovieID
(nested grouping). The TopN filter is applied to one table and the BottomN filter is applied to another. The number of
items returned by each of the filters is specified in report parameters. This report also uses two integer parameters to alter
the number of items displayed in each table. The parameters use default values, which are passed to textboxes of the
Table Headers. This is the drill-down report where the second Table Group Header in each Table has its Visibility >
Hidden property set to True and the ToggleItem property set to the PerformerName textbox. By clicking the toggle
image next to the name, the rows containing details about performers are displayed.

Others

AnnualPortfolioChart report: This report uses the MostPopulatedCountriesEnergyUsageByYear shared data source. It
illustrates composite charts by using a Chart data region that shows Annual Stock Performance. The Trading Volume and
Trading Value are plotted on two Y axes represented by two different chart types, Column and Line.

Financial Reports - BalanceSheetReport: This report displays the company’s assets and liabilities. The report contains
embedded JSON data. Table, Textbox, and Image controls are used to display data. The total assets and liabilities are
calculated using expressions.

Financial Reports - CashFlowReport: This report displays the company’s cash flow. The report contains embedded JSON
data. Table, Textbox, Line, Image, and Shape controls are used to display data. The VB code in the script transforms the
numerical values in the accounting format.

Financial Reports - IncomeStatementReport: This report displays the income statement for the Year End (December
2017). The report contains embedded JSON data. Table, Textbox, and Image controls are used to display data. The net
income and total revenue are calculated using expressions.

Financial Reports - IncomeStatementReport2: This report displays the company’s sales and expenses. The report

ActiveReports 14 1019

Copyright © 2020 GrapeCity, Inc. All rights reserved.

contains embedded JSON data. Table, Textbox, Image, and Shape controls are used to display data. Total sales, Gross
profit, and Net profit are calculated using expressions.

Flight On-time Performance Report: This report shows on-time performance of US airlines. The report uses nested data
regions bound to different datasets from the following data sources:

States.xml - XML file stores information about geographical data of regions and states US.
FlightDetails.csv - CSV file stores flight information - flight date, arrival time, departure time, etc.
Airlines.json - JSON file stores unique airlines names corresponding to an airlineID.

The controls that are included in this report are List, Container, Table, and Tablix, where Container, Table, and Tablix are
nested inside List. These controls show data as described below:

List displays geographical information - Region, State Name, and Number of Airports, from States.xml data file
through Tablix data region and Textbox control inside Container control.
Table displays flight information - Number of flights, on-time arrival and departure details, from FlightDetails.csv.

The mapping for 'DataSet Joins' is created by adding a filter in Table on Region fields. This lists the flight information in
Table control that flew in a particular region displayed in the List.

Medical Reports - BloodTestReport: This report displays the patient’s blood test results. The report contains embedded
XML data. Table, Textbox, and Image controls are used to display data. Results and Reference Intervals are calculated
using expressions.

Medical Reports - PatientDiseaseSummaryReport: This report displays a summary of the patient’s diseases and
allergies. The report contains embedded JSON data. Table, Textbox, and Image controls are used to display data.

Telecom Reports - TelephoneBillSample: This report displays the company’s telephone bill. The report contains
embedded XML data. Table, Checkbox, Image, and Textbox controls are used to display data. Expressions are used to
calculate totals.

Section Report folder

BarCode report: This report displays all barcode types that are supported by ActiveReports.

PageHeader section: This section contains the table columns to display the report header. The Text property of
the two Textbox controls, define the name of the two table columns.
Detail section: This section contains a list of all the Barcode types that are supported by ActiveReports. The
barcodes are presented in a table that contains two columns, the one with the Textbox control displays the
barcode name, and the other one with the Barcode control displays the barcode image.

Invoice1 report: This report calculates the total amount for each customer along with purchase details. The report also
displays the average of the previous invoice amount, the current invoice amount and the consumption tax. This report
uses Bill.mdb database to provide data.

PageHeader section: This section contains the Label and Textbox controls. It uses the bound data fields to
calculate the invoice information in the header. The values of the Excise and BillTotal Textbox controls are set in
the Script tab and are calculated in the BeforePrint event.

Note: This sample uses bound fields on the PageHeader section, assuming that the value of all records to be
displayed on a page does not change. However, it is not recommend that you place bound fields in the PageHeader
or PageFooter sections because these sections are displayed on a page once. For the same reason it is not
recommended that you place bound fields on the GroupHeader and GroupFooter sections.

ActiveReports 14 1020

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GroupHeader section: This section (ghColumnCaption) contains the Label controls that are captions for the
information displayed in the Detail section. This section also uses the CrossSectionBox and the Shape controls.
Detail section: This section contains the bound TextBox controls that display each row of data associated with the
current ghColumnCaption. The Shape control is used to alternate row colors in the Detail section. Go to the Script
tab and see the shpDetailBack.BackColor property in the Detail_Format event.
PageFooter: This section contains the Label controls that explain codes used in the Category column of the invoice
details.

Invoice2 report: This report shows another invoice layout and uses Seikyu2.mdb database to provide data.

GroupHeader1 section: This section contains the Label and Textbox controls. It uses the bound data fields to
calculate the invoice information in the header. The values of the Year, Month and Day Textbox controls are set
under the Script tab and are calculated in the ReportStart event. It also uses the CrossSectionLine and the
CrossSectionBox controls that span the GroupHeader1 section to Detail section. The CrossSection Box ends in the
GroupFooter1 section. These controls form vertical lines between columns of the invoice details and a rectangle
around the details of the invoice at run time.
Detail section: This section uses the data table tb_Main for the main report data and the data table tb_Count to
retrieve the number of data items within a group. The Detail data in each group is retrieved beforehand to
calculate the required number of empty rows. For the required empty row count, substitute data with "" in the
FetchData event. The Shape control is used to alternate row colors in the Detail section. Go to the Script tab and
see the shpDetailBack.BackColor property in the Detail_Format event.
GroupFooter1 section: This section contains the Label and Textbox controls that display the totals of the invoice.
The values of the Tax and Pretax Textbox controls are set under the Script tab and are calculated in the Format
event.

LabelReport: This report displays the tack seal, which is commonly used in postal services. This multi-column report uses
the customer barcode that is bound to data by using the DataField property. This report uses Nwind.mdb database to
provide data.

Detail1 section: This section contains the bound data fields to display the contact information and the Barcode
control that is bound to data by using the DataField property. The ColumnCount property is set to 3, which allows
the report to display the tack seal in 3 columns.

PaymentSlip Report: The report displays the salary payment slip where the EAN128FNC1 barcode is used for barcode
bound to a data field. This report uses Bill.mdb data source connection to provide data.

Detail section: This section contains bound data fields to display the payment information and the Barcode control
that is bound to data by using the DataField property.

PurchaseOrder report: The report displays purchase slips created with bound data. It groups data for each purchase slip.
The detail count is not fixed but the number of rows in the report layout is fixed. In this case, when the RepeatToFill
property of the Detail section is set to True, the detail data is repeatedly displayed on the entire page. The report uses the
RepeatToFill property and calculated fields to demonstrate how to create the report layout without any code. Calculated
fields are used to calculate the total cost and the total selling price. This report uses Shiire.mdb data source.

groupHeader1 section: This section contains the Label and Textbox controls. It uses the bound data fields to
calculate the company information in the header.
Detail section: This section contains Textbox controls. It uses bound data fields to calculate the product
information in the body of the report. The detail.BackColor property is used to alternate row colors in the Detail
section. Go to the Script tab and see the detailBack.BackColor property in the detail_Format event.
groupFooter1 section: This section contains the Label and Textbox controls. It uses the bound data fields to
calculate the total information in the footer of the report group.

ActiveReports 14 1021

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Schedule report: The sample report displays the weekly schedule of employees in the gantt chart format. The report
displays six day report schedules on a single page in the Viewer control. This report uses Schedule.mdb database to
provide data.

GroupHeader1 section: This section contains the Label and Textbox controls. It uses the bound data fields to
calculate the employee information in the header.
Detail section: The Gantt chart view is created by using the Label, Shape and Line control. You can display the
horizontal bars like in the gantt chart by modifying the size of the Label control. To add horizontal bars, you can
dynamically add twenty four (12 x 2) Label controls within the 9-20 hours time frame that will become the
horizontal bars of gantt chart in the ReportStart event. Once they are added, set the Visible property to False to
hide them.

You can adjust the width of horizontal bars by setting calculated values from the time width in the Tag property of the
Label control within Detail_Format event. For the horizontal adjustment of bars, change the width of the Label control to
match with the value in the Tag property.
UnderlayNext report: This report displays the bound data. It uses Nwind.mdb database to provide data.

PageHeader section: This section contains the Label and Line controls to create the header for report data.
GroupHeader1 section: This section contains a TextBox control bound to the Country field and the
CrossSectionLine controls to create the table for the body data of the report. UnderlayNext Property (on-line
documentation) of this section is set to True to align the beginning position of the report data in the Detail
section with the GroupHeader1 section.
Detail section: This section contains the bound Textbox controls to display report data. This section displays the
name of the city, contact name and postal code for each customer according to their countries.

Win Viewer

This sample demonstrates using Win Viewer to load RPX, RDL, RDLX, JSON or RDF report formats or save reports to report
document file (RDF) format.

Sample Location

Visual Basic.NET

..\Samples14\Desktop\WinViewer\VB.NET

C#

ActiveReports 14 1022

Copyright © 2020 GrapeCity, Inc. All rights reserved.

..\Samples14\Desktop\WinViewer\C#

Details

When you run this sample, a Viewer control containing File and Help menu appears on the top. You can load any of the
RDF files from RDFs folder using File > Open. An RDF file is a static copy of a report saved to the native Report Document
Format. This can be loaded into the Viewer control without running it or accessing data. You can use Save as RDF option
to save other report formats to RDF format. For more information, see Save and Load RDF Report Files. You can also
export to other file formats using File > Export option.

WPF Viewer
The WPF Viewer samples demonstrates the use of WPF Viewer and its options to view the rdlx and rpx reports.

Sample Location

Visual Basic.NET

..\Samples14\Desktop\WPFViewer\VB.NET

C#

..\Samples14\Desktop\WPFViewer\C#

Details

Run-Time Features

When you run the sample, MainWindow.xaml containing the WPF Viewer, Select Report ComboBox, Preview button and
Add Custom Button CheckBox appears.

ActiveReports 14 1023

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Select Report

In the Select Report ComboBox, you can select from a list of 6 sample reports. The ComboBox contains the following
reports - Catalog.rdlx, EmployeeSales.rdlx, Invoice1.rdlx, Invoice2.rpx, LabelReport.rpx, and PaymentSlip.rpx.

Preview

The Preview button opens the report selected in Select Report ComboBox in the WPF Viewer.

Add custom button

The Add custom button CheckBox demonstrates the customization options of the WPF Viewer. To see the About Us
custom button appear in the WPF Viewer toolbar, select the Add custom button CheckBox and click the Preview
button. To remove the About Us custom button from the WPF Viewer toolbar, click to clear the Add custom button
CheckBox and then click the Preview button.

Note: Preview button and Add custom button CheckBox are only enabled when a report is selected from the
Select Report ComboBox.

Project Details

Reports folder

The folder contains the following reports.

Catalog.rdlx: This is a sample layout for the product catalog. This report uses multiple page layouts to create a catalog.
The layout of this report is spread over 4 pages, which appear one after another at run time. Page1 and Page2 layouts
simply display introductive text. The layout on Page3 contains a List data region with TextBox controls and a Table to
display product details for each product category. The List is grouped by the CategoryID field to filter products by their
category. The layout on Page4 uses Textbox, Shape and Line controls to create a Order Form, which a user is to fill
manually.

EmployeeSales.rdlx: This is a sample layout to display sales by each employee for the year 1997. The Chart control is
used to display a graphical analysis of sales by each employee and the Table data region lists down the exact numbers.

Invoice1.rdlx: This report uses a BandedList and few TextBox controls to create the Invoice layout for displaying customer
transactions. Both page and the BandedList control are grouped by the OrderID field. Texboxes in the footer section of the
BandedList control use the Sum function to display the total of the transactions. For detailed information on the
Invoice2.rpx report, see the Reports Gallery Sample.

Invoice2.rpx: This is a sample layout for the invoice report. The report page is grouped by the EstimateID field. Sum
function is used to display the GrandTotal of all transactions. For detailed information on the Invoice2.rpx report, see
the Reports Gallery Sample.

LabelReport.rpx: This report displays the tack seal, which is commonly used in postal services. This multi-column report
uses the customer barcode that is bound to the data using the DataField property. For detailed information on the
LabelReport.rpx report, see the Reports Gallery Sample.

ActiveReports 14 1024

Copyright © 2020 GrapeCity, Inc. All rights reserved.

PaymentSlip.rpx: This report displays the invoice payment slip with the GS1-128 barcode that is used for payment
services in convenience stores. GS1-128 is the convenience store barcode, formerly called UCC/EAN-128. For detailed
information on the PaymentSlip.rpx report, see the Reports Gallery Sample.

DefaultWPFViewerTemplates.Xaml

The DefaultWPFViewerTemplates.xaml is used for the WPF Viewer customization. For steps on the WPF Viewer
customization, see the WPF Viewer walkthrough.

MainWindow.xaml

The MainWindow.xaml is displayed when you run the sample. It contains the WPF Viewer, the Select Report ComboBox,
the Preview button and the Add custom button CheckBox.

The code behind of MainWindow.xaml.vb (or .cs), handles the display of RDLX and RPX reports in the WPF Viewer and the
customization of the WPF Viewer application.

MyCommand

This class contains the text that is displayed when you click the About Us custom button in the WPF Viewer toolbar.

Web
The Web folder contains following sample:

Custom Preview
The sample demonstrates exporting an ActiveReports report to the HTML or PDF format in your Web application.

Custom Preview
The Custom Preview sample demonstrates a method to view a report at client side in HTML or PDF format. Application
structure consists of ASP.NET website, using which the report is streamed to the client as HTML or PDF. This sample
describes custom exporting without the Pro Edition server controls or RPX handlers as well as running reports on the
server. The PDF and HTML exports allow you to manually control exporting by writing a little code in ASP.NET language.
Steps explained in this sample can be used for both Standard and Professional editions.

Note: Before running this sample, in the Solution Explorer, click the Licenses.licx file and then, from the Build menu,
select Build Runtime License. Please see To license Web Forms projects made on the trial version for details.

Sample Location

Visual Basic.NET

ActiveReports 14 1025

Copyright © 2020 GrapeCity, Inc. All rights reserved.

..\Samples14\Web\CustomPreview\VB.NET

C#

..\Samples14\Web\CustomPreview\C#

Details

When you run the sample, the Default.aspx page appears in your browser. This page provides two links to other reports
that demonstrate custom PDF or HTML export options.

Clicking the Custom Exporting PDF Example option opens the Invoice report and clicking Custom Exporting HTML
Example option opens NwindLabels report in the Default.aspx page.

Note: To run this sample, you must have Nwind.mdb downloaded from GitHub in ..\Samples14\Data\NWIND.mdb

The project consists of the following elements.

Reports folder: The Reports folder contains two rpx reports - the Invoice report and the NwindLabels report.

Invoice Report

The Invoice report uses three GroupHeader sections, a Detail section and a GroupFooter section as well as a label
in the PageFooter section to display data.

Note: Except for the Detail section, all sections come in header and footer pairs. Unused sections have their
Height properties set to 0 and their Visible properties set to False.

ghOrderHeader section

The DataField property of this section is set to OrderID. This setting, in conjunction with data ordered by the
OrderID field, causes the report to print all of the information for one order ID value, including all of the related
details and footers, before moving on to the next order ID. For more information on grouping, see Add Groups.

This section also contains a Picture control, a number of Label controls, and two bound TextBox controls. The
TextBoxes are bound using the DataField property in the Properties window, and the date is formatted using the
OutputFormat property.

ghOrderID section

The DataField property of this section is also set to OrderID. This allows subtotal summary functions in the related
GFOrderID section to calculate properly.

This section contains a number of labels and bound text boxes, as well as two Line controls.

ghTableHeader section

This section contains only labels for the data to follow in the Detail section.

Detail section

This section contains bound TextBox controls. These TextBoxes render once for each row of data found in the
current OrderID before the report moves on to the GroupFooter sections.

GFOrderID section

ActiveReports 14 1026

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The NewPage property of this section is set to After. This causes the report to break to a new page and generate a
new invoice after this section prints its subtotals.

This section contains several labels and several TextBoxes. Two of the TextBox controls use the following properties
to summarize the detail data: SummaryFunc, SummaryGroup, and SummaryType. For more information, Create
a Summary Report.

The Total TextBox does not use the DataField property or any of the summary properties, or even any code. To
find the functionality of this TextBox, in design view, click the Script tab at the bottom of the report.

PageFooter section

This section has one simple Label control. For more information about report sections and the order in which they
print, see Section Report Structure and Section Report Events.

NwindLabels Report

TheNwindLabels report only uses the Detail section to display the report data.

Note: Except for the Detail section, all sections come in header and footer pairs. Unused sections have their
Height properties set to 0 and their Visible properties set to False.

Detail section

This section contains bound TextBox controls and Label controls. This section prints 30 labels per 8½ x 11 sheet.

The Detail section uses the CanGrow property set to False to maintain the label size and the ColumnCount,
ColumnDirection, and ColumnSpacing properties to accommodate multiple labels in a single page.

CustomExportHtml.aspx: This Web form is displayed by clicking the Custom Exporting HTML Example option on
the Default.aspx page. In CustomExportHtml.aspx, report is outputted to the ReportOutput folder using the
CustomHtmlOutput class and the exported HTML is displayed in the browser. The CustomHtmlOutput class
implements the required IOutputHtml in the HTML export and saves the output results to a file with a unique
name.

Note: This sample requires write permissions to the ReportOutput folder that is located in the web samples
directory.

CustomExportPdf.aspx: The Web form is displayed by clicking the Custom Exporting PDF Example option on
the Default.aspx page. In CustomExportPdf.aspx, the report is exported to memory stream and then outputted in
the browser.

Note: This sample requires write permissions to the ReportOutput folder that is located in the web samples
directory.

Default.aspx: This is the main Web form of the sample that shows the introductory text and links to other sample
pages that demonstrate the following web features.

Custom Exporting PDF Example - This link opens the Invoice report in the PDF Reader by exporting it to
memory stream and then outputting it in the browser.
Custom Exporting HTML Example - This link opens the NWindLabels report. This report is outputted to
the ReportOutput folder by using the CustomHtmlOutput class and the exported HTML is displayed in the
browser.

Web.config: This configuration file contains the httpHandlers that allow ActiveReports to process reports on the
Web. Note that you need to manually update version information here when you update your version of

ActiveReports 14 1027

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveReports.

Web Samples
The samples in WebSamples folder demonstrate web related features in JSViewer, Web Designer, etc. Download these
samples from following link:
https://github.com/activereports/WebSamples14

Sample Description

JSViewer
Angular(Core)

This sample demonstrates the use of the GrapeCity ActiveReports JSViewer with an Angular 8 app
and ASP.NET Core back end.

JSViewer MVC This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an ASP.NET MVC 5 back
end.

JSViewer
MVC(Core)

This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an ASP.NET MVC Core
back end.

JSViewer
React(Core)

This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an ReactJS app and
ASP.NET Core back end.

JSViewer
Vue(Core)

This sample demonstrates the use of GrapeCity ActiveReports JSViewer with an VueJS app and
ASP.NET Core back end.

JSViewer Blazor The sample demonstrates the use of the GrapeCity ActiveReports JSViewer and the Blazor
Framework that allows building client-side web applications with C#.

Web Designer
MVC

This sample demonstrates Web Designer with an ASP.NET MVC 5 back end.

Web Designer
MVC(Core)

This sample demonstrates Web Designer with an ASP.NET MVC Core back end.

Web Designer
Angular(Core)

This sample demonstrates the use of GrapeCity ActiveReports Web Designer with an Angular 8 app
and ASP.NET Core backend.

WebViewer Pro This Active Reports Web Pro Sample demonstrates the use of Professional Edition ASP.NET features,
such as HTTP handlers, parameterized reports, and more.

Important: It is recommended to use Visual Studio 2019 for applications running on ASP.NET Core. This is because
Visual Studio 2017 does not support core license compilation, and you will see 'No License' message on running
ASP.NET Core applications on Visual Studio 2017.

JSViewer Angular(Core)
The JSViewer_Angular(Core) sample demonstrates the use of the GrapeCity ActiveReports JSViewer with an Angular 8 app
and ASP.NET Core back-end.

ActiveReports 14 1028

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/WebSamples14

Note: To run this sample, you must have

Visual Studio 2019 (https://visualstudio.microsoft.com/vs/) version 16.4 or newer.
.NET Core 3.1 SDK (https://www.microsoft.com/net/download) or later installed on your machine.
.NET Core Hosting Bundle (https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?
view=aspnetcore-3.1#install-the-net-core-hosting-bundle) (for deployment to IIS).
Angular 8 requires Node.js (https://nodejs.org) 10 or later.

Sample Location

..\WebSamples14\JsViewerSamples\JSViewer_Angular(Core)

Details

When you run the sample, the default page appears in your browser. This page provides links to reports that
demonstrate the use of the GrapeCity ActiveReports JSViewer with an Angular 7 app and ASP.NET Core back-end.

Clicking the report link in the left panel opens the report for preview. You can preview the following reports.

AnnualReport.rdlx
Invoice.rdlx
Invoice.rpx
InvoiceList.rdlx
Invoice_Colored.rpx
Project&ResourceAnalysis
Statistical analysis scatter plot.rdlx - Staff Performance Analysis.rdlx
User defined report columns.rdlx

Note: The timeout error sometimes appears on running the JSViewer_Angular(Core) sample with default settings. In
this case, you should increase the connection timeout period. See Troubleshooting for details on how to resolve this
issue.

The project consists of the following elements.

ClientApp folder: This folder contains a standard Angular CLI app that is used for all UI concerns.
Controllers folder: This folder contains the ReportsController files. The ReportsController handles the interaction
with reports when a report is selected in the left panel.

ActiveReports 14 1029

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://nodejs.org/en/

appsettings.json: The json configuration file.
readme: This file contains the instructions on how to run the sample project.
Startup.cs: This is the default startup file.
Web.config: This configuration file contains the httpHandlers that allow ActiveReports to process reports on the
Web. Note that you need to manually update version information here when you update your version of
ActiveReports.

Before publishing the sample, you must do the following.

In the JSViewer_Angular(Core).csproj file, set the PublishToIIS property to true as follows:
<PublishToIIS>true</PublishToIIS>
Copy the sample ViewerApp folder to the publish folder.

JSViewer MVC
The JSViewer_MVC sample demonstrates the use of the GrapeCity ActiveReports JSViewer with an ASP.NET MVC 5 back-
end.

Note: To run this sample, you must have:

Visual Studio 2013 (https://visualstudio.microsoft.com/vs/) or newer
.NET Framework Dev Pack (https://dotnet.microsoft.com/download) 4.6.2 or later

Sample Location

..\WebSamples14\JsViewerSamples\JSViewer_MVC

Details

When you run the sample, the default page appears in your browser. This page provides links to reports that
demonstrate the use of the GrapeCity ActiveReports JSViewer with an ASP.NET MVC 5 backend.

Clicking the report link in the left panel opens the report for preview. You can preview the following reports.

AnnualReport.rdlx
Invoice.rdlx

ActiveReports 14 1030

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download

Invoice.rpx
Invoice_Colored.rpx
InvoiceList.rdlx
Project & Resource Analysis - Staff Performance Analysis.rdlx
User defined report columns.rdlx
Statistical analysis scatter plot.rdlx

The project consists of the following elements.

Controllers folder: This folder contains the HomeController that handles the user interaction and returns the main
Index view.
ViewerApp folder: Contains JSViewer CSS and JavaScript files.
Global.asax: The default class that sets global URL routing values for this web application.
packages.config
Startup.cs: This is the default startup file.
Web.config: This configuration file contains the httpHandlers that allow ActiveReports to process reports on the
Web. Note that you need to manually update version information here when you update your version of
ActiveReports.

Before publishing the sample, you must copy the sample ViewerApp folder to the publish folder.

JSViewer MVC(Core)
The JSViewer_MVC(Core) sample demonstrates the use of the GrapeCity ActiveReports JSViewer with an ASP.NET Core
back-end.

Note: To run this sample, you must have

Visual Studio 2019 (https://visualstudio.microsoft.com/vs/) version 16.4 or newer
.NET Core 3.1 SDK (https://www.microsoft.com/net/download) or later installed on your machine.
.NET Core Hosting Bundle](https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?
view=aspnetcore-3.1#install-the-net-core-hosting-bundle) (for deployment to IIS)

Sample Location

ActiveReports 14 1031

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle

..\WebSamples14\JsViewerSamples\JSViewer_MVC(Core)

Details

When you run the sample, the JSViewer opens in your browser. The viewer provides links to reports to
demonstrate GrapeCity ActiveReports JSViewer with an ASP.NET Core back-end.

Clicking the report link in the left panel opens the report for preview. You can preview the following reports.

AnnualReport.rdlx
Invoice.rdlx
Invoice.rpx
InvoiceList.rdlx
Invoice_Colored.rpx
Project & ResourceAnalysis - Staff Performance Analysis.rdlx
Statistical analysis scatter plot.rdlx
User defined report columns.rdlx

The project consists of the following elements.

Controllers folder: This folder contains the HomeController that handles the user interaction and returns the main
Index view.
ViewerApp folder: Contains JSViewer CSS and JavaScript files.
readme: This file contains the instructions on how to build and run the sample project.
Startup.cs: This is the default startup file.
Web.config: This configuration file contains the httpHandlers that allow ActiveReports to process reports on the
Web. Note that you need to manually update version information here when you update your version of
ActiveReports.

Before publishing the sample, you must do the following.

In the index.html file, uncomment the following line:
<!--<base href="/JSViewer_MVC_Core/">-->
Copy the sample ViewerApp folder to the publish folder.

JSViewer React(Core)
This sample demonstrates the use of GrapeCity ActiveReports JSViewer with a ReactJS app and the ASP.NET Core back
end.

ActiveReports 14 1032

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: To run this sample, you must have

Visual Studio 2019 (https://visualstudio.microsoft.com/vs/) version 16.4 or newer
.NET Core 3.1 SDK (https://www.microsoft.com/net/download) or later installed on your machine.
.NET Core Hosting Bundle](https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?
view=aspnetcore-3.1#install-the-net-core-hosting-bundle) (for deployment to IIS)
Node.js 8.x or 10.x.

Sample Location

..\WebSamples14\JsViewerSamples\JSViewer_React(Core)

Details

When you run the sample, the JSViewer opens in your browser. The viewer provides links to reports to
demonstrate GrapeCity ActiveReports JSViewer with a ReactJS app and the ASP.NET Core back end.

Clicking the report link in the left panel opens the report for preview. You can preview the following reports.

AcmeStore.rdlx
AnnualReport.rdlx
Invoice.rdlx
Invoice.rpx
InvoiceList.rdlx
Invoice_Colored.rpx
Project & ResourceAnalysis - Staff Performance Analysis.rdlx
Statistical analysis scatter plot.rdlx
User defined report columns.rdlx

The project consists of the following elements.

Controllers folder: This folder contains the HomeController that handles the user interaction and returns the main
Index view.
ClientApp folder: This folder contains a standard Angular CLI app that is used for all UI concerns.
readme: This file contains the instructions on how to build and run the sample project.
Startup.cs: This is the default startup file.
wwwroot: Contains designer CSS and JavaScript files.

ActiveReports 14 1033

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://nodejs.org/en/

JSViewer Vue(Core)
The sample demonstrates the use of GrapeCity ActiveReports JSViewer with an VueJS app and ASP.NET Core back end.

Note: To run this sample, you must have

Visual Studio 2019 version 16.4 or newer.
.NET Core 3.1 SDK (https://dotnet.microsoft.com/download) or later installed on your machine.
.NET Core Hosting Bundle (https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?
view=aspnetcore-3.1#install-the-net-core-hosting-bundle) (for deployment to IIS).
Node.js 8.x or 10.x.

Sample Location

..\WebSamples14\JsViewerSamples\JSViewer_Vue(Core)

Details

When you run the sample, the JSViewer opens in your browser. The viewer provides links to reports to
demonstrate GrapeCity ActiveReports JSViewer with a ReactJS app and the ASP.NET Core back end.

Clicking the report link in the left panel opens the report for preview. You can preview the following reports.

AcmeStore.rdlx
AnnualReport.rdlx
Invoice.rdlx
Invoice.rpx
InvoiceList.rdlx
Invoice_Colored.rpx
Project & ResourceAnalysis - Staff Performance Analysis.rdlx
Statistical analysis scatter plot.rdlx
User defined report columns.rdlx

The project consists of the following elements.

Controllers folder: This folder contains the HomeController that handles the user interaction and returns the main
Index view.

ActiveReports 14 1034

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://nodejs.org/en/

ClientApp folder: This folder contains a standard Angular CLI app that is used for all UI concerns.
readme: This file contains the instructions on how to build and run the sample project.
Startup.cs: This is the default startup file.
wwwroot: Contains designer CSS and JavaScript files.

JSViewer Blazor
The sample demonstrates the use of the GrapeCity ActiveReports JSViewer and the Blazor Framework that allows building
client-side web applications with C#.

Note: To run this sample, you must have

Visual Studio 2019 (https://visualstudio.microsoft.com/vs/) version 16.4 or newer.
.NET Core 3.1 SDK (https://dotnet.microsoft.com/download) or later installed on your machine.
.NET Core Hosting Bundle (https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?
view=aspnetcore-3.1#install-the-net-core-hosting-bundle) (for deployment to IIS).

Sample Location

..\WebSamples14\JsViewerSamples\JSViewer_Blazor

Details

When you run the sample, the JSViewer opens in your browser and provides links to reports to demonstrate GrapeCity
ActiveReports JSViewer in a Blazor application.

Clicking the report link in the left panel opens the report for preview. You can preview the following reports.

AcmeStore.rdlx
AnnualReport.rdlx
Invoice.rdlx
InvoiceList.rdlx
Project & ResourceAnalysis - Staff Performance Analysis.rdlx
Statistical analysis scatter plot.rdlx

ActiveReports 14 1035

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle

User defined report columns.rdlx

The project uses the GrapeCity.ActiveReports.Aspnetcore.Viewer Nuget package. See Manage ActiveReports
Dependencies for details.

The project consists of the following elements.

wwwroot: Contains static CSS and JavaScript files of the Blazor application, which are copied from the ARJS Viewer
npm package (https://www.npmjs.com/package/@grapecity/ar-viewer).
Data folder: This folder contains the ReportsService.cs.
Pages folder: This folder contains Razor pages and supporting files.
Reports folder: This folder contains all available reports.
_Imports.razor: The Razor template file.
appsettings.json: The json configuration file.
Startup.cs: This is the default startup file. It contains the ConfigureServices method, which configures the
application so that it can handle cross-domain requests.

Web Designer MVC
The Web Designer_MVC sample demonstrates Web Designer with an ASP.NET MVC 5 back-end.

Sample Location

..\WebSamples14\WebDesignerSamples\Web Designer_MVC

Details

When you run the sample, the Web Designer opens in your browser wherein you can create, edit, or modify your reports.
Following are the main menu options:

File: Contains options to create, open, or save reports. It also contains the version information in About option and
help documentation link in Help option.

Home: Consists of report editing options such as cut, copy, paste, and delete. It also provides shortcuts for text
formatting such as font, font size, font color, and horizontal and vertical text alignments.

Report: Contains options to add, delete, or move pages (in Page report) and add or remove header and footer

ActiveReports 14 1036

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.npmjs.com/package/@grapecity/ar-viewer

(RDL report), and change report themes.

Preview: Click Preview to preview reports.

Properties: Displays the properties of the selected report element. If more than one element is selected, only their
common properties are shown.

Data: Contains options to manage daya sources, data sets, and parameters. It also displays common values such as
current date and time, page number, total pages, and more.

The project consists of the following elements.

Controllers folder: Contains DataSets, Design, Preview, and Templates controllers.
Datasets folder: Contains JSON datasets Categories, Employees, and Products.
Resources folder: Contains reports, themes, images, etc. that are used by the project to illustrate Web Designer.
Services folder: Consists of classes that get datasets and templates information.
wwwroot folder: Contains designer CSS and JavaScript files.

Before publishing the sample, you must copy the sample datasets, resources, templates folders to the publish
folder.

Web Designer MVC(Core)
The Web Designer_MVC(Core) sample demonstrates Web Designer with an ASP.NET Core back-end.

Sample Location

..\WebSamples14\WebDesignerSamples\Web Designer_MVC(Core)

Details

When you run the sample, the Web Designer opens in your browser wherein you can create, edit, or modify your reports.
Following are the main menu options:

File: Contains options to create, open, or save reports. It also contains the version information in About option and
help documentation link in Help option.

Home: Consists of report editing options such as cut, copy, paste, and delete. It also provides shortcuts for text

ActiveReports 14 1037

Copyright © 2020 GrapeCity, Inc. All rights reserved.

formatting such as font, font size, font color, and horizontal and vertical text alignments.

Report: Contains options to add, delete, or move pages (in Page report) and add or remove header and footer
(RDL report), and change report themes.

Preview: Click Preview to preview reports.

Properties: Displays the properties of the selected report element. If more than one element is selected, only their
common properties are shown.

Data: Contains options to manage daya sources, data sets, and parameters. It also displays common values such as
current date and time, page number, total pages, and more.

The project consists of the following elements.

Controllers folder: Contains DataSets, Design, Preview, and Templates controllers.
Datasets folder: Contains JSON datasets - Categories, Employees, Products, and DataSet with Parameters.
Resources folder: Contains reports, themes, images, etc. that are used by the project to illustrate Web Designer.
Services folder: Consists of classes that get datasets and templates information.
wwwroot folder: Contains designer CSS and JavaScript files.

Before publishing the sample, you must copy the sample datasets, resources, templates folders to the publish
folder.

Web Designer Angular(Core)
The WebDesigner_Angular(Core) sample demonstrates the use of GrapeCity ActiveReports Web Designer with an Angular
8 app and ASP.NET Core backend.

Note: To run this sample, you must have

Visual Studio 2019 (https://visualstudio.microsoft.com/vs/) version 16.4.
.NET Core 3.1 SDK (https://dotnet.microsoft.com/download) or later installed on your machine.
.NET Core Hosting Bundle (https://dotnet.microsoft.com/download/dotnet-core/thank-you/runtime-
aspnetcore-3.1.2-windows-hosting-bundle-installer) (for deployment to IIS)
Angular 8 requires Node.js (https://nodejs.org) 10 or later.

Sample Location

ActiveReports 14 1038

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download/dotnet-core/thank-you/runtime-aspnetcore-3.1.2-windows-hosting-bundle-installer
https://dotnet.microsoft.com/download/dotnet-core/thank-you/runtime-aspnetcore-3.1.2-windows-hosting-bundle-installer
https://nodejs.org/en/

..\WebSamples14\JsViewerSamples\WebDesigner_Angular(Core)

Details

When you run the sample, the Web Designer opens in your browser wherein you can create, edit, or modify your reports.
Following are the main menu options:

File: Contains options to create, open, or save reports. It also contains the version information in About option.

Home: Consists of report editing options such as cut, copy, paste, and delete. It also provides shortcuts for text
formatting such as font, font size, font color, and horizontal and vertical text alignments.

Report: Contains options to add, delete, or move pages (in Page report) and add or remove header and footer
(RDL report), and change report themes.

Preview: Click Preview to preview reports.

Properties: Displays the properties of the selected report element. If more than one element is selected, only their
common properties are shown.

Data: Contains options to manage daya sources, data sets, and parameters. It also displays common values such as
current date and time, page number, total pages, and more.

Note: The timeout error sometimes appears on running the WebDesigner_Angular(Core) sample with default
settings. In this case, you should increase the connection timeout period. See Troubleshooting for details on how to
resolve this issue.

The project consists of the following elements.

ClientApp folder: This folder contains a standard Angular CLI app that is used for all UI concerns.
Controllers folder: Contains DataSets and Templates controllers.
Datasets: Contains JSON datasets - Categories, Employees, Products, and DataSet with Parameters.
Resources: Contains reports, themes, images, etc that are used by the project to illustrate Web Designer.
appsettings.json: The json configuration file.
readme: This file contains the instructions on how to run the sample project.
Startup.cs: This is the default startup file.
Web.config: This configuration file contains the httpHandlers that allow ActiveReports to process reports on the
Web. Note that you need to manually update version information here when you update your version of
ActiveReports.
Services: Consists of classes that get datasets and templates information.
wwwroot: Contains designer CSS and JavaScript files.

WebViewer Pro
The Active Reports WebViewer Pro Sample describes the standard ActiveReports web features as well as other features
available in the Professional Edition only, such as HTTP handlers, custom PDF and HTML export, parameterized reports,
and more.

ActiveReports 14 1039

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: Before running this sample, in the Solution Explorer, click the Licenses.licx file and then, from the Build menu,
select Build Runtime License. Please see To license Web Forms projects made on the trial version for details.

Sample Location

Visual Basic.NET

..\WebSamples14\JsViewerSamples\WebViewerPro_ASP.NET_VB.NET

C#

..\WebSamples14\JsViewerSamples\WebViewerPro_ASP.NET_C#

Details

When you run the sample, the Default.aspx page appears in your browser. This page provides links to other sample pages
that demonstrate the following web features.

WebControl for ASP.NET: This link opens the WebControl.aspx page that allows you to select any of the three Viewer
Types and it also allows you to select from Section, Page and RDL Report Type.

The three Viewer Types that are available are as follows:

HtmlViewer
AcrobatReader
RawHtml

HTTPHandlers: This link opens the HttpHandlers.aspx page with the http handler examples.

ActiveReports 14 1040

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Parameterized Report Example: This link opens the page that demonstrates how to generate a report by passing a
parameter to the report.

Note: To run this sample, you must have access to the Nwind.mdb. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

The project contains the following elements:

CodeReports: The CodeReports folder contains the following reports - Invoice, InvoiceFiltered, NwindLabels and
NwindLabelsFiltered. The code reports are used to demonstrate how the ActiveReports Compiled Report
HttpHandler functions. For more details, see HttpHandlers.aspx below.
PageReports: The PageReprorts folder contains the Invoice_Grouped and PurchaseReport report.
RDLReports: The RdlxReports folder contains the SalesReceipt report.
RPXReports: The RpxReports folder contains the following reports - Invoice, InvoiceFiltered, NwindLabels,
NwindLabelsFiltered and Params. These reports are used to demonstrate how the RPX HttpHandlers function. For
more details, see HttpHandlers.aspx below.

The Invoice.rpx report is used to demonstrate the WebViewer control options and is opened by clicking
WebControl for ASP.NET on the Default.aspx page. This report is also opened by clicking the Custom Exporting
PDF Example option on the Default.aspx page. For detailed information on the Invoice report, see the Cross Section
Control Sample.

The NwindLabels report is opened by clicking the Custom Exporting HTML Example option on the Default.aspx

ActiveReports 14 1041

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

page.

The Params report is used by the ParameterReport.aspx page to demonstrate how to generate a report by passing
a parameter to the report.
Default.aspx: This is the main Web form of the sample that shows the introductory text and links to the following
sample pages.

WebControl for ASP.NET (WebControl.aspx)
HTTPHandlers (HttpHandlers.aspx)
Custom Exporting PDF Example (Invoice report)
Custom Exporting HTML Example (NWindLabels report)
Parameterized Report Example(ParameterReport.aspx)

HttpHandlers.aspx: ActiveReports provides HttpHandler components that allow ASP.NET to automatically process
reports that have been placed into an ASP.NET web site folder. ActiveReports HttpHandler components enable
easily deployable reports in both HTML and PDF file formats. ActiveReports includes a simple configuration utility
to properly register the HttpHandler components with IIS and ASP.NET.
The RPX and RDLX HttpHandler processes and outputs reports from ActiveReports layout files (ending in the
.rpx/.rdlx extension). When the ASP.NET receives a request for an ActiveReport file ending with the .rpx/.rdlx
extension, the RPX/RDLX HttpHandler will run, and return the report's output in a format of your choice.
The compiled Report HttpHandler enables easy distribution of ActiveReports that use compiled .NET source code.
Compiled reports are exposed as a .NET class in a .NET assembly file. When ASP.NET receives a request for a file
with the .ActiveReport extension, the Compiled Report handler will load the ActiveReports from the assembly, run
it, and return the output in a format of your choice.
For information on configuring the http handlers, see Configure HttpHandlers in IIS 8 and IIS 10. The required
mapping for each feature has been listed below.

WebViewer control ActiveReports 14 Cache Item Script
Mapping is required

Compiled Report Handler (the report explorer is embedded in the
assembly after compiling the report)

ActiveReport Script Mapping is
required

RPX HTTP Handler (when the *.rpx report is placed on the Web) ActiveReports 14 RPX Script Mapping
is required

RDLX HTTP Handler (when the *.rdlx report is placed on the Web) ActiveReports 14 RDLX Script Mapping
is required

ParameterReport.aspx: The web form that demonstrates how to generate a report by passing a parameter to the
report. This sample uses the Params report from the RpxReports folder of this Sample project. The date list is
created by changing the SQL query of the report at run time. In this sample, when the date is selected from the
Calendar control, the SQL query is updated and the report is generated. The report is generated dynamically in the
SelectedIndexChanged event of the Calendar control. On this form, you can select the Viewer to display the report
- HTMLViewer, AcrobatReader, or RawHTML.

Note: This sample requires write permissions to the ReportOutput folder that is located in the web samples
directory.

Web.config: The configuration file that contains the httpHandlers that allow ActiveReports to process reports on
the Web.

Note: You need to manually update version information here when you update your version of ActiveReports.

WebControl.aspx: This page is opened by clicking WebControl for ASP.NET on the Default.aspx page. By default,
it displays the WebViewer control with the Invoice report. In this page, you can select from HTMLViewer,

ActiveReports 14 1042

Copyright © 2020 GrapeCity, Inc. All rights reserved.

AcrobatReader, RawHtml viewer types and can also select from Page, Section and RDL report types to be
displayed.

Online Samples
The samples in OnlineSamples folder demonstrate following features. Download these samples from following link:
https://github.com/activereports/OnlineSamples14

Online Samples

Sample Description

Financial Portfolio This sample demonstrates visualizing stock data with a Candlestick Chart.

Plant Performance This sample demonstrates how to visualize the Plant Performance KPIs using the Map control.

ReportsGallery_Angular This sample demonstrates a variety of RDL, Page, and Section reports along with their
descriptions.

FinancialPortfolio_Angular
The Financial Portfolio sample demonstrates how to visualize stock data with a Candlestick Chart.

Note: To run this sample, you must have

Visual Studio 2017 (https://visualstudio.microsoft.com/vs/) version 15.7 or newer.
.NET Framework Dev Pack (https://dotnet.microsoft.com/download) version 4.6.2 or later.
Angular requires the Node.js 8.x or 10.x version.

Sample Location

..\OnlineSamples14\FinancialPortfolio\

Details

When you run the sample, the start page with the Candlestick Chart appears. In the left panel, you can click a company
from the list to see its stock data.

ActiveReports 14 1043

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/OnlineSamples14
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download

The project consists of the following elements.

ClientApp folder: This folder contains a standard Angular CLI app that is used for all UI concerns.
Controllers folder: This folder contains the ReportsController files. The ReportsController handles the interaction
with reports when a report is selected in the left panel.
Reports folder: The Reports folder contains the following reports - AnnualStockTicker.rdlx and
MonthlyStockTradingData.rdlx.
appsettings.json: The json configuration file.
readme: This file contains the instructions on how to run the sample project.
Startup.cs: This is the default startup file.
Web.config: This configuration file contains the HttpHandlers that allow ActiveReports to process reports on the
Web. Note that you need to manually update version information here when you update your version of
ActiveReports.

Plant Performance_Angular
The Plant Performance sample demonstrates how to visualize the Plant Performance KPIs using the Map control.

Note: To run this sample, you must have

Visual Studio 2017 (https://visualstudio.microsoft.com/vs/) version 15.7 or newer.
.NET Framework Dev Pack (https://dotnet.microsoft.com/download) version 4.6.2 or later.
Angular requires the Node.js 8.x or 10.x version.

Sample Location

..\OnlineSamples14\FinancialPortfolio\

Details

When you run the sample, the start page with the Plant Perfomance KPIs for Atlanta is displayed. On this page, you can
choose another location from the drop-down list on top of the page.

The project consist of the following elements.

ActiveReports 14 1044

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download

ClientApp folder: This folder contains a standard Angular CLI app that is used for all UI concerns.
Controllers folder: This folder contains the ReportsController files. The ReportsController handles the interaction
with reports when a report is selected in the left panel.
Reports folder: Contains the PlantPerformance.rdlx report.
appsettings.json: The json configuration file.
readme: This file contains the instructions on how to run the sample project.
Startup.cs: This is the default startup file.
Web.config: This configuration file contains the HttpHandlers that allow ActiveReports to process reports on the
Web. Note that you need to manually update version information here when you update your version of
ActiveReports.

ReportsGallery_Angular
The Reports Gallery sample demonstrates a list of reports designed using ActiveReports. Use this sample to view examples
of WPF spreadsheet applications, and experience Excel-like features such as Excel import or export, charts, themes, and
adding skins to spreadsheets.

Note: To run this sample, you must have

Visual Studio 2017 version 15.7 or newer
.NET Framework Dev Pack 4.6.2 or later installed on your machine.
Node.js 8.x or 10.x.

Build the sample

1. Start Microsoft Visual Studio and select File → Open → Project/Solution.
2. Go to the sample folder. Double-click the Visual Studio Solution (.sln) file.
3. Right-click the solution in Solution Explorer and select Restore NuGet Packages.
4. Press Ctrl+Shift+B, or select Build → Build Solution.
5. Open Command Prompt and navigate to the sample: ReportsGallery_Angular\ClientApp folder.
6. Run the `npm install` command.

ActiveReports 14 1045

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download
https://nodejs.org/en/

Run the sample

To debug the sample and then run it, press F5 or select Debug → Start Debugging.

To run the sample without debugging, press Ctrl+F5 or select Debug → Start Without Debugging.

Walkthroughs
The Walkthroughs section of the User Guide provides you with step-by-step tutorials that you can follow as you create
projects in Visual Studio. These walkthroughs cover the key features of Page Reports, RDL Reports and Section Reports in
different scenarios. The walkthroughs progress from basic through advanced for Standard and Professional Editions of
ActiveReports.

This section contains information about:

Page Report/RDL Report Walkthroughs
Learn the dynamic features through easy to implement scenarios for Page Report and RDL Report.

Section Report Walkthroughs
Use the walkthroughs under this section to understand key features of a section report through simple scenarios.

Common Walkthroughs
Common walkthroughs cover scenarios to introduce the key features of page, RDL and section reports.

Page Report/RDL Report Walkthroughs
Page Report walkthroughs cover scenarios to introduce the key features of Page Reports and RDL reports. Learn about
different walkthroughs categorized as follows.

Data
This section contains the walkthroughs that explain various ways of working with data sources.

Layout
This section contains the walkthroughs that explain how to create different report layouts.

Chart
This section contains the walkthrough that demonstrates how to work with the ActiveReports Chart control.

Map
This section contains the walkthrough that demonstrates how to work with the ActiveReports Map control.

Tablix
This section contains the walkthroughs that demonstrates how to work with the ActiveReports Tablix data region.

Export
This section contains the walkthrough that demonstrates how to export your reports into several popular formats like
PDF, HTML, Excel, Image and Word.

Preview
This section contains the walkthrough that demonstrates how to work with custom data and custom code.

Advanced
This section contains the walkthroughs that demonstrate interactive features of ActiveReports reports.

Data
This section contains the following walkthroughs that fall under the Data category.

Master Detail Reports

ActiveReports 14 1046

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This walkthrough demonstrates how to create a master detail report using the Table control and grouping.
Reports with Parameterized Queries

This walkthrough demonstrates how to create a simple dynamic query.
Reports with Stored Procedures

This walkthrough demonstrates how to create a report that uses a stored procedure as a data set.
Reports with XML Data

This walkthrough demonstrates how to connect a report to an XML data source and to create a data set.
Reports with JSON Data

This walkthrough demonstrates how to connect a report to a JSON data source at run time and use a web service to
fetch the data with the authorized access.

Reports with CSV Data
This walkthrough demonstrates how to connect a report to a CSV data source.

Expressions in Reports
This walkthrough demonstrates how to use expressions to achieve different effects in a report.

Multiple Datasets in a Data Region
This walkthrough demonstrates how to use multiple datasets in a data region using Lookup function.

Master Detail Reports
You can create a master detail report using the Table control and grouping. The following walkthrough takes you through
the step by step procedure of creating a Master Detail report.

The walkthrough is split into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding a dataset to the report
Adding controls to the report to contain data
Viewing the report

Note:

This walkthrough uses the Customer table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1047

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as rptMasterDetail.

Note: For a $$RDL report$$, in the Add New Item dialog, select ActiveReports 14 RDL Report.

4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as
CustomerOrders. This name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT CustomerID, Title, LastName, Quantity, Price, [Quantity]*[Price] AS
Total FROM CustomerOrders WHERE CustomerID < 1010

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

ActiveReports 14 1048

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To create a layout for the report

To add a table with grouping to the report

1. From the toolbox, drag a Table data region onto the report design surface and go to the Properties Window to
set its Location property to 0in, 1in.

2. Click inside the table to display the column and row handles along the top and left sides of the table.
3. To visually group the data within the report, right-click the row handle to the left of the detail row and select Insert

Group.
4. In the Table - Groups dialog that appears, under Expression select =Fields!CustomerID.Value.

This groups the details from each customer.
5. Change the Name to Customer.

Note: You cannot change the name of a table group until you have set the expression.

6. Click OK to close the dialog. The group header and footer rows are added to the table.

To add a fourth column to the table

1. Select the second column and in the Properties Window, change its Width property to 0.92in.
2. Select the third column and in the Properties Window, change its Width property to 1.04in.
3. Select the first column and in the Properties Window, change its Width property to 3.5in.

Tip: Making some columns narrower before making other columns wider prevents your report width from
changing.

4. Right-click the column handle above the third column and select Insert Column to the Right. The inserted fourth
column has the same width as the third column, which is 1.04in.

To add data to the table

1. Place your mouse over the Textbox located in the first column of the group header row of the table to display the
field selection adorner.

2. Click the adorner to display the list of available fields from the DataSet and select LastName. This automatically
places an expression in the group header row and simultaneously places a static label in the table header row.

3. In the Properties window, set the FontSize property of this textbox to 12pt.
4. In the table header row, delete the static label Last Name.
5. To display static labels at the beginning of each new group, right-click the row handle to the left of the group

header row and select Insert Row Below.
6. In the first column of the detail row, use the field selector adorner to select the Title field.
7. In the textbox immediately above it, type Title.
8. In the table header row, delete the static label Title.
9. In the second column of the detail row, use the field selector adorner to select the Quantity field. This

automatically places an expression in the detail row and simultaneously places a static label in the header row of
the same column.

10. In the Properties window, set the TextAlign property of the Quantity field to Left.
11. Cut the static label and paste it into the inserted row immediately above the detail row.
12. In the third column of the detail row, use the field selector adorner to select the Price field.
13. In the Properties window, set the following properties.

Property Name Property Value

TextAlign Left

ActiveReports 14 1049

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Format C (uses currency formatting)

14. Cut the static label from the group header and paste it into the inserted row immediately above the detail row.
15. Select the Total field for the fourth column of the detail row of the table.
16. In the Properties window, set the following properties.

Property Name Property Value

TextAlign Left

Format C (uses currency formatting)

17. Cut the static label from the group header and paste it into the inserted row immediately above the detail row.

To refine the look of the report

1. Right-click any row handle to the left of the table and select Table Header to remove the table header row since it
is not being used.

2. Select the Header row containing the labels by clicking the table handle to the left of the row.
3. In the Properties window, set the following properties.

Property Name Property Value

RepeatOnNewPage True

FontWeight Bold

4. From the Report Explorer, drag the Total field into the group footer row in the fourth column to add subtotaling to
the group. Notice that the expression automatically uses the Sum function.

5. Go to the Properties window to set the following properties.

Property Name Property Value

Format C (uses currency formatting)

FontWeight Bold

6. From the Report Explorer, drag the Total field into the table footer row in the fourth column. This adds grand
totaling to the table.

7. Go to the Properties window to set the following properties.

Property Name Property Value

Format C (uses currency formatting)

FontWeight Bold

8. Delete the static label Total from the top row.
9. In the Report Explorer select the Table data region and set its FixedSize property to 6.5in, 7in.

Note: This step is valid only for Page report. For RDL report, follow steps 10-12.

10. For RDL reports, click the gray area below the design surface to give report the focus and from the Report
menu, select Page Header.

11. From the toolbox, drag the TextBox control onto the PageHeader section to span the entire width of the report.
12. Go to the Properties Window to set the following properties.

Property Name Property Value

TextAlign Center

FontSize 14pt

ActiveReports 14 1050

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Value Customer Orders

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Reports with Parameterized Queries
See Parameterized Reports topic for an alternative approach to build parameterized query for data sets.

The walkthrough is split into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding a dataset
Adding controls to the report to contain data
Creating a second dataset for use by the parameter list
Adding parameters to the report
Changing the Products dataset to use a dynamic query
Adding a header to display the chosen parameter label
Viewing the report

Note:

This walkthrough uses the MovieType table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.

ActiveReports 14 1051

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the
file as DynamicQueries.

4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Products. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Movie.Title, Product.InStock, Product.StorePrice
FROM MediaType
INNER JOIN
(Movie INNER JOIN
(Product INNER JOIN MovieProduct
 ON Product.ProductID = MovieProduct.ProductID)
 ON Movie.MovieID = MovieProduct.MovieID)
ON MediaType.MediaID = MovieProduct.MediaType
WHERE (((MediaType.MediaID)=1))
ORDER BY Movie.Title

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. From the toolbox, drag a Table data region onto the report design surface and set the following properties in the
Properties Window:

Property Name Property Value

Location 0in, 0.5in

ActiveReports 14 1052

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Size 5.5in, 0.75in

FixedSize (only
for FixedPageLayout reports)

6.5in, 7in

2. In the Report Explorer from the Products dataset, drag the following fields onto the detail row of the table.

Data Field Column Name

Title TableColumn1

InStock TableColumn2

StorePrice TableColumn3

Note: This automatically places an expression in the detail row and simultaneously places a static label in the
header row of the same column.

3. Select the header row, click the table handle to the left of the row and in the Properties Window, set the following
properties:

Property Name Property Value

FontWeight Bold

BackgroundColor DarkSeaGreen

RepeatOnNewPage True

4. Select the StorePrice field in the detail row and in the Properties Window, set its Format property to Currency.

5. Click the column handle at the top of each column in turn to select it, and in the Properties Window, set the Width
property as indicated in the table.

Column Width

First 4.5in

Second 1in

Third 1in

To create a second dataset for use by the parameter list

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as MediaType.
3. On the Query page, paste the following SQL command into the Query text box:

SQL Query

SELECT 0 AS MediaID, "All" AS Description
FROM MediaType
UNION SELECT MediaID, Description
FROM MediaType
ORDER BY Description

4. Click the Validate icon to validate the query and to populate the Fields list.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

ActiveReports 14 1053

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add parameters to the report

1. In the Report Explorer, select the Parameters node.
2. Right-click the node and select Add Parameter to open the Report - Parameters dialog.
3. In the dialog box that appears, select the parameter from the parameters list.
4. Set properties in the following fields below the parameters list.

In the General tab:

Name: MediaType
DataType: String
Text for prompting users for a value: Select a media type

In the Available Values tab select From query:

DataSet: MediaType
Value: MediaID
Label: Description

5. Click OK to close the dialog and add the parameter to the collection. This parameter appears under the Parameters
node in the Report Explorer.

To modify the Products dataset to use a dynamic query

1. In the Report Explorer, right-click the Products dataset and select Edit.
2. In the DataSet dialog that appears, select the Query page.
3. In the Query field, change the query to the following expression:

Query

="SELECT Movie.Title, Product.InStock, Product.StorePrice, MediaType.Description
FROM MediaType INNER JOIN (Movie INNER JOIN (Product INNER JOIN MovieProduct ON
Product.ProductID = MovieProduct.ProductID) ON Movie.MovieID =
MovieProduct.MovieID) ON MediaType.MediaID = MovieProduct.MediaType" &
IIf(Parameters!MediaType.Value = 0, ""," WHERE (MediaType = " &
Parameters!MediaType.Value & ")") & " ORDER BY Movie.Title"

4. Click OK to close the dialog.

To add a header to display the chosen parameter label

1. From the toolbox, drag and drop a Textbox control onto the report design surface. In RDL reports, you can place
the Textbox control in the PageHeader.

2. Select the Textbox and set the following properties in the Properties window.

Property Name Property Value

TextAlign Center

FontSize 14pt

Location 0in, 0in

Size 6.5in, 0.25in

Value =Parameters!MediaType.Label
& " Movies in Stock"

ActiveReports 14 1054

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: Using Label instead of Value in the expression displays a more readily understandable Description field
instead of the MediaID field we used for the parameter's value.

To view the report

Go to the preview tab and select a parameter in the Parameters pane to view the report at design time.

OR

Open the report in the Viewer and select a parameter in the Parameters pane to view the report. See Windows
Forms Viewer for further information.

Reports with Stored Procedures
You can create a report using a stored procedure as a dataset. A stored procedure is a group of SQL statements that are
used to encapsulate a set of operations or queries to execute on a database.

This walkthrough illustrates how to create a report that uses a stored procedure as a data set. The walkthrough is split into
the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding a dataset (stored procedure) with a parameter
Creating a layout for the report
Viewing the report

Note:

This walkthrough uses a table from the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.

ActiveReports 14 1055

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the
file as StoredProcedure.

4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
Reels.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset with a parameter

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as
SalesDataForStore. This name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, set the Command Type to Stored Procedure.
4. On the Query page of this dialog, in the Query field enter the stored procedure name (e.g. SalesDataForStore).
5. Click the Validate icon to validate the query. You may receive an error at this point since the required parameters

have not yet been added.

6. Go to the Parameters page and add a Parameter using the Add(+) button.
7. On the same page, enter Name as StoreID and Value as 1002.
8. Select the Query page of DataSet dialog, and click the Validate icon to validate the query and load the fields.
9. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. From the toolbox, drag a Table data region onto the report design surface.
2. In the Table data region, place your mouse over the cells of the table details row to display the field selection

adorner.
3. With the Table selected, right-click and open the Properties Window to set the following properties:

Property Name Property Value

Location 0in, 0.5in

Size 6.5in, 0.75in

FixedSize 6.5in, 7in

4. Click the adorner to show a list of available fields from the SalesDataForStore dataset and add the following fields

ActiveReports 14 1056

Copyright © 2020 GrapeCity, Inc. All rights reserved.

to the cells of the table details row.

Cell Field

Left Cell StoreID

Middle Cell UnitsSold

Right Cell NetSales

This automatically places an expression in the detail row and simultaneously places a static label in the header row
of the same column.

5. Select the Header row by clicking the table handle to the left of the row and go to the Properties Window to set
the following properties:

Property Name Property Value

FontWeight Bold

RepeatOnNewPage True

6. Click the column handle at the top of each column in turn to select it, and in the Properties Window, set the Width
property as indicated in the table:

Column Width

First 3.5in

Second 2in

Third 1in

7. Set the TextAlign property of all the columns to Left.
8. From the toolbox, drag the Textbox onto the design surface to span the entire width of the report and go to the

Properties Window to set the following properties:

Property Name Property Value

TextAlign Center

Size 6.5in, 0.35in

Location 0in, 0.125in

FontSize 14pt

Value Net Sales by Store

Tip: In a RDL report, you can also add a Page Header to place the Textbox control.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Multiple Datasets in a Data Region

ActiveReports 14 1057

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Many a time, we need to display varied data from different datasets into one data region. This is now possible by using
the Lookup function in a data region.

The Lookup function returns a value corresponding to a related or a common field with the same data type in another
data set. It is set as an expression in the Value property of a data region's Textbox. The Lookup function in ActiveReports
is similar to the Microsoft Excel's VLOOKUP.

Lookup Function

Syntax

=Lookup(<SourceExpression>, <DestinationExpression>, <ResultExpression>, <LookupDataset>)

Parameters

Comparison Criteria: To compare the fields in the Source and the Lookup datasets. The criterion uses only the "="
operator.
SourceExpression: An expression evaluating to a value from the dataset associated with the data region. If this
expression is a FieldName, then the value of the Field from the dataset associated with the data region is used.
DestinationExpression: An expression evaluating to a value from the dataset associated with the LookupDataset.
If this expression is a FieldName, then the value of the Field from the dataset of the LookupDataset is used.
ResultExpression: An expression evaluating to the Field from the LookupDataset returned by the Lookup function.
LookupDataset: The dataset where the value from the data region's dataset is used to display the related attribute.

Usage

The data type of the SourceExpression and the DestinationExpression should be same.
When the Lookup function is used as a value expression in a data region, the expression is evaluated for each row
or repeated data of the data region's dataset.
The Lookup function returns one value if found, and null if no rows are found in the Lookup dataset.
The Lookup expressions can be a part of aggregated expressions. A user can use the Lookup function in a table
group or table header or footer, and sum all values for the table.

Limitations

Only "=" comparison is supported between SourceExpression and DestinationExpression.
Non-aggregate expressions such as multiply, mod, AND and OR, are not allowed in the comparison criteria.
Only one level of Lookup is allowed, that is, nested Lookup functions are not supported.

This walkthrough explains the steps involved in using multiple datasets in a data region. The walkthrough is split into the
following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding the datasets
Adding controls to the report
Viewing the report

Note:

This walkthrough uses the SalesResult database. The SalesResult.mdb file can be downloaded from GitHub:
..\Samples14\Data\SalesResult.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

ActiveReports 14 1058

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as SalesResultReport.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
SalesResultData.

3. On this page, create a connection to the SalesResult database. See Connect to a Data Source for information on
connecting to a data source.

To add the datasets

To add Dataset1

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and let the name of the dataset be Dataset1. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT M01Product.Category, M01Product.ProductID

ActiveReports 14 1059

Copyright © 2020 GrapeCity, Inc. All rights reserved.

FROM M01Product

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

The Dataset1 contains following fields:

Category
ProductID

To add Dataset2

1. Repeat Steps 1 and 2 to add another dataset with name Dataset2.
2. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * FROM T01Result

3. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
4. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

The Dataset2 contains following fields:

ID
ProductID
Quantity
PDate
FY

To add controls to the report

1. From the toolbox, drag a Table data region onto the design surface of the report.
2. Go to the Properties Window to set the properties of Table data region as follows:

Property Name Property Value

FixedSize 4in, 4in

Location 0in, 0in

Size 3.875in, 0.75in

DataSetName Dataset1

3. Hover your mouse over the text boxes of the Table Details row to access the field selection adorner and set the
following fields in the table cells along with their properties.

Cell Field

TextBox4 Category

TextBox5 ProductID

This automatically places an expression in the details row and simultaneously places a static label in the header row
of the same column.

4. Select TextBox6 of the Table data region and from the Properties pane, set the following properties:

Property Name Property Value

ActiveReports 14 1060

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Value =Lookup(Fields!ProductID.Value,
Fields!ProductID.Value,
Fields!Quantity.Value,
"DataSet2")

TextAlign Left

The expression in the Value property returns the value of Quantity from Dataset2, corresponding to the related
data field ProductID in Dataset1.

5. Select TextBox3 of the Table data region and from the Properties pane, set the following properties:

Property Name Property Value

Value Quantity

TextAlign Left

6. Select the header row using the row handle to the left and in the Properties Window, set the FontWeight property
to Bold.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Layout
This section contains the following walkthroughs that fall under the Layout category.

BandedList Reports
This walkthrough demonstrates how to create a grouped BandedList report.

Collate Multiple Copies of a Report
This walkthrough demonstrates how to use the collation feature in a report that contains layouts on two page tabs.

Columnar Layout Reports (RDL)
This walkthrough demonstrates how to create a RDL report using columns.

Overflow Data in a Single Page(Page Report)
This walkthrough demonstrates how to use the OverflowPlaceHolder controls at any location on the same page to
build a rich report layout.

Overflow Data in Multiple Pages(Page Report)
This walkthrough demonstrates how to create two different layouts using the OverflowPlaceHolder control.

Recursive Hierarchy Reports
This walkthrough demonstrates how to create a report using a recursive hierarchy and the Level function to show
parent-child relationships in data.

Single Layout Reports
This walkthrough demonstrates how to create a layout at design time on a single page tab and apply it to the entire
report.

Subreports in Page/RDL Reports
This walkthrough demonstrates how to create a report using a subreport.

ActiveReports 14 1061

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Banded List Reports
You can create a freeform report with groups using the Banded List control. This walkthrough illustrates how to create a
grouped BandedList report.

The walkthrough is split up into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding a dataset
Adding a banded list with grouping
Adding controls to the banded list
Viewing the report

Note:

This walkthrough uses the Movie table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb..
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as rptBandedList.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data

ActiveReports 14 1062

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option.
2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Movies. This

name appears as a child node to the data source icon in the Report Explorer.
3. On the Query page of this dialog, change the Command Type to TableDirect and enter Movie into the Query text

box.
4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add the BandedList with grouping

1. From the toolbox, drag a BandedList data region onto the design surface and go to the properties window to set
the DataSetName property to Movies.

Note: To select the banded list, click inside any band in the list and click the four-way arrow that appears at
the top left of the control.

2. Right-click inside the banded list and select Footer. This removes the footer band that we are not using in this
walkthrough.

3. Right-click inside the banded list and select Insert Group. This adds a group header between the BandedList
header and the detail section, and a group footer below the detail section, and opens the BandedList - Groups
dialog.

4. In the BandedList - Groups dialog, drop down the list of expressions in the Group on expression box and select
=Fields!YearReleased.Value to group the movies based on the year in which they were released.

5. In the same dialog, change the Name to Year.
6. In the same dialog under Layout, clear the Include group footer checkbox to remove the group footer.
7. Click the Add icon. This adds a second group header under the first, and a group footer below the detail section.
8. In the same dialog, select the newly added group from the list of groups, drop down the list of expressions in the

Group on expression box and select =Fields!MPAA.Value to group the movies based on the rating (for example, G,
PG, etc).

9. In the same dialog, change the Name to MPAA.
10. In the same dialog under Layout, clear the Include group footer checkbox to remove the group footer.
11. Click OK to close the dialog.

To add controls to the BandedList

1. From the toolbox, drag a TextBox control onto the top-most band (BandedList1_Header) and in the Properties

ActiveReports 14 1063

Copyright © 2020 GrapeCity, Inc. All rights reserved.

window, set the following properties:

Property Name Property Value

BackgroundColor Gray

Color White

FontSize 14pt

FontWeight Bold

Location 0in, 0in

Size 6.5in, 0.25in

TextAlign Center

Value Movie Details

2. Click the BandedList1_Header band adorner (the grey bar along the top of the band) to select the banded list
header.

3. In the Properties window, set the following properties for the banded list header:

Property Name Property Value

RepeatOnNewPage True

Height 0.25in

4. From the Report Explorer drag the YearReleased field onto the first grouping band (Year_Header) of the banded
list.

5. With this field selected, go to the Properties window to set the following properties:

Property Name Property Value

BackgroundColor DarkGray

FontWeight Bold

Location 0in, 0in

Size 6.5in, 0.25in

TextAlign Left

Value =First(Fields!YearReleased.Value)

6. Click the Year_Header band adorner (the grey bar along the top of the band) to select it and go to the properties
window to set the Height property of the header band to 0.25in.

7. From the Report Explorer, drag the MPAA field into the second grouping band (MPAA_Header) of the banded list.
8. Go to the Properties window to set the following properties:

Property Name Property Value

BackgroundColor Silver

BorderColor Gray

BorderStyle Solid

FontWeight Bold

Location 0in, 0in

ActiveReports 14 1064

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Size 6.5in, 0.25in

Note: The Value property is automatically set to an expression using the First aggregate. This displays the
movie rating for each group.

9. Click the MPAA_Header band adorner (the grey bar along the top of the band) to select it and go to the
properties window to set the Height property of the header band to 0.25in.

10. Click inside the detail band to select it and in the properties window, set its Height property to 1.2in.
11. From the Report Explorer, drag the following six fields onto the detail band and in the properties window, set their

properties as indicated.

Data Field Property Name

Title Location: 0in, 0.25in
Size: 3.75in, 0.25in

Country Location: 1.25in, 0.5in
Size: 1in, 0.25in

Language Location: 1.25in, 0.75in
Size: 1in, 0.25in

Length Location: 5.375in, 0in
Size: 1in, 0.25in
TextAlign = Left

UserRating Location: 5.375in, 0.5in
Size: 1in, 0.25in
TextAlign = Left

IsColor Location: 5.375in, 0.75in
Size: 1in, 0.25in

Note: When you drag and drop fields from a dataset in the Report Explorer onto the design surface, these
fields are automatically converted to Textbox controls that you can modify by setting the control properties in
the Properties Window.

12. Once you've arranged the fields, select the IsColor field and in the properties window, change the Value property
to the following expression so that instead of "True" or "False," it will read "Color" or "Black and White."
=Iif(Fields!IsColor.Value=True, "Color", "Black and White")

13. From the toolbox, drag six TextBox controls onto the detail band and in the properties window, set their properties
as indicated.

TextBox1

Property Name Property Value

Value Movie Title:

Location 0in, 0in

Size 1in, 0.25in

FontWeight Bold

TextBox2

ActiveReports 14 1065

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

Value Country of origin:

Location 0in, 0.5in

Size 1.25in, 0.25in

FontWeight Bold

TextBox3

Property Name Property Value

Value Language:

Location 0in, 0.75in

Size 1in, 0.25in

FontWeight Bold

TextBox4

Property Name Property Value

Value Length:

Location 4.25in, 0in

Size 1in, 0.25in

FontWeight Bold

TextAlign Right

TextBox5

Property Name Property Value

Value User Rating:

Location 4.25in, 0.5in

Size 1in, 0.25in

FontWeight Bold

TextAlign Right

TextBox6

Property Name Property Value

Value Format:

Location 4.25in, 0.75in

ActiveReports 14 1066

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Size 1in, 0.25in

FontWeight Bold

TextAlign Right

14. From the toolbox, drag a Line control onto the detail band and in the Properties window, set the properties.

Property Name Property Value

LineColor Gray

LineWidth 3pt

Location 0in, 1.12in

EndPoint 6.5in, 1.12in

15. For a Page report, in the Report Explorer select the BandedList control and in the Properties window, set
its FixedSize property to 6.5in, 7in.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Collate Multiple Copies of a Report
In a Page Report you can create reports with multiple themes, where you can control the page order of a rendered report by
selecting the collation mode. This walkthrough uses a report that contains layouts on two page tabs in order to illustrate the
collation feature.

This walkthrough is split into the following activities:

Creating report layout on multiple pages
Adding themes
Applying themes
Setting up collation
Viewing the report

Note:

This walkthrough uses the CustomerOrders table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a report that looks similar to the following. These images show the result of the
Value collation mode.

Page 1 Page 2 Page 3 Page 4

ActiveReports 14 1067

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To create a report layout on multiple pages

In a Page Report, you can apply more than one layout to a single report by using page tabs. See the walkthrough Overflow Data in
Multiple Pages, to learn how to create a report that consists of a first page with a different layout from all subsequent pages.

Note: The information provided henceforth is an extension of the Overflow Data in Multiple Pages walkthrough, so we
recommend that you go through this topic before moving to the next procedure.

To add themes to the report

1. In the Designer, click the gray area around the report page to select a report.
2. In the Properties window, select the Themes property and click the ellipsis (…) button to open the Report - Themes dialog.
3. In the Report - Themes dialog that opens, click the New icon above the list of themes.
4. In the Theme Editor that opens, define the colors and constant expressions for your new theme under the corresponding

tabs as follows:

Theme 1

Property Name Property
Value

Description

Text/Background -
Light1 (Colors tab)

Default
(white)

To set the background color for the
theme.

Name (Constants
tab)

Constant1 To define a name for the constant
expression to be used within in a
theme.

Value (Constants
tab)

Theme1 To associate a value to be used as a
constant in the expression.

Description
(Constants tab)

Default
Theme

To describe a constant expression.

5. In the Theme Editor, click OK and in the Save As dialog that opens, choose a directory on your local machine and enter the
name, Default Theme for your new theme.

6. Click Save to save the theme at the desired location.
7. Repeat steps 3-6 above to add another theme to the report. Define the colors and constant expressions of the theme under

the corresponding tabs as follows:

ActiveReports 14 1068

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Theme 2

Property Name Property
Value

Description

Text/Background -
Light1 (Colors tab)

Yellow To set the background color for the
theme.

Name (Constants
tab)

Constant1 To define a name for the constant
expression to be used within in a
theme.

Value (Constants
tab)

Theme2 To associate a value to be used as a
constant in the expression.

Description
(Constants tab)

Yellow
Theme

To describe a constant expression.

To apply themes to the report

In order to apply themes to a report, you need to set the theme as a value of a property. In this walkthrough we set the theme in
the BackgroundColor property.

1. In the Report Explorer, select the Page 1 node to open the layout for the first page of the report.
2. In the Properties window, go to the BackgroundColor property and click the arrow to display the drop-down list of values.
3. In the list that appears, go to the Theme button and select Light1.

4. In the Report Explorer, select Page 2 node to open the layout for the second page of the report.
5. In the Properties window, go to the BackgroundColor property and click the arrow to display the drop-down list of values.
6. In the list that appears, go to the Theme button and select Light1.
7. From the Visual Studio toolbox, ActiveReports 14 Page Report tab, drag the Textbox control and drop it onto the Page 1

design surface.
8. With this TextBox control selected, set the following properties in the properties window. This is to display a constant value

associated with the Theme.

Property
Name

Property Value

Location 4.4in, 0in

Size 2.1in, 0.25in

Value = Theme.Constants("Constant1")

Note: To set this value, enter it in the Value field of
the Properties window. You may also use the constant
expressions (see Themes in Expression Editor that
appears when you click the ellipses (...) button
adjacent to the Value property.

ActiveReports 14 1069

Copyright © 2020 GrapeCity, Inc. All rights reserved.

9. From the Visual Studio toolbox, drag the Textbox control and drop it onto the Page 2 design surface. Set the properties
specified in step 8 above in the properties window.

Your layout now contains two themes and a constant expression displaying the theme you are using on the top left corner of the
page.

To set up collation

Collation is set to determine the order in which the report pages are rendered when you have multiple themes in the report. In
order to define the order, you need to set the CollateBy property.

1. In the Designer, click the gray area around the report page to select the report.
2. In the Properties Window, go to the CollateBy property and select the Simple mode. The report will be rendered in the

following way - the report renders all pages with theme 1, then all pages with theme 2.

3. In the Properties Window, go to the CollateBy property and select the ValueIndex mode. The report will be rendered by
page number. For example, if you have a report with 2 themes, the report renders page 1 for theme 1 and 2, then page 2
for theme 1 and 2, and so on.

4. In the Properties Window, go to the CollateBy property and select the Value mode. The report will be rendered by the
grouping expression that you specify in the FixedPage dialog. For example, if you have a report comprising of 2 themes
with grouping, the report renders group1 (pages 1 and 2 of theme1, then pages 1 and 2 of theme2), then group 2 (pages 1
and 2 of theme1, then pages 1 and 2 of theme2), and so on.

To view the report

Click the preview tab to view the report.

OR

See Windows Forms Viewer to display report in the Viewer at run time.

Columnar Layout Reports (RDL)
In RDL report, you can create a columnar report layout by using the Columns property of the report. This walkthrough
illustrates how to create a RDL report using columns, and is split up into the following activities:

Adding an ActiveReport to a Visual Studio project

ActiveReports 14 1070

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Connecting to a the data source
Adding a dataset
Creating a column report layout
Viewing the report

Note: This walkthrough uses the CustomerMailingList table from the Reels database. The Reels.mdb file can be
downloaded from GitHub: ..\Samples14\Data\Reels.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 RDL Report and in the Name field, rename the

file as rptRDLColumnLayout.
4. Click the Add button to open a new RDL report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

ActiveReports 14 1071

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as CustomerList.
This name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT TOP 100 * FROM CustomerMailingList
UNION
SELECT TOP 100 * FROM CustomerMailingList WHERE Country = "USA"
ORDER BY 8 DESC

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a column layout for the report

1. In the Report Explorer, select Body and set the following properties in the properties window.

Property Name Property Value

Columns 2

ColumnSpacing 0.25in

Size 2.625in, 1in

2. In the Visual Studio toolbox, go to the ActiveReports 14 Page Report tab and drag the List data region onto the
design surface.

3. In the Properties Window, set the following properties for the List.

Property Name Property Value

DataSetName CustomerList

Size 2.5in, 1in

4. In the Visual Studio toolbox, go to the ActiveReports 14 Page Report tab and drag three TextBox controls onto
the List data region added above.

5. In the Properties Window, set the following properties for TextBox1.

Property Name Property Value

Location 0in, 0in

Size 2.5in, 0.25in

DataElementName FirstName

Name FirstName

Value =Fields!FirstName.Value & IIF(
Fields!MiddleInitial.Value Is Nothing, "", " " &
Fields!MiddleInitial.Value) & " " &
Fields!LastName.Value

CanGrow False

6. In the Properties Window, set the following properties for TextBox2.

ActiveReports 14 1072

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

Location 0in, 0.25in

Size 2.5in, 0.25in

DataElementName CustomerAddress1

Name CustomerAddress1

Value =Fields!Address1.Value & IIF(
Fields!Address2.Value is Nothing, "", vbCrLf &
Fields!Address2.Value)

CanGrow False

CanShrink True

7. In the Properties window, set the following properties for TextBox3.

Property Name Property Value

Location 0in, 0.50in

Size 2.5in, 0.25in

DataElementName CustomerCity

Name CustomerCity

Value =Fields!City.Value & ", " & Fields!Region.Value &
" " & Fields!PostalCode.Value & " " & IIf(
Fields!Country.Value = "USA", "",
Fields!Country.Value)

CanGrow False

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

If you want to create a similar layout in Page report, see Overflow Data in a Single Page(Page Report).

Overflow Data in a Single Page(Page Report)
In a Page Report, ActiveReports allows you to arrange the OverflowPlaceHolder controls at any location on the same page
along with the host data region to build a rich report layout. The following walkthrough demonstrates this by using a
Table data region and three OverflowPlaceHolder controls on a single page to create a columnar display.

This walkthrough is split into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting to a data source

ActiveReports 14 1073

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding a dataset
Creating a columnar layout
Viewing the report

Note: This topic uses the Movie table in the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Notice that the run time report layout below is similar to the one you see at design time except for the data which you see
at run time or when you preview the report.

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as rptColumnarLayout.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

ActiveReports 14 1074

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialogthat appears, select the General page and in the Name field, enter a name like
ColumnData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as MovieList. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * FROM Movie

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. In the Visual Studio toolbox, go to ActiveReports 14 Page Report tab and drag a TextBox control onto the design
surface.

2. Select the TextBox control and go to the properties window to set the following properties. This TextBox functions
as the title in the report layout.

Property Name Property Value

Location 0in, 0in

BackgroundColor DarkCyan

Font Normal, Arial, 20pt, Bold

Size 6.5in, 0.5in

TextAlign Center

Value Movie Database

VerticalAlign Middle

3. From the Visual Studio toolbox, drag and drop a Table data region onto the design surface and set its following
properties in the properties window.

Property Name Property Value

ActiveReports 14 1075

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Location 0.125in, 1in

BackgroundColor Azure

RepeatHeaderOnNewPage True

Size 3in, 0.66in

FixedSize 3in, 3.5in

OverflowName OverflowPlaceHolder1

Note: Set this property
after you add the
OverflowPlaceHolder1 to
the design surface in the
next step, to handle the
data that exceeds the fixed
size of the Table data
region.

4. In the Table data region, right click the footer row and select Table Footer from the context menu to delete the
unnecessary footer row.

5. In the table details row, add the following fields using the field selection adorner:

Cell Field Name

Left Title

Center YearReleased

Right UserRating

6. In the table details row, select the left cell containing the Title field and go to the Properties window to set the
ShrinkToFit property to True. This will avoid clipping of longer movie titles and fit the string in the same cell in a
smaller font size.

7. In the design view, select the following rows of the Table data region by clicking the table handle to the left of the
row and go to the Properties window to set the following properties:

Row Property Name

TableHeader BackgroundColor: PaleTurquoise
BorderStyle: Solid
FontSize: 10pt
FontWeight: Bold
TextAlign: Left

TableDetail BorderStyle: Solid
TextAlign: Left
FontSize: 9pt

8. From the Visual Studio toolbox, drag and drop three OverflowPlaceHolder controls onto the design surface and the
set the following properties in the Properties window for each of them so that the data appears in a columnar
format.

Control Name Property

OverflowPlaceHolder1 Location: 3.375in, 1in

ActiveReports 14 1076

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Size: 3in, 3.5in
OverflowName:
OverflowPlaceHolder2

Note: Set this property after
you add the
OverflowPlaceHolder2 to the
design surface.

OverflowPlaceHolder2 Location: 0.125in, 5in
Size: 3in, 3.5in
OverflowName:
OverflowPlaceHolder3

Note: Set this property after
you add the
OverflowPlaceHolder3 to the
design surface.

OverflowPlaceHolder3 Location: 3.375in, 5in
Size: 3in, 3.5in

Note: Notice that the OverflowName property is set to link each OverflowPlaceHolder control to the next one.

To view the Report

Click the preview tab to view the report.

OR

See Windows Forms Viewer to display report in the Viewer at run time.

Overflow Data in Multiple Pages(Page Report)
In a Page Report you can create different layouts in a single report by designing your report on more than one page tab.
This walkthrough describes the steps to create two different layouts and how data flows from the first layout to the next
using the Overflow Place Holder control.

This walkthrough is split into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting to a the data source
Adding a dataset
Creating a layout for the first page
Creating a layout for subsequent pages
Viewing the Report

Note: This walkthrough uses the CustomerOrders table from the Reels database. The Reels.mdb file can be
downloaded from GitHub: ..\Samples14\Data\Reels.mdb.

ActiveReports 14 1077

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Page 1 Page 2

Notice that the run-time report layout below is similar to the one you see at design time except for the data which is
added to the report at run time or when you preview it.

Run-Time Layout

Page 1 Page 2

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as rptMultipleLayout.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

ActiveReports 14 1078

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
CustomerData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as OrdersList. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

Select * from customerorders

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the first page

1. Click the design surface to select the page, go to the properties window and set the FixedLayout - Grouping
property to =Fields!SalesID.Value. See Group Data to understand grouping further.

2. In the Report Explorer, right-click the Embedded Images node to select Add Embedded Image.
OR
Alternatively, you can also select the Embedded Images option by clicking the Add (+) icon at the top on the
Report Explorer.
This opens the Open dialog where you can select an image to embed in the report.

3. Drag and drop the embedded image, which now appears as a node in the Report Explorer, onto the Page 1 design
surface and in the properties window set its Location property to 0in, 0in.

4. From the Visual Studio toolbox, drag the following controls from the ActiveReports 14 Page Report tab, drop it
onto the Page 1 design surface and set the following properties in the properties window.

Controls

Control Properties

Textbox Color: DarkSlateBlue
Font: Normal, Arial, 11pt, Bold
Location: 0in, 1in
Size: 2in, 0.25in
TextAlign: Center
Value: 5473 Sidelong Street

Textbox Color: DarkSlateBlue

ActiveReports 14 1079

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Font: Normal, Arial, 11pt, Bold
Location: 0in, 1.25in
Size: 2in, 0.25in
TextAlign: Center
Value: Siler City, NC. 27344

Textbox Font: Normal, Arial, 10pt, SemiBold
Location: 0in, 2in
Size: 1in, 0.25in
TextAlign: Right
Value: Sales Date :

Textbox Font: Normal, Arial, 10pt, SemiBold
Location: 0in, 2.25in
Size: 1in, 0.25in
TextAlign: Right
Value: Sales ID :

Textbox Font: Normal, Arial, 10pt, SemiBold
Location: 3in, 2in
Size: 1.5in, 0.25in
TextAlign: Right
Value: Customer Name :

Textbox Font: Normal, Arial, 10pt, SemiBold
Location: 3in, 2.25in
Size: 1.5in, 0.25in
TextAlign: Right
Value: Address :

Textbox Font: Normal, Arial, 10pt, SemiBold
Location: 3in, 2.50in
Size: 1.5in, 0.25in
TextAlign: Right
Value: City :

Textbox Font: Normal, Arial, 10pt, SemiBold
Location: 3in, 2.75in
Size: 1.5in, 0.25in
TextAlign: Right
Value: Country :

Textbox Font: Normal, Arial, 10pt, SemiBold
Location: 0in, 4in
Size: 1.5in, 0.25in
TextAlign: Right
Value: Account Number:

Table BorderStyle: Solid
FixedSize: 6.5in, 1in
Location: 0in, 5in
OverflowName: OverflowPlaceHolder1

ActiveReports 14 1080

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: Set this property after you add the
OverflowPlaceHolder1 control to the design
surface to handle the data that exceeds the fixed
size of the Table data region.

RepeatHeaderOnNewPage: True
Size: 6.5in, 0.75in

5. From the Report Explorer drag and drop the following fields onto the Page 1 design surface and set the following
properties in the properties window.

Fields

Field Properties

SaleDate Format: D
Location: 1in, 2in
Size: 2in, 0.25in
TextAlign: Left

SalesID Location: 1in, 2.25in
Size: 2in, 0.25in
TextAlign: Left

FirstName Location: 4.5in, 2in
Size: 2in, 0.25in
TextAlign: Left

Address1 Location: 4.5in, 2.25in
Size: 2in, 0.25in
TextAlign: Left

City Location: 4.5in, 2.5in
Size: 2in, 0.25in
TextAlign: Left

Country Location: 4.5in, 2.75in
Size: 2in, 0.25in
TextAlign: Left

AccountNumber Location: 1.5in, 4in
Size: 2in, 0.25in
TextAlign: Left

6. Hover your mouse over the columns of the Table Details row to access the field selection adorner and set the
following fields in the table cells along with their properties.

Cell Field Properties

Left Cell Title BorderStyle: Solid
TextAlign: Center

Middle Cell Quantity BorderStyle: Solid
TextAlign: Center

Right Cell Price BorderStyle: Solid

ActiveReports 14 1081

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Format: c
TextAlign: Center

This automatically places an expression in the details row and simultaneously places a static label in the header row
of the same column.

7. Select the Table Header row and set the following properties in the properties window.

Property Name Value

BackgroundColor Silver

Font Normal, Arial, 11pt, Bold

RepeatOnNewPage True

TextAlign Center

8. Set the properties of the following cells on the Table Footer row through the properties window.

Cell Properties

Middle Cell Font: Normal, Arial, 10pt, Bold
TextAlign: Right
Value: Total:

Right Cell Font: Normal, Arial, 10pt, Bold
Format: c
TextAlign: Center
Value: =Sum(Fields!Price.Value)

9. In the Report Explorer, expand the Common Values node and drag and drop the Page N of M (Section) field onto
the Page 1 design surface and set its Location property to 0in, 8in in the properties window.

To create a layout for subsequent Pages

1. Click the New tab to add a new page to the report layout. This page is named Page 2 by default.
2. From the Visual Studio toolbox, drag the following controls from the ActiveReports 14 Page Report tab, drop it

onto the Page 2 design surface and set the properties in the properties window.

Controls

Control Properties

Textbox Font: Normal, Arial, 12pt, Bold
Location: 0in, 1in
Size: 2.625in, 0.25in
TextAlign: Right
Value: Account Details:

Textbox Font: Normal, Arial, 12pt, Bold
Location: 2.625in, 1in
Size: 3.25in, 0.25in
Value:
=Fields!FirstName.Value +

", " +

ActiveReports 14 1082

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Fields!AccountNumber.Value

OverflowPlaceHolder Location: 0in, 2in
Size: 6.5in, 2in

Textbox Location: 1.75in, 5in
Size: 3in, 0.25in
TextAlign: Center
Value: Thank You For Your
Business!

3. In the Report Explorer, expand the Common Values node and drag and drop the Page N of M (Section) field onto
the Page 2 design surface and set its Location property to 0in, 8in in the properties window.

To view the report

Click the preview tab to view the report.

OR

See Windows Forms Viewer to display report in the Viewer at run time.

Recursive Hierarchy Reports
You can create a report using a recursive hierarchy and the Level function to show parent-child relationships in data. This
walkthrough illustrates how to create a recursive hierarchy report.

The walkthrough is split into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Creating a dataset to populate the parameter values
Adding a report parameter
Adding a dataset for the report
Adding controls to the report to contain data
Setting up a recursive hierarchy
Using the Level function to display the hierarchy
Viewing the report

Note:

This walkthrough uses the Store table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

ActiveReports 14 1083

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as rptRecursiveHierarchy.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To create a dataset to populate the parameter values

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Stores. This name
appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT StoreID FROM Store

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add a report parameter

ActiveReports 14 1084

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the Report Explorer, right-click the data source node and select the Parameters node or select Parameter from
the Add button.

2. In the Report - Parameters dialog that appears, set the following values:

In the General tab

Name: StoreID
DataType: Integer
Text for prompting users for a value: Select a store number

In the Available Values tab select From query

Dataset: Stores
Value: StoreID
Label: StoreID

3. Click OK to close the dialog and add the parameter under the Parameters node of the Report Explorer.

To add a dataset for the report

1. In the Report Explorer, right-click the data source node and select the Add Data Set option.
2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Employees. This

name appears as a child node to the data source icon in the Report Explorer.
3. On the Parameters page, add a parameter with the following properties.

Parameter Name: @StoreID
Value: =Parameters!StoreID.Value

4. On the Query page of this dialog, change the Command Type to StoredProcedure and enter the following stored
procedure into the Query text box (the question mark denotes the parameter)

StoredProcedure Query

EmployeesForStore ?

EmployeesForStore ?
5. Click the Validate icon to validate the query and to populate the Fields list.
6. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. From the toolbox, drag a Table control onto the body of the report and go to the Properties window to set the
following properties.

Property Name Property Value

Location 0in, 0in

DataSetName Employees

FixedSize (only for Page reports) 6.5in, 9in

2. Click inside the table to display the row and column handles along the left and top edges of the table.
3. Select the columns by clicking the grey column header above the column and change the Width property in the

order as follows.

Column Property Name

Second Column Width: 1.5in

Third Column Width: 1.05in

ActiveReports 14 1085

Copyright © 2020 GrapeCity, Inc. All rights reserved.

First Column Width: 2.2in

4. Right-click the grey column header above the third column and select Insert Column to the Right.
5. Select the fourth column and change its Width property to 1.75in.

Tip: Making some columns narrower before adding columns or making other columns wider prevents your
report width from changing.

6. In the Report Explorer from the Employees dataset, drag the following fields onto the detail row of the table.

Data Field Column Name

Title TableColumn1

LastName TableColumn2

Supervisor TableColumn3

Department TableColumn4

7. Select the LastName field in the second column of the detail row and in the Properties window, set the Value
property to =Fields!LastName.Value & " " & Fields!EmployeeID.Value. This will display the Employee ID number
along with each employee's last name.

8. Select the static label in the second column of the header row of the table and in the properties window, set its
Value property to Last Name and ID.

9. Select the Supervisor field in the third column of the detail row and in the Properties window, set its TextAlign
property to Center.

10. Select the static label in the third column of the detail row and in the Properties window, set its Value property to
Supervisor ID.

11. Select the header row by clicking the table handle to the left of the row and in the Properties window, set the
following properties.

Property Name Property Value

TextAlign Center

FontWeight Bold

BackgroundColor DarkSlateBlue

Color White

12. Select the detail row and in the Properties window, set the BorderStyle property to Solid.
13. Right-click the table handle to the left of the header row and select Insert Row Above.
14. While holding down the CTRL key, click each of the cells in the newly added top row.
15. Right-click inside the selected cells and select Merge Cells to create a cell that spans the table.
16. Go to the Properties window to set the following properties.

Property Name Property Value

TextAlign Center

FontSize 14pt

Value ="Store Number " & Parameters!StoreID.Value

17. Right-click the table handle to the left of the row and select Table Footer to remove the footer row from the table.

Note: In case you are setting a recursive hierarchy on a Page report, set the DataSetName property in the Fixed Page
Dialog to Employees.

ActiveReports 14 1086

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To set up a recursive hierarchy

1. Right-click the table handle to the left of the Detail row and select Edit Group to open the Table-Detail Grouping
dialog.

2. Under Group on: Expression, select =Fields!EmployeeID.Value.
3. Under Parent group:, select =Fields!Supervisor.Value.
4. Click OK to close the dialog.

To use the Level function to display the hierarchy

1. Select the cell in the first column of the Detail row that reads =Fields!Title.Value and in the Properties window,
expand the Padding property.

2. In the Padding > Left property, enter the expression =2 + (Level() * 15) & "pt".

Note: Adding 2 to the result ensures that a normal amount of padding is always used.

To use the Level function with themes in the BackgroundColor property of a textbox

1. Download Reels.rdlx-theme file from GitHub.
2. Copy the file Reels.rdlx-theme and paste it into the folder in which you saved your report.
3. In the Report Explorer, select Report.
4. In the Properties window in the Theme property, enter the theme file name: Reels.rdlx-theme.
5. Click the table handle to the left of the detail row to select the entire row.
6. In the Properties window, set the BackgroundColor property to =Theme.Colors(Level() + 1, 4).

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Single Layout Reports
A Page Report, allows you to create a layout at design time on a single page tab and apply it to the entire report.
Designing a layout in this format gives you the advantage of creating a layout that appears exactly the same at design
time and run time. This walkthrough illustrates how to create a report that contains a single layout and preview it.

This walkthrough is split into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting to a the data source
Adding a dataset
Creating a layout
Viewing the report

Note:

This walkthrough uses the DVDStock table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

ActiveReports 14 1087

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/DesignerPro/ReportsGallery/Reports/RDL Report/Reels
https://github.com/activereports/Samples14/tree/master/Data

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Notice that the run time report layout below is similar to the one you see at design time except for the data which you see
at run time or when you preview the report.

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as rptSingleLayout.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data

ActiveReports 14 1088

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as DVDList. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

Select * from dvdstock

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. In the Visual Studio toolbox, go to the ActiveReports 14 Page Report tab and drag a TextBox control onto the
design surface.

2. Select the TextBox control and go to the Properties window to set the following properties.

Property Name Property Value

Location 0.25in, 0.5in

BackgroundColor Khaki

Color Maroon

Font Normal, Arial, 16pt, Bold

Size 6in, 0.5in

TextAlign Center

Value DVD STOCK

3. From the Visual Studio toolbox, drag a Table data region and place it on the design surface.
4. Select the Table and go to the Properties window to set the following properties.

Property Name Property Value

Location 0.25in, 1in

BackgroundColor Khaki

ActiveReports 14 1089

Copyright © 2020 GrapeCity, Inc. All rights reserved.

FixedSize 6in, 7.5in

RepeatHeaderOnNewPage True

Size 6in, 0.75in

5. In the Table data region, place your mouse over the cells of the table details row to display the field selection
adorner.

6. Click the adorner to show a list of available fields from the DataSet and add the following fields to the cells of the
table details row.

Cell Field

Left Cell Title

Middle Cell InStock

Right Cell StorePrice

This automatically places an expression in the details row and simultaneously places a static label in the header row
of the same column.

Tip: You can also directly drag fields from the Report Explorer onto the textbox cells of the Table data region.

7. Select the columns of the Table and set their Width property as follows:

Cell Field

Left Cell 2.5in

Middle Cell 1.75in

Right Cell 1.75in

8. Select the following table rows and go to the Properties window to set their following properties.

Row Properties

Table Header BorderStyle: Solid
Color: Maroon
Font: Normal, Arial, 12pt,
Bold
TextAlign: Left

Table Details BorderStyle: Solid
Font: Normal, Arial, 10pt,
Bold

ActiveReports 14 1090

Copyright © 2020 GrapeCity, Inc. All rights reserved.

TextAlign: Left

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Subreports in Page/RDL Reports
You can create a Page or an RDL report that hosts a subreport. This walkthrough illustrates how to create an RDL report
using a subreport.

The walkthrough is split up into the following activities:

Creating a report for the subreport
Connecting the subreport to a data source
Adding a dataset with a parameter to the subreport
Adding a report parameter to the subreport
Adding controls to display data on the subreport
Creating the main report
Connecting the main report to a data source
Adding a dataset to the main report
Adding controls to display data on the main report
Viewing the report

Note: This topic uses the Employee, Sale and SaleDetails tables in the Reels database. The Reels.mdb file can be
downloaded from GitHub: ..\Samples14\Data\Reels.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1091

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To add a report for the subreport

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 RDL Report and in the Name field, rename the

file as Sales.rdlx.
4. Click the Add button to open a new RDL report in the designer.
5. In the Solution Explorer, select Sales.rdlx and set the Build Action property to Content and the Copy to Output

Directory property to Copy Always.

See Quick Start for information on adding different report layouts.

To connect the subreport to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
Reels.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a report parameter to the subreport

1. In the Report Explorer, right-click the Parameters node and select the Add Parameter option or select Parameter
from the Add button.

2. Under Name, enter EmployeeID.
3. Under Data type, select Integer.
4. Click OK to close the dialog.

To add a dataset with a parameter to the subreport

When you add a query parameter using the syntax required by your database you must add a parameter to the
Parameters page to ensure that the parameter value is passed to the query from the Report Parameters collection.

ActiveReports 14 1092

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as EmployeeSales.
This name appears as a child node to the data source icon in the Report Explorer.

3. On the Parameters page under Parameter Name enter EmployeeID.
4. Under Value enter =Parameters!EmployeeID.Value
5. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * FROM EmployeeSales

6. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

7. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add controls to display data on the subreport

1. From the toolbox, drag a Table data region onto the body of the report and go to the properties window to set
the DataSetName property to EmployeeSales.

2. Click inside the table to display the column and row handles along the top and left sides of the table.
3. Right-click the handle above the rightmost column and select Insert Column to the Right to add another column.
4. Click the column handle at the top of each column in turn to select it, and in the property grid, set the Width

property as indicated in the table.

Column Width

First 1.5in

Second 1.5in

Third 1.2in

Fourth 1.55in

Tip: In most cases it is easier to resize existing columns before adding new columns because this prevents the
table from growing horizontally and pushing the report width beyond what will fit on paper.

5. Right-click the handle to the left of the table detail row and select Insert Group to open the Table-Groups dialog.
6. Under Expression select =Fields!EmployeeID.Value. This groups all details from each employee.
7. Change the Name to Employee and click OK to close the dialog. A grouping row is added to the table.

Note: You cannot change the name of a table group until after you have set the expression.

8. Right-click the handle to the left of the table detail row and select Edit Group to access the Table-Detail
Grouping dialog.

9. Under Expression select =Fields!SaleID.Value and click OK to close the dialog. This lists the total amount of each
sale instead of listing each item sold within each SaleID.

10. Right-click the handle to the left of the grouping row and select Insert Row Below. We will use this new row for
static labels that repeat at the top of each new group.

11. Right-click any handle to the left of the table and select Table Header to toggle off the table header.
12. Right-click any handle to the left of the table and select Table Footer to toggle off the table footer.
13. In the Report Explorer, select the Body node and go to the Properties window to set the Size property to 5.75in, 1in

so that it fits inside the subreport control on the main report.

To add data fields to the Table data region

ActiveReports 14 1093

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In the Report Explorer, from the EmployeeSales dataset, drag the following field onto the first group header row of
the table.

Data Field Column Name Property Name

Name TableColumn1 FontWeight: Bold

2. Use the Shift key and the mouse to select the first two cells in the first group header row, right-click and select
Merge Cells. This allows the employee name to span two columns in the table.

3. Using the handle to the left of the first group header row, select the row and set the BackgroundColor property to
LightSteelBlue.

Tip: Even if you do not want to use colors in your finished report, it is often helpful to do so during the design
of a report to make identification of the various sections easier for troubleshooting when you preview it.

4. Enter the following text into the cells in the second group header row of the table.

Data Field Column Name Property Name

Sale Date TableColumn1 FontWeight: Bold
TextAlign: Right

Sale Number TableColumn2 FontWeight: Bold
TextAlign: Right

Quantity TableColumn3 FontWeight: Bold
TextAlign: Right

Total TableColumn4 FontWeight: Bold
TextAlign: Right

5. Using the handle to the left of the second group header row, select the row and set the BackgroundColor
property to LightGray.

6. In the Report Explorer, drag the following fields from the EmployeeSales dataset onto the detail row of the table.

Data Field Column Name Property Name

Sale Date TableColumn1 Format: Short date

SaleID TableColumn2

Quantity TableColumn3

Total TableColumn4 Format: Currency

7. In the detail row of the table, select the textbox with the Quantity data field and go to the Properties window to
change the Value property to =Sum(Fields!Quantity.Value). This adds the Sum aggregate to the expression for
the field and shows a summary of the quantity field for each SalesID.

8. In the detail row of the table, select the textbox with the Total data field and go to the Properties window to
change the Value property to =Sum(Fields!Total.Value). This adds the Sum aggregate to the expression for the
field and shows a summary of the total field for each SalesID.

9. In the Report Explorer, from the EmployeeSales dataset, drag the following fields onto the group footer row of the
table. Notice that the value of fields dragged onto the group footer row automatically use the Sum aggregate
function.

Data Field Column Name Property Name

Quantity TableColumn3 Value:
=Sum(Fields!Quantity.Value)

Total TableColumn4 Format: Currency

ActiveReports 14 1094

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Value:
=Sum(Fields!Total.Value)

10. Enter the following text into the indicated cell in the group footer row of the table.

Text Column Name Property Name

Employee Total: TableColumn2 FontWeight: Bold
TextAlign: Right

11. Using the handle to the left of the group footer row, select the row and in the BackgroundColor property select
LightGray.

12. Go to the preview tab, enter 1035 for the Employee ID, and click the View Report button. You get a layout that
looks similar to the following at design time and at run time.

Design-Time Layout Run-Time Layout

13. From the File menu, select Save and save this file. This report functions as the subreport you use in the main
report.

To create the main report

1. From the Visual Studio Project menu, select Add New Item.
2. In the Add New Item dialog that appears, select ActiveReports 14 RDL Report and in the Name field, rename the

file as Employees.rdlx.
3. Click the Add button to open a new fixed RDL report in the designer.
4. In the Report Explorer, select the Body node and go to the Properties window to set the Size property to 6.5in,

3.6in.

To connect the main report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
Reels.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset to the main report

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as EmployeeInfo.
This name appears as a child node to the data source icon in the Report Explorer.

ActiveReports 14 1095

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * FROM EmployeeInfo

4. Click the Validate icon to validate the query and to populate the Fields list.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add controls to display data on the main report

The following steps demonstrate how you can add controls and create the main report:

To add a static label to the top of the main report

From the toolbox, drag a TextBox control onto the body of the report and set the following properties:

Property Name Property Value

Font Normal, Arial, 14pt, Bold

Location 0in, 0in

Size 6.5in, 0.3in

TextAlign Center

Value Employee Report by City and
Store

To add a List data region that repeats data for each city

1. Drag a List data region from the toolbox onto the body of the report and with the data region selected, go to
the Properties Window to set the following properties:

Property Name Property Value

BackgroundColor Silver

DataSetName EmployeeInfo

Location 0in, 0.5in

Size 6.5in, 3.1in

2. At the bottom of the Properties Window, select the Property dialog command. See Properties Window for further
details on accessing commands.

3. In the List dialog that appears, select Detail Grouping.
4. Under Expression, select =Fields!City.Value
5. Click OK to close the dialog.
6. From the Report Explorer, drag the City field onto the List data region and set the following properties:

Property Name Property Value

FontSize 12pt

Location 0in, 0in

Size 6.5in, 0.25in

TextAlign Center

ActiveReports 14 1096

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To nest a second List data region that repeats data for each store within the city

1. Drag a List data region from the toolbox onto the the first list and with the data region selected, go to the
Properties Window to set the following properties:

Property Name Property Value

BackgroundColor Beige

DataSetName EmployeeInfo

Location 0.125in, 0.3in

Size 6.25in, 2.7in

2. At the bottom of the Properties Window, select the Property dialog command. See Properties Window for further
details on accessing commands.

3. In the List dialog that appears, select Detail Grouping.
4. Under Expression, select =Fields!StoreName.Value
5. Click OK to close the dialog.
6. From the Report Explorer, drag the StoreName field onto the list and set the following properties:

Property Name Property Value

FontWeight Bold

Location 0in, 0in

Size 2in, 0.25in

To nest a third List data region that repeats data for each employee in the store

1. Drag a List data region from the toolbox onto the second list and with the data region selected, go to the
Properties Window to set the following properties:

Property Name Property Value

BackgroundColor White

DataSetName EmployeeInfo

Location 0in, 0.25in

Size 6.125in, 2.125in

2. At the bottom of the Properties Window, select the Property dialog command. See Properties Window for further
details on accessing commands.

3. In the List dialog, select Detail Grouping.
4. Under Expression, select =Fields!EmployeeID.Value
5. Click OK to close the dialog.
6. From the Report Explorer, drag the following fields onto the list and set the following properties:

Data Field Property Name

Name Location: 1.125in, 0in
Size: 2.625in, 0.25in

Education Location: 1.125in, 0.25in
Size: 2.625in, 0.25in

ActiveReports 14 1097

Copyright © 2020 GrapeCity, Inc. All rights reserved.

DateOfBirth Location: 5in, 0in
Size: 0.875in, 0.25in
Format: Short date

PhoneNumber Location: 4.875in, 0.25in
Size: 1in, 0.25in

7. From the toolbox, drag five text boxes onto the List and set the following properties:

TextBox Name Value Property Property Name

TextBox 1 Name: Location: 0.125in, 0in
Size: 0.625in, 0.25in
FontWeight: Bold

TextBox 2 Education: Location: 0.125in, 0.25in
Size: 0.875in, 0.25in
FontWeight: Bold

TextBox 3 Date of Birth: Location: 3.875in, 0in
Size: 1in, 0.25in
FontWeight: Bold

TextBox 4 Phone: Location: 3.875in, 0.25in
Size: 0.875in, 0.25in
FontWeight: Bold

TextBox 5 Sales Record Location: 0.125in, 0.5in
Size: 1in, 0.25in
FontWeight: Bold

To add a Subreport control to the main report

1. From the toolbox, drag a Subreport control onto the third list and with the control selected, go to the Properties
Window to set the following properties:

Property
Name

Property Value

Location 0.125in, 0.75in

NoRows No sales recorded for this employee during 2005.

ReportName Sales (ensure that this report is saved in the same
directory as the Sales report)

Note: To view the report in the preview tab,
you should specify the full path to the
subreport.

Size 5.75in, 1.3in

Visibility:
Hidden

True (hides the subreport initially)

Visibility: Sales Record text box added in the previous

ActiveReports 14 1098

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ToggleItem procedure (puts a toggle image next to the text
that shows the subreport when clicked)

2. At the bottom of the Properties Window, select the Property dialog command. See Properties Window for further
details on accessing commands.

3. On the Parameters page of the Subreport dialog, set the Parameter Name to EmployeeID. This name must match
the parameter in the subreport exactly.

4. Set the Parameter Value to =Fields!EmployeeID.Value.

Note: You can use the option of having the subreport automatically apply the same theme as the hosting
report. This option is available on the General page of the Subreport Properties.

5. Click OK to close the dialog.

To view the report

Click the preview tab to view the report.

OR

See Windows Forms Viewer to display report in the Viewer at run time.

Note: Click the + to the left of Sales Record to see the subreport.

Chart
This section contains the walkthroughs on creating different types of charts.

Column Charts
This walkthrough demonstrates how to create a simple Column chart.

Funnel Charts
This walkthrough demonstrates how to create a Funnel chart.

Gantt Charts
This walkthrough demonstrates how to create a Gantt chart.

Column Charts (Classic Charts)
This walkthrough demonstrates how to create a simple Column chart (classic).

Column Charts
You can create a page report with a chart using the ActiveReports Chart data region. This walkthrough illustrates how to
create a simple report with a Column chart.

The walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Adding a chart data region with data and grouping to the report
Configuring the appearance of the chart
Viewing the report

ActiveReports 14 1099

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note:

This walkthrough uses the StoreSummary table from the Reels database. The Reels.mdb file can be
downloaded from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as rptSalesByStore.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ChartData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on

ActiveReports 14 1100

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the ChartData data source node and select the Add Data Set option or select
Data Set from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset
as StoreSummaryData. This name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * from StoreSummary

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as child nodes to the data source in the

Report Explorer.

To add chart data region with data and grouping to the report

1. From the toolbox, drag the Chart data region onto the design surface of the report .
2. In the Select a Chart Type wizard that appears, select the chart type Column.
3. Go to the Properties Window, click ellipses button next to Plots property to open the PlotDesigner Collection

Editor. You see that Plot1 is already added.
4. Select Plot1 and click ellipses next to go to Encodings>Values property to open the DataFields Collection Editor.
5. Add a field and set its value to expression =Fields!GrossSales.Value.
6. Click OK to save and return to PlotDesigner Collection Editor.
7. Go to Encodings>Category>Values property and click ellipses next to Values property.
8. Add a field and set its value to expression =Fields!StoreName.Value.
9. Click OK to save and exit expression editor and then again to close the collection editor.

You see that 'Store Name' is added to Category Fields and 'Gross Sales' is added to Data Fields.

To configure the appearance of the chart

1. Select Chart and set Pallet to Office.
2. Select 'Chart title' on the chart and set Title to 'Sales by Store'.
3. Select the chart plot and set following properties.

Property Name Property Value

LineStyle>LineColor Red

LineStyle>LineStyle Dotted

4. Select X-axis and set Labels>LabelsAngle to -45 degrees.
5. Select X-axis and set Title>TitleStyle>Padding>Top to 8pt.
6. Select Y-axis and set Title>TitleStyle>Padding>Right to 4pt.

Note: You may need to adjust:
Size of the chart so that all labels are displayed correctly. Select Chart and set Size property to a larger
value.
Page size of the report so that the chart is fully rendered. Select Report and set PageSize property to a
larger value.

To view the report

ActiveReports 14 1101

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Click the Preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Composite Charts
You can create Page and RDL reports with composite charts using the ActiveReports Chart data region. A composite
chart consists of two or more series plotted along the Y-axis, where each series can display a different chart type. In
ActiveReports, a composite chart may have up to six Y-axis series. You can combine the following chart types:

Column: Plain, Stacked, Percent Stacked
Area: Plain, Stacked, Percent Stacked
Line: Plain, Smooth

This walkthrough illustrates a step-by-step implementation for creating a composite chart with three Y-axis series. The
walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Adding a chart data region and define plots
Defining axes for plots
Configuring the appearance of the chart
Viewing the report

Note:

This walkthrough uses the StoreSummary table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1102

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as rptCompositeChart.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the project.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ChartData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on connecting
to a data source.

To add a dataset

1. In the Report Explorer, right-click the ChartData data source node and select the Add Data Set option or select Data
Set from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as StoreSummaryData.
3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * from StoreSummary

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as child nodes to the data source in the Report

Explorer.

To add the chart data region and define plots

1. From the toolbox, drag a Chart data region onto the design surface of the report.
2. In the Select a Chart Type wizard that appears, select the chart type as Column.

ActiveReports 14 1103

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Go to the Properties Window, click ellipses button next to Plots property to open the PlotDesigner - Collection
Editor. You see that default Plot1 is already added.

4. Add two new plots and set their Name as Plot2 and Plot3. Now you have three chart plots - Plot1, Plot2, and Plot3.
5. Set the properties of Plot1, Plot2, and Plot3 in the collection editor as follows.

Property Name Property Values

 Plot1 Plot2 Plot3

Encodings>Category>Values
Bind field 'StoreName' to X-axis for
each plot.

=Fields!StoreName.Value =Fields!StoreName.Value =Fields!StoreName.Value

Encodings>Values collection editor
Bind fields 'GrossSales', 'GrossProfit',
and 'TotalItems' to Y-axis for each
plot, respectively.

=Fields!GrossSales.Value =Fields!GrossProfit.Value =Fields!TotalItems.Value

Encodings>Color>ShowValuesName
Display Legends for each plot.

True True True

LineStyle>LineColor
Display selected color as the color of
line in respective plots.

Black LimeGreen Black

LineStyle>LineStyle
Display selected style as the style of
line in respective plots.

Solid Solid Solid

LineStyle>LineWidth
Display selected width as the width
of line (in pts) in respective plots.

1pt 3pt 1pt

6. Click OK to save and exit the collection editor.
7. Right click Plot 1 and select Plot Template > Area > Area.
8. Right click Plot 2 and select Plot Template > Line > Line.
9. Right click Plot 3 and select Plot Template to Column > Column.

Define axes for the plots

1. From Report Explorer, select Chart.
2. Go to the Properties Window and click ellipses next to PlotArea > Axes property to open the AxisDesigner

- Collection Editor. You see that six axes are already added.
3. Remove Axis3 (AxisType X for Plot2) and Axis5 (AxisType X for Plot3). So now we have total four axes (one X axis -

common for three plots and three Y axes - for three plots).
4. Set the properties of the four axes in the collection editor as follows.

Property Name Property Values

 Axis1 Axes2 Axes4 Axes6

Common>AxisType
Specify axis type as X or Y.

X Y Y Y

Common>Plots Plot1, Plot2, Plot3 Plot1 Plot2 Plot3

ActiveReports 14 1104

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Specify plots on respective axes.

Title>Title
Specify title to be displayed for each axis.

Store Name Gross Sales Gross Profit Total Items

Labels>Format
Specify format of the values displayed on each axis.

Default c c d

Line>LineStyle>LineStyle
Specify axis line styles.

Solid Solid Solid Solid

Line>LineStyle>ShowLine
Show axis lines on the plot.

True True True True

Layout>Position
Specify position of axes.

Near Near Near Far

Major Grid > ShowMajorGrid
Show or hide major grid lines.

True False False False

5. Click OK to save and exit the collection editor.

To configure the appearance of the chart

1. Select Chart and set Pallet to Office.
2. Select 'Chart title' on the chart and set Title to 'Store Summary'.
3. Select X-axis and set Labels>LabelsAngle to 90 degrees.

Let us set the maximum and minimum values to limit the values for each Y axis plots. This is based on the values in the
data set.

4. Go to the Properties Window and click ellipses next to PlotArea > Axes property to open the AxisDesigner
- Collection Editor. Note that axes get renamed once you reopen the AxisDesigner - Collection Editor.

Property Name Property Values

Axes2
(Y axis for Plot1)

Axes3
(Y axis for Plot2)

Axes4
(Y axis for Plot3)

Scale>Max 27000 15000 1400

Scale>Min 18000 9000 900

Note: You may need to adjust:
Size of the chart so that all labels are displayed correctly. Select Chart and set Size property to a larger
value.
Page size of the report so that the chart is fully rendered. Select Report and set PageSize property to a
larger value.

To view the report

Click the Preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

ActiveReports 14 1105

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Funnel Charts
The Funnel charts enable users to visualize stages in a linear process. This walkthrough illustrates a step-by-step
implementation for creating a funnel chart. The walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Adding a chart data region and define plots
Configuring the appearance of the chart
Viewing the report

Note:

This walkthrough uses the StoreSales table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as rptFunnelChart.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.

ActiveReports 14 1106

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ChartData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the ChartData data source node and select the Add Data Set option or select
Data Set from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as StoreSalesData.
3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * from StoreSales

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as child nodes to the data source in the

Report Explorer.

To add a chart data region and define plots

1. From the toolbox, drag a Chart data region onto the design surface of the report.
2. In the Select a Chart Type wizard that appears and select the chart type as Column.
3. Right-click on the chart and go to Plot Template > Miscellaneous and select Funnel.
4. Select the chart plot and go to Properties window.
5. Go to Encodings > Values property and click ellipses next to Values property to open

ValueAggregateEncodingDesigner Collection Editor.
6. Add a new Value field to the collection editor.
7. Open its Value collection editor and add a value field and set its expression to =Fields!TotalSales.Value.
8. Click OK to save and exit the collection editor. You see that 'Total Sales' field is added under the Data Fields

on chart.
9. Select the chart plot and go to Properties window.

10. Go to Encodings > Details property and click ellipses next to Values property to open DetailEncodingDesigner
Collection Editor.

11. Add a new Detail field to the collection editor.
12. Open its Values collection editor and add a value field and set its expression to =Fields!StoreName.Value.
13. Click OK to save and exit expression editor and then again to close the collection editor. You see that 'Store Name'

is added as Details encoding on the chart.
14. Select 'Store Name' encoding and set following properties:

ActiveReports 14 1107

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Values

Group Stack

SortDirection Ascending

SortingField =Fields!StoreName.Value

Let us add legend to the chart.
15. Select the chart plot and go to Encodings > Color > Values property.
16. Click ellipses next to Values property to open the expressions editor.
17. Add a value field and set its expression to =Fields!StoreName.Value

To configure the appearance of the chart

1. Select Chart and set Pallet to Office.
2. Select 'Chart title' on the chart and set Title to 'Store Sales'.
3. Select Category axis and set Lines>ShowLine and Labels>ShowLabels to False.
4. Select Value axis and set ShowLine and ShowLabels to False.
5. Select the chart plot and set the label settings for the Funnel chart as:

Property Name Property Values

Labels>Color White

Labels>Template
Specify the template to be displayed for the label.

{valueField.value:c}

Labels>TextPosition
Specify text position of the label.

Center

6. Select Legends on chart and set Title to 'Store Name'.

To view the report

Click the Preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Gantt Charts
The Gantt charts are used to represent the schedule of sequence of tasks in a project. To plot Gantt charts, you need to
have the start and end times of a task.
The walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Adding a chart data region and define plots
Configuring the appearance of the chart
Viewing the report

ActiveReports 14 1108

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note:

This walkthrough uses the ScheduleOfTime table from the Schedule database. The Schedule.mdb can be
downloaded from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 Page Report Application and in the Name field,

rename the file as rptGanttChart.
3. Click OK to create a new ActiveReports 14 Page Report Application. By default a Page report is added to the

project.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ChartData.

3. On this page, create a connection to the Schedule database. See Connect to a Data Source for information on

ActiveReports 14 1109

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the ChartData data source node and select the Add Data Set option or select
Data Set from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as ScheduleData.
3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Top 5 * from ScheduleOfTime

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. To obtain end time of the tasks, you need to add a field that calculates end times. Go to Fields tab and add a

calculated field EndTime with expression =DateAdd(DateInterval.Hour, [Hours], [StartTime]).
6. Click OK to close the dialog. Your data set and queried fields appear as child nodes to the data source in the

Report Explorer.

To add a chart data region and define plots

1. From the toolbox, drag a Chart data region onto the design surface of the report.
2. In the Select a Chart Type wizard that appears and select the chart type as Column.
3. Right-click on the chart and go to Plot Template > Miscellaneous and select Gantt.

Note that the chart changes to horizontal bar chart, where horizontal axis (AxisType Y) represents time duration
that a task needs to finish and each bar (plotted along Vertical axis (AxisType X)) represents a task.

4. Select the chart control so that the chart adorners are displayed.
5. Right-click the Data Fields adorner and click Add. You see that a field is added.
6. Select the field and click the ellipses next to Subfields property to open Complex Fields Collection Editor.
7. Set lower value to =Fields!StartTime.Value and upper value to =Fields!EndTime.Value to show Value

axis.
8. Click OK to save and exit the collection editor.
9. Select the chart control so that the chart adorners are displayed.

10. Right-click the Category Fields adorner and click Add. You see that category 'Category0' is added.
11. Select 'Category0' and set its Expression to =Fields!Labels.Value.

To configure the appearance of the chart

1. Select Chart and set Pallet to Office.
2. Select 'Chart title' on the chart and set Title to 'Schedule'.
3. Select Category axis (AxisType X) and set Title to 'Topics'.
4. Select Value axis (AxisType Y) and set Title to 'Timeline'.
5. Select the Timeline axis and set the label settings as:

Property Name Property Values

Labels>LabelAngle -45

Title>TitleStyle>Font>FontSize
Specify the template to be displayed for the label.

10pt

6. Select the Topics axis and set Title>TitleStyle>Font>FontSize to 10 pt.

To view the report

ActiveReports 14 1110

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Click the Preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Column Charts (Classic Charts)
You can create a page report with a chart using the ActiveReports Chart data region. This walkthrough illustrates how to
create a report with a chart.

The walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Adding a chart data region with data and grouping to the report
Configuring the appearance of the chart
Viewing the report

Note:

This walkthrough uses the Sales table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1111

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 12 Page Report Application and in the Name field,

rename the file as ProfitsByGenre.
3. Click OK to create a new ActiveReports 12 Page Report Application. By default a Page report is added to the

project.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the ReportData data source node and select the Add Data Set option or select
Data Set from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as ProfitsByGenre.
This name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Profit, SalesID, SaleDate, GenreName FROM SalesByGenre WHERE (SalesID <
1090) AND (GenreName = "Comedy" OR GenreName = "Drama" OR GenreName = "Adventure")
ORDER BY SalesID

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. On the Fields page, add a new field by clicking the Add (+) button above the fields list.

ActiveReports 14 1112

Copyright © 2020 GrapeCity, Inc. All rights reserved.

6. Set the Name to Month and the Value of the new field to =Fields!SaleDate.Value.Month
This parses out the month from the date field.

7. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add chart data region with data and grouping to the report

1. From the toolbox, drag the Chart data region onto the design surface of the report .
2. In the wizard Select a Chart Type that appears, select the chart type Column and go to the Properties Window to

set the following properties:

Property Name Property Value

Location 0in, 0in

Size 6.5in, 4.5in

3. Double-click inside the chart area to display the UI along the top, right, and bottom of the chart to drop fields in.
4. From the Report Explorer, drag the Month field into the area below the chart labeled "Drop category fields here."

This automatically binds the Month field to the X axis.

5. Right-click the month category group and select Edit to open the Chart Data - Category Groups dialog.
6. In the dialog that appears on the General page, go to the Label field and enter the following expression:

=MonthName(Fields!Month.Value) and click OK to close the dialog.
7. From the ReportExplorer, drag the Profit field into the area above the chart labeled "Drop data fields here." This

plots the profits to the Y axis of the chart.
8. In the Report Explorer, drag the GenreName field into the area to the right of the chart labeled "Drop series fields

here." This sets the series to be charted in the chart area.
9. Right-click the genre series group and select Edit to open the Chart Data - Series Groups dialog.

10. In the dialog that appears on the General page, go to the Label field and enter the following expression:
=Fields!GenreName.Value. This shows genre names in the legend.

11. Click OK to close the dialog.
12. Select the chart and at the bottom of the Properties Window, select the Chart Data command. See Properties

Window for further details on accessing commands.
13. In the Chart Data dialog that appears, under Series Values go to the Value field and make sure it is set to

=Sum(Fields!Profit.Value).

To configure the appearance of the chart

1. Select the chart and at the bottom of the Properties Window, select the Chart appearance command.
2. In the Chart Appearance dialog that appears set the following:

Title Page

On the Title page enter Profits by Genre in the Chart title text box and change the Size property to 14pt.

Palette Page

ActiveReports 14 1113

Copyright © 2020 GrapeCity, Inc. All rights reserved.

On the Palette page and select Light in the drop down list. This is a good color choice because it differentiates
between genres without highlighting one of them unintentionally.

Plot Area Page

On the Plot Area page set the Background Fill Color > Fill Color to Silver.
3. Click OK to close the dialog.
4. Select the Chart Legends and at the bottom of the Properties Window, select the Property dialog command.
5. In the Chart Legend - General dialog that appears, uncheck the Use smart settings option.
6. Click OK to close the dialog.
7. Select the X-Axis label in the chart and at the bottom of the Properties Window, select the Property dialog

command.
8. In the Chart X-Axis - Title dialog that appears set the following properties:

Title Page

On the Title page, in the X-Axis Title field remove the default "Axis X" text.

Labels Page

On the Labels page, set the Size property to 10pt.
9. Click OK to close the dialog.

10. Select the chart and at the bottom of the Properties Window, select the Chart Y-axis command.
11. In the Chart Y-Axis - Title dialog that appears set the following properties:

Title Page

On the Title page, in the Y-Axis Title field remove the default "Axis Y" text if available.

Labels Page

On the Labels page and in the Format code field, select Currency in the Format drop-down list. Set the Size
property to 10pt.

Scale Page

On the Scale page and in the Minimum field enter 0 (zero). This sets the currency labels to start at zero on the Y
axis.

12. Click OK to close the dialog.

To view the report

Click the Preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Composite Charts (Classic Charts)
You can create Page and RDL reports with composite charts using the ActiveReports Chart data region. A composite
chart consists of two or more series plotted along the Y-axis, where each series can display a different chart type. In
ActiveReports, a composite chart may have up to six Y-axis series. You can combine the following chart types:

ActiveReports 14 1114

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Column: Plain, Stacked, Percent Stacked
Area: Plain, Stacked, Percent Stacked
Line: Plain, Smooth

This walkthrough illustrates a step-by-step implementation for creating a composite chart with three Y-axis series. The
walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Adding a chart data region with data to the report
Configuring the appearance of the chart
Viewing the report

Note:

This walkthrough uses the StoreSummary table from the Reels database. The Reels.mdb file can be
downloaded from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 12 Page Report Application and in the Name field,

rename the file as rptCompositeChart.
3. Click OK to create a new ActiveReports 12 Page Report Application. By default a Page report is added to the

project.

ActiveReports 14 1115

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ChartData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the ChartData data source node and select the Add Data Set option or select
Data Set from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as
StoreSummaryData.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * from StoreSummary

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as child nodes to the data source in the

Report Explorer.

To add the chart data region with data to the report

1. In the Report Explorer, select Report and in the Properties Window, set the PaperOrientation property to
Landscape.

2. From the toolbox, drag a Chart data region onto the design surface of the report.
3. In the Select a Chart Type wizard that appears, select the chart type as Column and go to the Properties Window

to set the following properties.

Property Name Property Value

Location 0in, 0in

Size 7.5in, 4.5in

4. Double-click inside the chart area to display the chart panes along the top, right, and bottom of the chart to drop
fields in.

5. From the Report Explorer, drag the StoreName field into the area below the chart labeled "Drop category fields
here." This automatically binds the StoreName field to the X-axis.

ActiveReports 14 1116

Copyright © 2020 GrapeCity, Inc. All rights reserved.

6. Select the chart and at the bottom of Properties Window, select the Chart Y-Axis command.
7. In the Y-axis dialog that appears, under the Title tab, set the Y-Axis title property to Gross Sales.
8. Click Add to add the second Y-Axis. Set the Y-Axis title property to Gross Profit and the Margin property to

0.8in.
9. Click Add to add the third Y-Axis. Set the Y-Axis title property to Total Items and the Position property to Right.

10. Click OK to close the dialog.
11. Select the chart and from the bottom of the Properties Window, select the Chart data command.
12. Select the Series Values page. Click Add to add the first Y-axis series and set the properties as follows.

Property Name Property Value

Series label Gross Sales

Value =[GrossSales]

Chart Type Area Plain

Y-Axis Y1

13. Click Add to add the second Y-axis series and set the properties as follows.

Property Name Property Value

Series label Gross Profit

Value =[GrossProfit]

Chart Type Line Plain

Y-Axis Y2

14. Click Add to add the third Y-axis series and set the properties as follows.

Property Name Property Value

Series label Total Items

Value =[TotalItems]

Chart Type Column Plain

Y-Axis Y3

15. Click OK to close the dialog.

To configure the appearance of the chart

ActiveReports 14 1117

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Select the chart and at the bottom of Properties Window, select the Chart appearance command.
2. In the Chart Appearance dialog that appears, on the Title page enter Store Summary in the Chart title field.
3. In the Palette page, open the Palette drop-down, and select Pastel.
4. Click OK to close the dialog.
5. Select the chart and at the bottom of the Properties Window, select the Chart X-Axis command.
6. In the Chart X-Axis - Title dialog that appears set the properties as follows.

Property Name Property Value

X-Axis title Store Name

Size 6pt

7. Click OK to close the dialog.
8. Select the chart and at the bottom of the Properties Window, select the Chart Y-Axis command.
9. Select Y1 from the list of Y-axes and under the Labels tab, select the Show y-axis labels check box. Also,

select Currency from the Format code drop-down.
10. Repeat the above step for Y2.
11. Select Y3 from the list of Y-axes and under the Labels tab, select the Show y-axis labels check box.
12. Click OK to close the dialog.

 To view the report

Click the Preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Map
This section contains the following walkthrough that fall under the Map category.

Reports with Map
This walkthrough demonstrates how to create a report with a map.

Reports with Map
You can create a page report that contains a map using the ActiveReports Map control. The Map data region shows your
data on a geographical background. This walkthrough illustrates how to create a report that uses a Map to display data.

The walkthrough is split into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding a dataset
Adding Map control to the report and configuring its data
Configuring appearance of the Map
Viewing the report

Note:

ActiveReports 14 1118

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This walkthrough use tables from the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file to CustomersPopulation.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

ActiveReports 14 1119

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Customers. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Address.Region, Customer.CustomerID FROM (Address INNER JOIN Person ON
Address.[AddressID] = Person.[AddressID]) INNER JOIN Customer ON Person.[PersonID]
= Customer.[PersonID];

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add a Map data region and configure its data

1. From the Visual Studio toolbox, drag and drop a Map control onto the design surface.
2. In the Select a Map Template wizard that appears, select the USA Map template.
3. Click the Map until the map panes appear.
4. In the layers pane, right click PolygonLayer1 and select Layer Data to open Map Layer Data Properties dialog.
5. In the Map Layer Data Properties dialog that appears, go to the Analytical data page.
6. Select Customers from the Dataset property combo box and then click the Add (+) button located next to the

Match label. This creates an empty match item and enables its Spatial and Analytical fields editor.

Note: It is necessary to set match fields if you want to use a spatial data field from analytical data, or if you
want to visualize analytical data on the map layer. Match fields enable the report processor to build a
relationship between the analytical data and the spatial data.

7. In the Spatial field property, select STATE_ABBR from the combo box; and similarly, select
=Fields!Region.Value in the Analytical field property. This builds the match field expression and relates the
analytical data to map elements on a polygon layer.

8. Click OK to close the dialog.

To configure appearance of the Map

1. In the layers pane, right click PolygonLayer1 and select Edit to open Map Polygon Layer dialog.

ActiveReports 14 1120

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the General page of the dialog, select #STATE_NAME from the Label Text combo box to display as label inside
polygons at run time.

3. Go to the Color Rule page of the dialog, and select Visualize data by using color palette option. This activates
the tabs below.

4. On the General tab, enter the following expression =Count([CustomerID]) in the Data field property and set
Palette property to SemiTransparent.

5. On the Distribution tab, set the Method property to EqualInterval.
6. On the Legends tab, click to select Show in Legend.
7. In Legend Name, enter Legend. This name relates to the default legend that appears in the Legend collection.
8. Click OK to close the dialog.
9. On the design surface, click on the Map control to select it and go to the Properties Window to set the following

properties:

Properties

Property Name Property Value

BackgroundColor White

BackgroundGradientEndColor White

BorderStyle Solid

ColorScale > Hidden True

DistanceScale > Hidden True

Location 0in, 0.625in

Size 6.5in, 4.75in

ViewPort > BackgroundColor LightSteelBlue

ViewPort > BackgroundGradientEndColor White

ViewPort > BorderStyle None

ViewPort > CoordinateSystem Planar

ViewPort > Margin > Right 20pt

ViewPort > Meridians > Hidden True

ViewPort > Parallels > Hidden True

ViewPort > View > Zoom 115

10. With the Map control selected, go to the Properties window, click the Legends (Collection) property and then click
the ellipsis button that appears.

11. In the LegendDesigner Collection Editor that appears, under the Members list, select the existing legend and set
the following properties:

Properties

Property Name Property Value

BackgroundColor LightSteelBlue

ActiveReports 14 1121

Copyright © 2020 GrapeCity, Inc. All rights reserved.

BackgroundGradientEndColor White

Location > DockOutsideViewport False

Location > DockPosition RightBottom

Title > (Caption) Number of Customers

Title > Font Normal, Arial, 10pt, Bold

12. Click OK to close the dialog.
13. With the Map control selected, go to the Properties window, click the Titles (Collection) property and then click

the ellipsis button that appears.
14. In the MapTitleDesigner Collection Editor that appears, with Title selected in the Members list set the following

properties:

Properties

Property Name Property Value

(Text) Customers Population

Color Black

15. Click OK to close the dialog.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Tablix
This section contains the following walkthrough that fall under the Tablix category.

Grouping in Tablix
This walkthrough demonstrates how to use grouping in Tablix.

Cell Merging in a Row Group Area in Tablix
This walkthrough demonstrates cells with duplicate values in a row group area are merged in Tablix.

Grouping in Tablix
This walkthrough illustrates a step-by-step implementation for creating a report which uses the Tablix data region to
display regional product sales.

The walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Creating a layout for the report

ActiveReports 14 1122

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Enhancing the appearance of the report
Viewing the report

Note:

This walkthrough uses the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.
Although this walkthrough uses RDL reports, you can also implement this using page reports.

When you complete this walkthrough, you will have a layout that looks similar to the following at design time and at run
time.

Design-Time Layout

Run-TimeLayout

Creating an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 RDL Report Application and in the Name field,

name the file rptTablix.
3. Click OK to create a new ActiveReports 14 RDL Report Application. By default an RDL report is added to the

project.

See Quick Start for information on adding different report layouts.

Connecting the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

ActiveReports 14 1123

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

Adding a dataset

1. In the Report Explorer, right-click the ReportData node (the name of data source added) and select the Add Data
Set option or select Data Set from the Add button.

2. In the DataSet Dialog that appears, select the General page and name the dataset SalesData. This name appears
as a child node of the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Sale.SaleDate, Sale.TotalAmount, MediaType.Description, MediaType.MediaID,
Sale.SalesID,
Sale.Store, Store.StoreName FROM Store INNER JOIN
(Sale INNER JOIN (MediaType INNER JOIN (MovieProduct INNER JOIN SaleDetails
ON MovieProduct.ProductID = SaleDetails.ProductID) ON MediaType.MediaID =
MovieProduct.MediaType) ON Sale.SalesID = SaleDetails.SaleID)
ON Store.StoreID = Sale.Store;

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

Creating a layout for the report

1. From the toolbox, drag a Tablix data region onto the designer surface of the report.
2. Hover over TextBox2 to reveal the field selection adorner, click it to display a list of available fields, and select the

SaleDate field. This is a column group cell, so selecting a field in it automatically adds a column group.
3. With TextBox2 selected, in the Properties window set the Value to =Year(Fields!SaleDate.Value) using

expressions. This groups and displays the data by Year.
4. In the Group Editor, select the SaleDate group, and in the Properties window expand the Group property node

and click the ellipsis button next to the GroupExpressions property to open the Expressions dialog.
5. In the Expressions dialog that appears, select the group member from the Members list and in the property grid to

the right, enter the expression =Year(Fields!SaleDate.Value) to group the data by year and then click OK to close
the dialog.

6. Right-click TextBox2 where SaleDate field is added in the Tablix data region, select Add Column Group, and then
select the Adjacent Right option. The adjacent column group is added to the right and is listed under the Group
Editor window.

7. Hover over TextBox5 to reveal the field selection adorner, click it to display a list of available fields, and select the
Description field. This is a column group cell, so selecting a field in it automatically adds a column group.

8. Right-click TextBox5 where Description field is added in the Tablix data region, select Insert Row, and then select
Outside Group - Above. The row is added above the new column group and is listed under the Group Editor
window.

9. In TextBox7 and TextBox8 above the SaleDate and Description fields, set the Value property to Year and Media
Type, respectively.

10. Hover over TextBox3 to reveal the field selection adorner, click it to display a list of available fields, and select the
StoreName field. This is a row group cell, and selecting a field in it automatically adds a row group.

11. Hover over TextBox4 to reveal the field selection adorner, click it to display the list of available fields, and select the
TotalAmount field.

12. Hover over TextBox6 to reveal the field selection adorner, click it to display the list of available fields, and select the
TotalAmount field.

ActiveReports 14 1124

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Enhancing the appearance of the report

When you preview the report at this point, you will notice the data from the fields is displayed in the Tablix data region.
We can enhance the layout of the Tablix data region by setting cell properties in the Properties Window as follows:

1.

Cell Property Name Property Value

=Year([SaleDate]) BackgroundColor WhiteSmoke

BorderStyle Solid

FontWeight Bold

TextAlign Center

Year BackgroundColor LightSteelBlue

BorderStyle Solid

FontWeight Bold

TextAlign Center

=[Description] BackgroundColor SlateGray

BorderStyle Solid

FontWeight Bold

TextAlign Center

Media Type BackgroundColor LightSteelBlue

BorderStyle Solid

FontWeight Bold

TextAlign Center

=[StoreName] BackgroundColor WhiteSmoke

BorderStyle Solid

TextAlign Center

=Sum([TotalAmount]) Format c

BorderStyle Solid

TextAlign Center

ActiveReports 14 1125

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. Select the two empty cells in the corner area (top left corner), right-click the selected area, and then select Merge
Cells option to merge the cells.

3. With the merged cell selected, in the Properties window set the Value property to Sales by Year and Media Type .
This is the heading for the report.

4. In the Tablix data region, select the textbox that contains Sales by Year and Media Type text and then go to
Properties Window to set the following properties.

Property Name Property Value

BackgroundColor LightSteelBlue

BorderStyle Solid

FontWeight Bold

TextAlign Center

5. Select the Tablix data region and go to the Properties window to set the following properties.

Property Name Property Value

Location 0in, 0in

Size 3in, 1.125in

Viewing the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Cell Merging in a Row Group Area in Tablix
This walkthrough illustrates a step-by-step implementation for creating a report which uses the Tablix data region to
display store numbers and managers by region and district. The report in this walkthrough demonstrates how Tablix cells
with same value in a row group area automatically merge to avoid clutter.

The walkthrough is split into the following activities:

Creating an ActiveReports project in Visual Studio
Connecting the report to a data source
Adding a dataset
Creating a layout for the report
Enhancing the appearance of the report
Viewing the report

Note:

This walkthrough uses the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.
Although this walkthrough uses RDL reports, you can also implement this using page reports.

When you complete this walkthrough, you will have a layout that looks similar to the following at design time and at run
time.

ActiveReports 14 1126

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Design-Time Layout

Run-Time Layout

To create an ActiveReports project in Visual Studio

1. Create a new Visual Studio project.
2. In the New Project dialog that appears, select ActiveReports 14 RDL Report Application and in the Name field,

name the file rptTablix.
3. Click OK to create a new ActiveReports 14 RDL Report Application. By default an RDL report is added to the

project.

See Quick Start to a Project for information on adding different report layouts.

To connect a report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and name the dataset StoreDetails. This name
appears as a child node of the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Regions.RegionID, Regions.Region, Districts.DistrictID, Districts.District,

ActiveReports 14 1127

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Store.StoreName, Person.FirstName, Person.LastName FROM ((Regions INNER JOIN
Districts ON Regions.RegionID = Districts.Region) INNER JOIN Store ON
Districts.DistrictID = Store.DistrictID) INNER JOIN Person ON Store.Manager =
Person.PersonID;

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. From the toolbox, drag a Tablix data region onto the designer surface of the report.
2. Hover over TextBox3 to reveal the field selection adorner, click it to display a list of available fields, and select the

Region field. This a row group cell, and selecting a field in it automatically adds a row group.
3. Select TextBox1 above the Region row group cell, and in the Properties window set the Value property to Region.

This is the heading for the row group.
4. Right-click TextBox3 where the Region field was added in the Tablix data region, select Add Row Group, and then

select the Child Group option. The child group is added to the right of the row header and is listed under the
Group Editor window.

5. Hover over TextBox5 to reveal the field selection adorner, click it to display a list of available fields, and select the
District field. This a row group cell, and selecting a field in it automatically adds a row group.

6. Select Textbox6 above the District row group cell, and in the Properties window set the Value property to District.
This is the heading for the row group.

7. Right-click TextBox5 where the District field was added in the Tablix data region, select Add Row Group, and then
select the Child Group option. The child group is added next to the new row group and is listed under the Group
Editor window.

8. Hover over TextBox7 to reveal the field selection adorner, click it to display a list of available fields, and select the
StoreName field. This a row group cell, and selecting a field in it automatically adds a row group.

9. Select Textbox8 above the StoreName row group cell, and in the Properties window set the Value property to
Store. This is the heading for row group.

10. Right click Textbox8 above the StoreName row group cell, select Insert Column, and then select Right. This adds
a new static column.

11. Hover over TextBox9 to reveal the field selection adorner, click it to display a list of available fields, and select the
FirstName field.

12. With TextBox9 selected, in the Properties window set the Value property to =Fields!FirstName.Value & " " &
Fields!LastName.Value using expressions.

13. Select Textbox10 above the =[FirstName] & " " & [LastName] column cell, and in the Properties window set the
Value property to Manager. This is the heading for the static column.

To enhance the appearance of the report

When you preview the report at this point, you will notice the data from the fields is displayed in the Tablix data region.
We can enhance the layout of the Tablix data region by setting cell properties in the Properties Window as follows:

Cell Property Name Property Value

=[Region] BackgroundColor Gainsboro

BorderStyle Solid

ActiveReports 14 1128

Copyright © 2020 GrapeCity, Inc. All rights reserved.

FontWeight Bold

TextAlign Center

VerticalAlign Middle

Region BackgroundColor Gray

BorderStyle Solid

FontWeight Bold

TextAlign Center

=[District] BackgroundColor LightSteelBlue

BorderStyle Solid

FontWeight Bold

TextAlign Center

VerticalAlign Middle

District BackgroundColor Gray

BorderStyle Solid

FontWeight Bold

TextAlign Center

=[StoreName] BackgroundColor WhiteSmoke

BorderStyle Solid

TextAlign Center

Store BackgroundColor Gray

BorderStyle Solid

FontWeight Bold

TextAlign Center

=[FirstName] & " " & [LastName] BorderStyle Solid

TextAlign Center

Manager BackgroundColor Gray

BorderStyle Solid

FontWeight Bold

TextAlign Center

To view the report

Click the preview tab to view the report at design time.

ActiveReports 14 1129

Copyright © 2020 GrapeCity, Inc. All rights reserved.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Export
This section contains the following walkthroughs that fall under the Export category.

Custom Web Exporting
This walkthrough demonstrates how to export your report into several popular formats like PDF, HTML, Excel, Image
and Word.

Custom Web Exporting
ActiveReports provides components that allow you to export your reports into several popular formats like PDF, HTML, Excel, Image, Word and XML.

The walkthrough is split up into the following activities:

Adding an ActiveReport to a Visual Studio project
Adding code to the Web Form to create the PDF, HTML, Excel, Word, XML and Image Export objects and export a report.
Running the project

Note: Although this walkthrough uses Page reports, you can also implement this using RDL reports.

To add an ActiveReport to the Visual Studio project

1. Create a new ASP.NET Web Application project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the file as CustomWebExporting.
4. Click the Add button to open a new fixed page report in the designer.
5. In the Solution Explorer, right-click the References node and select Add Reference.
6. In the Add Reference dialog that appears, select the following references and click OK to add them to your project.

GrapeCity.ActiveReports.Export.Pdf
GrapeCity.ActiveReports.Export.Html
GrapeCity.ActiveReports.Export.Excel
GrapeCity.ActiveReports.Export.Word
GrapeCity.ActiveReports.Export.Image
GrapeCity.ActiveReports.Export.Xml

See Quick Start for information on adding different report layouts.

To add code to the Web Form to create the PDF Export object and export a report

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

'Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport(New System.IO.FileInfo(Server.MapPath("") +
"\CustomWebExporting.rdlx"))
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

'Set the rendering extension and render the report.
Dim pdfRenderingExtension As New GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension()
Dim outputProvider As New GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider()
reportDocument.Render(pdfRenderingExtension, outputProvider)

Response.ContentType = "application/pdf"
Response.AddHeader("content-disposition", "inline;filename=MyExport.pdf")
Dim ms As New System.IO.MemoryStream()
CType(outputProvider.GetPrimaryStream().OpenStream(), System.IO.MemoryStream).WriteTo(ms)

ActiveReports 14 1130

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Response.BinaryWrite(ms.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport(new
System.IO.FileInfo(Server.MapPath("") + "\\CustomWebExporting.rdlx"));
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new GrapeCity.ActiveReports.Document.PageDocument(report);

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension pdfRenderingExtension = new
GrapeCity.ActiveReports.Export.Pdf.Page.PdfRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider();
reportDocument.Render(pdfRenderingExtension, outputProvider);

Response.ContentType = "application/pdf";
Response.AddHeader("content-disposition", "inline;filename=MyExport.pdf");
System.IO.MemoryStream ms = new System.IO.MemoryStream();
outputProvider.GetPrimaryStream().OpenStream().CopyTo(ms);
Response.BinaryWrite(ms.ToArray());
Response.End();

Note: To use the one-touch printing option, add the following to the code above.

Visual Basic.NET code. Paste INSIDE the Page Load event.

' Replace the line reportDocument.Render(pdfRenderingExtension, outputProvider) in the code above with the following

Dim setting As New GrapeCity.ActiveReports.Export.Pdf.Page.Settings()
setting.PrintOnOpen = True
reportDocument.Render(pdfRenderingExtension, outputProvider,setting)

C# code. Paste INSIDE the Page Load event.

// Replace the line reportDocument.Render(pdfRenderingExtension, outputProvider); in the code above with the following

GrapeCity.ActiveReports.Export.Pdf.Page.Settings setting = new GrapeCity.ActiveReports.Export.Pdf.Page.Settings();
setting.PrintOnOpen = true;
reportDocument.Render(pdfRenderingExtension, outputProvider,setting);

Warning: You need to manually license your application in order to use PDF export.

To add code to the Web Form to create the HTML Export object and export a report

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport(New System.IO.FileInfo(Server.MapPath("") +
"\CustomWebExporting.rdlx"))
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Set the rendering extension and render the report.
Dim htmlRenderingExtension As New GrapeCity.ActiveReports.Export.Html.Page.HtmlRenderingExtension()
Dim outputProvider As New GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider()
Dim setting As New GrapeCity.ActiveReports.Export.Html.Page.Settings()
setting.Mode = GrapeCity.ActiveReports.Export.Html.Page.RenderMode.Galley
setting.MhtOutput = True

reportDocument.Render(htmlRenderingExtension, outputProvider, setting)

Response.ContentType = "message/rfc822"

ActiveReports 14 1131

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Response.AddHeader("content-disposition", "inline;filename=MyExport.mht")
Dim ms As New System.IO.MemoryStream()
CType(outputProvider.GetPrimaryStream().OpenStream(), System.IO.MemoryStream).WriteTo(ms)
Response.BinaryWrite(ms.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport(new
System.IO.FileInfo(Server.MapPath("") + "\\CustomWebExporting.rdlx"));
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new GrapeCity.ActiveReports.Document.PageDocument(report);

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Html.Page.HtmlRenderingExtension htmlRenderingExtension = new
GrapeCity.ActiveReports.Export.Html.Page.HtmlRenderingExtension();GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider
outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider();GrapeCity.ActiveReports.Export.Html.Page.Settings setting = new
GrapeCity.ActiveReports.Export.Html.Page.Settings();
setting.Mode = GrapeCity.ActiveReports.Export.Html.Page.RenderMode.Galley;
setting.MhtOutput = true;

reportDocument.Render(htmlRenderingExtension, outputProvider, setting);

Response.ContentType = "message/rfc822";
Response.AddHeader("content-disposition", "inline;filename=MyExport.html");
System.IO.MemoryStream ms = new System.IO.MemoryStream();
outputProvider.GetPrimaryStream().OpenStream().CopyTo(ms);
Response.BinaryWrite(ms.ToArray());
Response.End();

To add code to the Web Form to create the Excel Export

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport(New System.IO.FileInfo(Server.MapPath("") +
"\CustomWebExporting.rdlx"))
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Provide settings for your rendering output.
Dim excelSetting As New GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtensionSettings()
excelSetting.FileFormat = GrapeCity.ActiveReports.Export.Excel.Page.FileFormat.Xlsx
Dim setting As GrapeCity.ActiveReports.Extensibility.Rendering.ISettings = excelSetting

' Set the rendering extension and render the report.
Dim excelRenderingExtension As New GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtension()
Dim outputProvider As New GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider()
reportDocument.Render(excelRenderingExtension, outputProvider, setting.GetSettings())

Response.ContentType = "application/vnd.ms-excel"
Response.AddHeader("content-disposition", "inline;filename=MyExport.xls")
Dim ms As New System.IO.MemoryStream()
outputProvider.GetPrimaryStream().OpenStream().CopyTo(ms)
Response.BinaryWrite(ms.ToArray())
Response.[End]()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

// Provide the page report you want to render.

ActiveReports 14 1132

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport(new
System.IO.FileInfo(Server.MapPath("") + "\\CustomWebExporting.rdlx"));
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new GrapeCity.ActiveReports.Document.PageDocument(report);

// Provide settings for your rendering output.
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtensionSettings excelSetting = new
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtensionSettings();
excelSetting.FileFormat = GrapeCity.ActiveReports.Export.Excel.Page.FileFormat.Xlsx;
GrapeCity.ActiveReports.Extensibility.Rendering.ISettings setting = excelSetting;

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtension excelRenderingExtension = new
GrapeCity.ActiveReports.Export.Excel.Page.ExcelRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider();
reportDocument.Render(excelRenderingExtension, outputProvider, setting.GetSettings());

Response.ContentType = "application/vnd.ms-excel";
Response.AddHeader("content-disposition", "inline;filename=MyExport.xls");
System.IO.MemoryStream ms = new System.IO.MemoryStream();
outputProvider.GetPrimaryStream().OpenStream().CopyTo(ms);
Response.BinaryWrite(ms.ToArray());
Response.End();

To add code to the Web Form to create the Word Export object and export a report

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

Note: To export your report in .Doc format, change the FileFormat property option from .Docx to .Doc format as depicted below.
wordSetting.FileFormat = GrapeCity.ActiveReports.Export.Word.Page.FileFormat.Doc

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

' Provide the page report you want to render
Dim report As New GrapeCity.ActiveReports.PageReport(New System.IO.FileInfo(Server.MapPath("") +
"\CustomWebExporting.rdlx"))
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Set the rendering extension and render the report
Dim wordRenderingExtension As New GrapeCity.ActiveReports.Export.Word.Page.WordRenderingExtension()
Dim outputProvider As New GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider()

' Set FileFormat property to .Docx
Dim wordSetting As New GrapeCity.ActiveReports.Export.Word.Page.Settings()
wordSetting.FileFormat = GrapeCity.ActiveReports.Export.Word.Page.FileFormat.OOXML

reportDocument.Render(wordRenderingExtension, outputProvider, wordSetting)
Response.ContentType = "application/msword"
Response.AddHeader("content-disposition", "inline;filename=MyExport.docx")
Dim ms As New System.IO.MemoryStream()
CType(outputProvider.GetPrimaryStream().OpenStream(), System.IO.MemoryStream).WriteTo(ms)
Response.BinaryWrite(ms.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

// Provide the page report you want to render
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport(new
System.IO.FileInfo(Server.MapPath("") + "\\CustomWebExporting.rdlx"));
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new GrapeCity.ActiveReports.Document.PageDocument(report);

// Set the rendering extension and render the report
GrapeCity.ActiveReports.Export.Word.Page.WordRenderingExtension wordRenderingExtension = new

ActiveReports 14 1133

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.Export.Word.Page.WordRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider();

// Set the FileFormat property to .Docx
GrapeCity.ActiveReports.Export.Word.Page.Settings wordSetting = new GrapeCity.ActiveReports.Export.Word.Page.Settings();
wordSetting.FileFormat = GrapeCity.ActiveReports.Export.Word.Page.FileFormat.OOXML;

reportDocument.Render(wordRenderingExtension, outputProvider, wordSetting);
Response.ContentType = "application/msword";
Response.AddHeader("content-disposition", "inline;filename=MyExport.docx");
System.IO.MemoryStream ms = new System.IO.MemoryStream();
outputProvider.GetPrimaryStream().OpenStream().CopyTo(ms);
Response.BinaryWrite(ms.ToArray());
Response.End();

To add code to the Web Form to create the Image Export object and export a report

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport(New System.IO.FileInfo(Server.MapPath("") +
"\CustomWebExporting.rdlx"))
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Set the rendering extension and render the report.
Dim imageRenderingExtension As New GrapeCity.ActiveReports.Export.Image.Page.ImageRenderingExtension()
Dim outputProvider As New GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider()
Dim setting As New GrapeCity.ActiveReports.Export.Image.Page.Settings()
setting.ImageType = GrapeCity.ActiveReports.Export.Image.Page.Renderers.ImageType.JPEG
reportDocument.Render(imageRenderingExtension, outputProvider, setting)

Response.ContentType = "image/jpeg"
Response.AddHeader("content-disposition", "inline;filename=MyExport.jpg")
Dim ms As New System.IO.MemoryStream()

' Get the first page of the report
CType(outputProvider.GetSecondaryStreams()(0).OpenStream(), System.IO.MemoryStream).WriteTo(ms)
Response.BinaryWrite(ms.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport(new
System.IO.FileInfo(Server.MapPath("") + "\\CustomWebExporting.rdlx"));
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new GrapeCity.ActiveReports.Document.PageDocument(report);

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Image.Page.ImageRenderingExtension imageRenderingExtension = new
GrapeCity.ActiveReports.Export.Image.Page.ImageRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider();
GrapeCity.ActiveReports.Export.Image.Page.Settings setting = new GrapeCity.ActiveReports.Export.Image.Page.Settings();
setting.ImageType = GrapeCity.ActiveReports.Export.Image.Page.Renderers.ImageType.JPEG;

reportDocument.Render(imageRenderingExtension, outputProvider, setting);

Response.ContentType = "image/jpeg";
Response.AddHeader("content-disposition", "inline;filename=MyExport.jpg");
System.IO.MemoryStream ms = new System.IO.MemoryStream();

ActiveReports 14 1134

Copyright © 2020 GrapeCity, Inc. All rights reserved.

// Get the first page of the report
outputProvider.GetSecondaryStreams()[0].OpenStream().CopyTo(ms);
Response.BinaryWrite(ms.ToArray());
Response.End();

To add code to the Web Form to create the XML Export object and export a report.

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

' Provide the page report you want to render.
Dim report As New GrapeCity.ActiveReports.PageReport(New System.IO.FileInfo(Server.MapPath("") +
"\CustomWebExporting.rdlx"))
Dim reportDocument As New GrapeCity.ActiveReports.Document.PageDocument(report)

' Set the rendering extension and render the report.
Dim xmlRenderingExtension As New GrapeCity.ActiveReports.Export.Xml.Page.XmlRenderingExtension()
Dim outputProvider As New GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider()
reportDocument.Render(xmlRenderingExtension, outputProvider)

Response.ContentType = "application/xml"
Response.AddHeader("content-disposition", "inline;filename=MyExport.xml")
Dim ms As New System.IO.MemoryStream()
outputProvider.GetPrimaryStream().OpenStream().CopyTo(ms)
Response.BinaryWrite(ms.ToArray())
Response.[End]()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

// Provide the page report you want to render.
GrapeCity.ActiveReports.PageReport report = new GrapeCity.ActiveReports.PageReport(new
System.IO.FileInfo(Server.MapPath("") + "\\CustomWebExporting.rdlx"));
GrapeCity.ActiveReports.Document.PageDocument reportDocument = new GrapeCity.ActiveReports.Document.PageDocument(report);

// Set the rendering extension and render the report.
GrapeCity.ActiveReports.Export.Xml.Page.XmlRenderingExtension xmlRenderingExtension = new
GrapeCity.ActiveReports.Export.Xml.Page.XmlRenderingExtension();
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider outputProvider = new
GrapeCity.ActiveReports.Rendering.IO.MemoryStreamProvider();
reportDocument.Render(xmlRenderingExtension, outputProvider);

Response.ContentType = "application/xml";
Response.AddHeader("content-disposition", "inline;filename=MyExport.xml");
System.IO.MemoryStream ms = new System.IO.MemoryStream();
outputProvider.GetPrimaryStream().OpenStream().CopyTo(ms);
Response.BinaryWrite(ms.ToArray());
Response.End();

To run the project

Press F5 to run the project.

Preview
This section contains the following walkthroughs that fall under the Preview category.

Drilldown Reports
This walkthrough demonstrates how to create a drilldown report using the Hidden and ToggleItem properties.

Drill-Through Reports

ActiveReports 14 1135

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This walkthrough demonstrates how to create a drill-through link to another report containing details about the
linked item.

Parameterized Reports
This walkthrough demonstrates how to create a report with multivalue parameters and an option to select all of the
data.

Reports with Bookmarks
This walkthrough demonstrates how to set up bookmarks and links in a report.

Reports with TableOfContents
This walkthrough demonstrates how to create a report that includes the Table of Contents (ToC) control and displays
the document map on a report page.

Drilldown Reports
This walkthrough expands upon the report created in the Master Detail Reports walkthrough. If you have not created the
Master Detail report (CustomerOrders.rdlx) already, please do so before continuing.

This walkthrough illustrates how to create a drilldown report using the Hidden and ToggleItem properties.

The walkthrough is split up into the following activities:

Opening the Master Detail Report
Hiding table rows and setting a toggle item
Viewing the report

Note: This walkthrough uses the Customer table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at run time.

Design-Time Layout

Run-Time Layout

To open the report in Visual Studio

1. Open the Master Detail Report project in Visual Studio.
2. In the Visual Studio Solution Explorer, double-click CustomerOrders.rdlx.

ActiveReports 14 1136

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To hide table rows and set a toggle item

1. In the designer, click inside the table to display the column and row handles along the top and left sides of the
table.

2. Select the second group header row containing the static labels (Title, Quantity, Price and Total) by clicking the
row handle to the left of it.

3. Hold the CTRL key and select the Detail row containing field expressions to add to the selection.
4. In the Properties window, expand the Visibility property and set its properties as follows.

Property Name Property Value

Visibility Hidden True

Visibility Toggle Item TextBox10 (the textbox
containing the expression
=First(Fields!LastName.Value))

To view the report

Click the preview tab to view the report at design time.

1. Click the Preview tab of the report designer.
2. Click the + icon next to a customer to display order details for that customer.
3. Click the - icon to hide the details.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Drill-Through Reports
The following procedures illustrate how to create a drill-through link to another report containing details about the linked
item.

The walkthrough is split into the following activities:

Creating a main report
Connecting the main report to a data source and adding a dataset
Adding controls to the main report to contain data
Creating a detail report
Connecting the detail report to a data source
Adding a dataset with a parameter
Creating a dataset to populate the parameter values
Adding a report parameter
Adding controls to the detail report to contain data
Adding a drill-through link in the main report
Viewing the report

Note:

This walkthrough uses tables from the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

ActiveReports 14 1137

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

When you complete this walkthrough you get a layout that looks similar to the following at run time.

Run-Time Layout (main report)

Run-Time Layout (detail report)

To create the main report

1. Create a new Visual Studio project.
2. From the Visual Studio Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as MainReport.rdlx.
4. Click the Add button to open a new page report in the designer.

To connect the main report to a data source and add a dataset

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
MainReportData.

ActiveReports 14 1138

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

4. In the Report Explorer, right-click the data source node and select the Add Data Set option.
5. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Movie. This name

appears as a child node to the data source icon in the Report Explorer.
6. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT * FROM Movie ORDER BY MovieID ASC

7. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

8. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the main report

1. In the Visual Studio toolbox, go to the ActiveReports 14 Page Report tab and drag a TextBox control onto the
design surface.

2. Select the TextBox control and go to the Properties window to set the following properties.

Property Name Property Value

Location 0.75in, 0.125in

Font Normal, Arial, 18pt, Bold

Size 5in, 0.5in

TextAlign Center

Value MOVIES INFORMATION

3. From the Visual Studio toolbox, drag a Table data region and place it on the design surface.
4. Select the Table and go to the Properties window to set the following properties.

Property Name Property Value

Location 0in, 1.125in

FixedSize (only for Page reports) 6.5in, 7in

BorderStyle Solid

RepeatHeaderOnNewPage True

Size 6.5in, 0.75in

5. In the Table data region, place your mouse over the cells of the table details row to display the field selection
adorner.

6. Click the adorner to show a list of available fields from the DataSet and add the following fields to the cells of the
table details row.

Cell Field

Left Cell MovieID

Middle Cell Title

Right Cell YearReleased

ActiveReports 14 1139

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This automatically places an expression in the details row and simultaneously places a static label in the header row
of the same column.

Tip: You can also directly drag fields from the Report Explorer onto the textbox cells of the Table data region.

7. Select the following table rows and go to the Properties window to set their properties.

Table Header

Property Name Property Value

BorderStyle Solid

Font Normal, Arial, 12pt, Bold

TextAlign Center

Table Details

Property Name Property Value

BorderStyle Solid

Font Normal, Arial, 10pt, Bold

TextAlign Center

To create the detail report

1. From the Visual Studio Project menu, select Add New Item.
2. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as MovieDetails.rdlx.
3. Click the Add button to open a new page report in the designer.

To connect the detail report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset to populate the parameter values

1. In the Report Explorer, right-click the data source node and select the Add Data Set option.
2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as MovieTitles. This

name appears as a child node to the data source icon in the Report Explorer.

ActiveReports 14 1140

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT MovieID, Title FROM Movie ORDER BY Title ASC

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add a parameter to the report

1. In the Report Explorer, select the Parameters node.
2. Right-click the node and select Add Parameter to open the Report - Parameters dialog.
3. Set properties in the following fields below the parameters list.

In the General tab:

Name: MovieID
DataType: Integer

In the Available Values tab select From query:

DataSet: MovieTitles
Value: MovieID
Label: Title

4. Click OK to close the dialog and add the parameter to the collection. This parameter appears under the Parameters
node in the Report Explorer.

To add a dataset with a parameter

1. In the Report Explorer, right-click the data source node and select the Add Data Set option.
2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as MovieInfo. This

name appears as a child node to the data source icon in the Report Explorer.
3. On the Parameters page under Parameter Name enter MovieID.
4. Under Value enter =Parameters!MovieID.Value
5. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

Select * from MovieCastInformation

6. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

7. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.
8. In an Page report, set the Dataset name in the FixedPage dialog > General tab to MovieInfo. For more information,

see Fixed Page Dialog.

Caution: In an Page report, you may get an error if the Dataset name for the FixedPage is not be specified explicitly.

To create a layout for the detail report

1. Click the gray area below the design surface to select the report.
2. Go to the Properties window, expand the PageSize property and set the Width to 8.5in and Height to 3in.
3. From the toolbox, drag a List control onto the design surface and in the Properties window, set the following

ActiveReports 14 1141

Copyright © 2020 GrapeCity, Inc. All rights reserved.

properties:

Property Name Property Value

DataSetName MovieInfo

Location 0in, 0in

Name MovieList

Size 6.5in, 1in

FixedSize (only for Page reports) 6.5in, 1in

4. With the List control selected, at the bottom of the Properties Window, select the Property dialog command.
5. In the List dialog that appears, on the Detail Grouping page, set the Group on: Expression

to =Fields!MovieID.Value.
6. Click OK to close the dialog.
7. From the Report Explorer, go to the MovieInfo dataset and drag the following five fields onto the MovieList data

region. In the properties window, set their properties as indicated.

Title

Property Name Property Value

Name MovieTitle

Location 0in, 0in

Size 6.5in, 0.375in

TextAlign Center

FontSize 14pt

YearReleased

Property Name Property Value

Name YearReleased

Location 1in, 0.375in

Size 0.75in, 0.25in

TextAlign Left

MPAA

Property Name Property Value

Name MPAA

Location 6in, 0.375in

Size 0.5in, 0.25in

UserRating

ActiveReports 14 1142

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

Name UserRating

Location 1in, 0.625in

Size 0.25in, 0.25in

TextAlign Left

Length

Property Name Property Value

Name Length

Location 4.75in, 0.625in

Size 1.75in, 0.25in

TextAlign Left

Value =Fields!Length.Value & "
minutes"

Note: When you drag and drop fields from a dataset in the Report Explorer onto the design surface, these
fields are automatically converted to Textbox controls that you can modify by setting the control properties in
the Properties Window.

8. From the Report Explorer, drag four TextBox controls onto the MovieList data region and in the properties
window, set their properties as indicated.

TextBox1

Property Name Property Value

Location 0in, 0.375in

Size 1in, 0.25in

Name ReleaseLabel

Value Released in:

FontWeight Bold

TextBox2

Property Name Property Value

Location 3.625in, 0.375in

Size 1.875in, 0.25in

Name MPAALabel

Value The MPAA rated this film:

FontWeight Bold

ActiveReports 14 1143

Copyright © 2020 GrapeCity, Inc. All rights reserved.

TextBox3

Property Name Property Value

Location 0in, 0.625in

Size 1in, 0.25in

Name UserRatingLabel

Value User rating:

FontWeight Bold

TextBox4

Property Name Property Value

Location 4.125in, 0.625in

Size 0.625in, 0.25in

Name LengthLabel

Value Length:

FontWeight Bold

To add a drill-through link to the main report

1. Switch to the Designer with the MainReport.rdlx.
2. On the design surface, select the cell containing the Title field inside the table details row and at the bottom of the

Properties Window, click the Property dialog command.
3. In the Textbox dialog that appears, go to the Navigation page.
4. Under Action, select Jump to report and set the report name MovieDetails.rdlx.
5. Under Jump to report set the Name of the parameter to MovieID.

Caution: The parameter name must exactly match the parameter in the target report.

6. Set the Value to =Fields!MovieID.Value.
7. Click OK to close the dialog.

To view the report

Open the report in the Viewer. See Windows Forms Viewer for further information.

Parameterized Reports
You can create a parameterized report with ActiveReports and provide the ability to select multiple values for those who
want to view data for several items.

This walkthrough illustrates how to create a report with multi-value parameters and an option to select all of the data.

The walkthrough is split up into the following activities:

ActiveReports 14 1144

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding a Dataset with a parameter
Creating a Dataset to populate the parameter values
Adding a Report Parameter
Adding controls to the report to contain data
Viewing the report

Note:

This walkthrough uses the Products table from the Nwind database. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.
Although this walkthrough uses RDL report, you can also implement this using Page report.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 RDL Report and in the Name field, rename the

file as Product Details.
4. Click the Add to open a new rdl report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

ActiveReports 14 1145

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Nwind database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset to populate the parameter values

1. In the Report Explorer, right-click the data source node and select the Add Data Set option.
2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as DataSet1. This

name appears as a child node to the data source icon in the Report Explorer.
3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

select distinct productName from Products

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
5. Click OK to close the dialog. You see the data set, DataSet1, and the field, productName in the Report Explorer.

To add a parameter to the report

1. In the Report Explorer, select the Parameters node.
2. Right-click the node and select Add Parameter to open the Report - Parameters dialog.
3. In the dialog box that appears, click the Add(+) button to add a new parameter in the list.
4. Set properties in the following fields below the parameters list.

In the General tab:

Name: ReportParameter1
DataType: String
Text for prompting users for a value: Select the product name.
Select the check box next to Multivalue to allow users to select more than one product name from the list.
Enter Value for 'Select All': 1

In the Available Values tab, select From query:

DataSet: DataSet1
Value: productName
Label: productName

Note: The name of the parameter you enter must exactly match the name of the parameter in the
linked report, and it is case sensitive. You can pass a value from the current report to the parameter in
the Value column of the list. If a value is not supplied for an expected parameter in the linked report, or
if the parameter names do not match, the linked report will not run.

5. Click OK to close the dialog and add the parameter to the collection. The ReportParameter1 parameter appears

ActiveReports 14 1146

Copyright © 2020 GrapeCity, Inc. All rights reserved.

under the Parameters node in the Report Explorer.

To add a dataset with a parameter

1. In the Report Explorer, right-click the data source node and select the Add Data Set option.
2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as DataSet2. This

name appears as a child node to the data source icon in the Report Explorer.
3. On the Parameters page under Parameter Name enter ReportParameter1.
4. Under Value enter =Parameters!ReportParameter1.Value.
5. On the Parameters page under Parameter Name enter Parameter1.
6. Under Value enter =Parameters!ReportParameter1.Value.
7. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

select * from products where ProductName in (?) OR '1' in (?)

8. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.
9. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. From the toolbox, drag a Table control onto the design surface and in the Properties window, set the following
properties.

Property Name Property Value

Location 0.5in, 0.25in

DataSetName DataSet2

Size 4.8in, 0.75in

2. In the Report Explorer, from the DataSet2 dataset drag the following fields into the detail row of the table and set
their properties as in the following table.

Field Column Width

ProductName TableColumn1 2.37in

UnitPrice TableColumn2 0.67in

UnitsOnOrder TableColumn3 1.62in

3. Static labels with the field names are automatically created in the table header row. To improve the appearance of
the report, select the table header row, and set the BackgroundColor to DeepSkyBlue.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Reports with Bookmarks
You can assign a bookmark ID to any report control and link a text box or image to it to allow users to easily navigate

ActiveReports 14 1147

Copyright © 2020 GrapeCity, Inc. All rights reserved.

between items in the finished report. The bookmark link works like a hyperlink, except that clicking a bookmark link jumps
to another page or area of the report instead of to a Web page.

This walkthrough explains the steps involved in setting up bookmarks and links.

The walkthrough is split up into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to an XML data source
Adding a Dataset
Adding controls to the report to contain data
Assigning a bookmark ID to a report control
Adding a bookmark link to a report control
Viewing the report

Note:

This walkthrough uses the Factbook sample database.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

Note: If you have already created the report outlined in the Reports with XML Data walkthrough, you can open that
report and go directly to the Assigning a Bookmark ID section of this walkthrough.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1148

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add an ActiveReport to a Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as ExchangeRates.rdlx.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
Factbook.

3. On this page, check the Shared Reference checkbox.
4. Click the Browse button and select Factbook.rdsx. See Connect to a Data Source for information on connecting to

a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as ExchangeRates.
3. On the Query page, enter the following XML path into the Query text box to access data for every country except

"World":
//country [@name != 'World']

4. On the Fields page, enter the values in the table below to create fields for your report. Values for XML data fields
must be valid XPath expressions.

Field Name Type Value

Names Database Field @name

ActiveReports 14 1149

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Currencies Database Field ./ExchangeRates/Currency

2004 Database Field ./ExchangeRates/VsUSD2004

2003 Database Field ./ExchangeRates/VsUSD2003

2002 Database Field ./ExchangeRates/VsUSD2002

2001 Database Field ./ExchangeRates/VsUSD2001

2000 Database Field ./ExchangeRates/VsUSD2000

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To add controls to the report

1. From the toolbox, drag a List data region onto the design surface of the report and go to the Properties window to
set the DataSetName property to ExchangeRates, Location property to 0in, 0in and Size property to 6.5in, 3in.

2. From the Report Explorer, drag the Names field onto the list, center it at the top and go to the Properties window
to set the FontSize property to 14pt and the BorderStyle property to Solid.

3. From the Report Explorer, drag the following fields onto the list with properties set as described in the table below.

Field Name Property Name

Currencies Location: 1.125in, 0.5in
Size: 2.25in, 0.25in

2004 Location: 4in, 0.875in
Size: 1in, 0.25in

2003 Location: 4in, 1.25in
Size: 1in, 0.25in

2002 Location: 4in, 1.625in
Size: 1in, 0.25in

2001 Location: 4in, 2in
Size: 1in, 0.25in

2000 Location: 4in, 2.375in
Size: 1in, 0.25in

Note: You will notice that the expressions created for these fields are different than usual. Because Visual Basic
syntax does not allow an identifier that begins with a number, any numeric field names must be treated as
strings in expressions.

4. From the toolbox, drag a TextBox onto the list and go to the Properties window to set the properties as described
in the table below to combine static text with a field value.

Property
Name

Property Value

Location 0.125in, 0.875in

Size 3.125in, 0.25in

Value ="Value of " & Fields!Currency.Value & " versus
US$ for year:"

ActiveReports 14 1150

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Font Normal, Arial, 10pt, Bold

TextAlign Right

5. From the toolbox, drag TextBox controls onto the list and go to the Properties window to set the properties as
described in the table below to create static labels.

TextBox1

Property Name Property Value

Location 0.125in, 0.5in

Size 0.75in, 0.25in

FontWeight Bold

Value Currency:

TextBox2

Property Name Property Value

Location 3.375in, 0.875in

Size 0.5in, 0.25in

TextAlign Right

Value 2004:

TextBox3

Property Name Property Value

Location 3.375in, 1.25in

Size 0.5in, 0.25in

TextAlign Right

Value 2003:

TextBox4

Property Name Property Value

Location 3.375in, 1.625in

Size 1in, 0.25in

TextAlign Right

Value 2002:

TextBox5

Property Name Property Value

ActiveReports 14 1151

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Location 3.375in, 2in

Size 0.5in, 0.25in

TextAlign Right

Value 2001:

TextBox6

Property Name Property Value

Location 3.375in, 2.375in

Size 0.5in, 0.25in

TextAlign Right

Value 2000:

To assign a bookmark ID to the report control

A bookmark ID marks any report control as something to which a bookmark link can navigate.

1. On the designer surface, select the Names textbox at the top of the list and at the bottom of the Properties
Window, select the Property dialog command.

2. In the Textbox dialog that appears, go to the Navigation page.
3. On the Navigation page, enter Names in the Bookmark ID field.

Note: Every bookmark ID in a report must be a unique string. If you have duplicates, a link to it will navigate
only to the first one it finds.

4. Click OK to close the dialog.

To add a bookmark link to the report control

A bookmark link is like a hyperlink that navigates to a report control marked with a bookmark ID instead of to a URL. We
will add a text box below the list we already created to display at the bottom of the report. This text box will have a
bookmark link to the bookmark ID we created in the last procedure.

1. From the toolbox, drag a text box onto the report below the list and in the Properties window, set the properties as
follows.

Property Name Property Value

Value Back to Top

Location 0in, 3in

Size 6.5in, .5in

TextAlign Center

2. At the bottom of the Properties Window, select the Property dialog command.
3. In the Textbox dialog that appears, go to the Navigation page.
4. On the Navigation page, select the Jump to Bookmark radio button and enter the bookmark ID (Names) created

in the procedure above.
5. Click OK to close the dialog.

ActiveReports 14 1152

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To view the report

Open the report in the Viewer. See Windows Forms Viewer for further information.

Reports with TableOfContents
This walkthrough illustrates how to create a report that includes the Table of Contents (ToC) control and displays the
document map on a report page.

The TableOfContents control allows you to quickly navigate to desired data inside a report. You can use the
TableOfContents control to embed the list of contents in the report body for printing and rendering, unlike the Document
Map that is only available in the Viewers and cannot be rendered or printed.

To add an ActiveReports to the Visual Studio project
To connect the report to a data source
To add a dataset
To create a layout for the report
To configure the appearance of Table of Contents
To view the report

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1153

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add an ActiveReports to the Visual Studio project

1. Create a new Visual Studio Windows Forms Application project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 RDL Report and in the Name field, rename the

file as ReportsWithToC.rdlx.
4. Click the Add button to open a new RDL report.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

This walkthrough uses the Movies table from the Reels database. The Reels.mdb file can be downloaded from GitHub:
..\Samples14\Data\Reels.mdb.

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as MovieCatalog.
This name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Genre.GenreName, Movie.Title, Movie.YearReleased, Movie.UserRating,
Movie.Country FROM Genre INNER JOIN (Movie INNER JOIN MovieGenres ON Movie.MovieID
= MovieGenres.MovieID) ON Genre.GenreID = MovieGenres.GenreID ORDER BY YearReleased
ASC

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

ActiveReports 14 1154

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. From the toolbox, drag the List control onto the design surface and in the Properties window, set the following
properties.

Property Name Property Value

DataSetName MovieCatalog

Location 0.25in, 1.875in

Size 6in, 4in

PageBreakAtStart True

Note: Applicable for
RDL reports only.

2. With the List data region selected, under the Properties window, click the Property dialog link to open the List
dialog

3. Go to the Detail Grouping page and on the General tab, under Group on, set the Expression field to
=Fields!GenreName.Value.

4. Click OK to close the dialog
5. In the Report Explorer, from the MovieCatalog dataset, drag and drop the GenreName field inside the List data

region and in the Properties window, set the following properties.

Property Name Property Value

Location 0.25in, 0.375in

Font Normal, Arial, 12pt, Bold

TextAlign Center

Size 5.625in, 0.25in

Label =Fields!GenreName.Value

Note: Setting the
control's Label
property adds an
entry of the control in
the document map.

6. From the toolbox, drag and drop the Table data region inside the List data region and in the Properties window,
set the following properties.

Property Name Property Value

Location 0.125in, 1in

Size 6in, 0.75in

DataSetName MovieCatalog

BorderStyle Solid

RepeatHeaderOnNewPage True

7. In the Table data region, place your mouse over the cells of the table details row to display the field selection

ActiveReports 14 1155

Copyright © 2020 GrapeCity, Inc. All rights reserved.

adorner.

8. Click the adorner to show a list of available fields from the MovieCatalog dataset and add the following fields to
the cells of the table details row.

Cell Field

Left Cell Title

Middle Cell Country

Right Cell UserRating

This automatically places an expression in the details row and simultaneously places a static label in the header row
of the same column.

Tip: You can also directly drag fields from the Report Explorer onto the textbox cells of the Table data region.

9. Select the table header row using the row handle to the left and in the Properties Window set the
following properties.

Property Name Property Value

Font > FontWeight Bold

TextAlign Left

BackgroundColor Silver

BoderStyle Solid

10. Select the table detail row using the row handle to the left, and in the Properties Window set the following
properties.

Property Name Property Value

TextAlign Left

BorderStyle Solid

11. Right-click the table detail row using the row handle to the left, and select Insert Group...
12. In the Table - Groups dialog that appears, on the General tab, under Group on, set the Expression field

to =Fields!YearReleased.Value.
13. Click OK to close the dialog.
14. Select the textboxes inside the table group row using the CTRL key and left mouse button, right-click the selection

and select Merge Cells.
15. Select the merged cell and in the Properties window, set the following properties.

Property Name Property Value

Font Normal, Arial, 10pt, Bold

HeadingLevel Heading 2

Note: Setting the
control's HeadingLevel
property adds an
entry of the control in
the document map.

ActiveReports 14 1156

Copyright © 2020 GrapeCity, Inc. All rights reserved.

TextAlign Center

Value ="Movies Released in " &
Fields !YearReleased.Value

16. From the Visual Studio toolbox, drag a TableOfContents control onto the design surface and in the Properties
window, set the following properties.

Property Name Property Value

Location 0.25in, 0.5in

Size 6in, 0.875in

BorderStyle Solid

To configure the appearance of Table of Contents

1. With the TableOfContents control selected, select the Levels (Collection) property and then click the ellipsis
button that appears.

2. In the LevelDesigner Collection Editor dialog that appears, under Members, use the Add button to add Level2 to
the TableOfContents.

3. Under Members, select Level1 and click the Property Pages button above the LevelDesigner Collection Editor
properties grid.

4. In the Level Properties dialog that appears, set the following properties.

Properties

Property Name Property Value

Font > Size 14

Font > Weight Bold

Color DarkBlue

Padding > Left 10pt

Padding > Top 10pt

Padding > Right 10pt

Padding > Bottom 10pt

Fill character .

5. In the LevelDesigner Collection Editor, select the Level2 entry under Members and click the Property Pages
button above the LevelDesigner Collection Editor Properties grid.

6. In the Level Properties dialog that appears, set the following properties.

Properties

Property Name Property Value

Font > Weight Bold

Padding > Left 20pt

ActiveReports 14 1157

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Padding > Top 10pt

Padding > Right 0pt

Padding > Bottom 0pt

DisplayPageNumber False

7. Click OK to close the LevelDesigner Collection Editor dialog.
8. In the Report Explorer, select the Report node and in the Properties window set the following properties:

Properties

Property Name Property Value

DocumentMap > Source Labels and Headings

DocumentMap > NumberingStyle 1, 2, 3, 4, 5

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Advanced
This section contains the following walkthroughs that fall under the Advanced category.

Reports with Custom Code
This walkthrough demonstrates how to create a simple report with custom code.

Custom Resource Locator
This walkthrough is based on the Custom Resource Locator sample and illustrates how to load pictures from the
user's My Pictures directory.

Custom Data Provider
This walkthrough demonstrates how to create a solution with projects that create a custom data provider and
demonstrate how it pulls data from a comma separated values (CSV) file.

Reports with Custom Code
This walkthrough illustrates how to create a simple report with custom code.

The walkthrough is split up into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding a dataset
Adding controls to the report to contain data
Embedding code in a report and referencing it in a field expression

ActiveReports 14 1158

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Viewing the report

Note:

This walkthrough uses the Store table from the Reels database. The Reels.mdb file can be downloaded
from GitHub: ..\Samples14\Data\Reels.mdb.
Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the

file as CustomCode.
4. Click the Add button to open a new fixed page report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. In the Report Explorer, right-click the Data Sources node and select the Add Data Source option or select Data
Source from the Add button.

2. In the Report Data Source Dialog that appears, select the General page and in the Name field, enter a name like
ReportData.

3. On this page, create a connection to the Reels database. See Connect to a Data Source for information on
connecting to a data source.

To add a dataset

ActiveReports 14 1159

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. In the Report Explorer, right-click the data source node and select the Add Data Set option or select Data Set
from the Add button.

2. In the DataSet Dialog that appears, select the General page and enter the name of the dataset as Districts. This
name appears as a child node to the data source icon in the Report Explorer.

3. On the Query page of this dialog, in the Query field enter the following SQL query.

SQL Query

SELECT Store.StoreName, Address.City, Address.Region AS StateProvince,
Address.Country, Districts.District
FROM Address INNER JOIN (Districts INNER JOIN Store ON Districts.DistrictID =
Store.DistrictID) ON Address.AddressID = Store.Address WHERE NOT
Districts.DistrictID = 0 ORDER BY Districts.District

4. Click the Validate DataSet icon at the top right hand corner above the Query box to validate the query.

5. Click OK to close the dialog. Your data set and queried fields appear as nodes in the Report Explorer.

To create a layout for the report

1. From the toolbox, drag the TextBox control onto the design surface and go to the Properties window to set the
following properties:

Property Name Property
Value

Location 0in, 0in

Size 6.5in,
0.5in

TextAlign Center

FontSize 14pt

Value District
Locations

2. From the toolbox, drag a Table data region onto the design surface and go to the Properties window to set the
DataSetName property to Districts.

3. Set the following properties for the table:

Property Name Property
Value

Location 0in, 0.5in

FixedSize 6in, 7in

Note:
FixedSize
property
is set
only in
Page
report.

ActiveReports 14 1160

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Click inside the table to display the column handles at the top and in the Properties window, set the
Width property of following columns:

Column Width

TableColumn1 3in

TableColumn2 1.5in

TableColumn3 1.5in

5. Click inside the table to display the row handles along the left of the table and right-click any of the row handles to
select Insert Group.

6. In the Table - Groups dialog that appears, under Group on, select the following expression:
=Fields!District.Value

7. On the same dialog set the Name to District and click OK to close the dialog. The header and footer rows for the
new group appear.

8. In the Report Explorer from the Districts dataset, drag the District field into the second column of the group
header row of the table. This automatically places an expression in the group header row and simultaneously
places a static label in the table header row.

9. In the first column of the group header row, just to the left of the District field, in the Properties window set the
Value property to District Name:.

10. Click the row handle to the left of the group header row to select the entire row and in the Properties window, set
the properties as follows:

Property Name Property Value

FontSize 12pt

FontWeight Bold

BackgroundColor MediumPurple

Color White

11. Right-click any row handle to the left of the table and select Table Header to remove the table header.
12. Right-click any row handle to the left of the table and select Table Footer to remove the table footer.
13. In the Report Explorer, drag the following fields from the Districts dataset onto the detail row of the table as

follows.

Field Column

StoreName TableColumn1

City TableColumn2

StateProvince TableColumn3

14. Remove the static label State Province from the group header for the third column.
15. Right-click the row handle for the group header row and select Insert Row Below to add a row for static labels

that will appear once for each group.
16. In the new row, enter the following values for static label in table columns.

TableColumn1

Property Name Property
Value

Value Store

ActiveReports 14 1161

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name

FontWeight Bold

TableColumn2

Property Name Property
Value

Value City

FontWeight Bold

TableColumn3

Property
Name

Property Value

Value =iif(Fields!Country.Value="USA",
"State", "Province")

FontWeight Bold

Note: The expression in the third column displays the label "State" when the country is USA, and displays
"Province" when it is not.

To embed code in a report and reference it in a field expression

This custom code creates a URL to Yahoo!® Maps for each city in the report.

1. On the Script tab of the report, enter the following code to create a URL.

Visual Basic.NET code. Add to the Script tab.

Public Function MapLink(ByVal Country, ByVal City, ByVal StateProvince) As String
 Dim Link As String
 Dim _Country As String = Country.ToString()
 Dim _City As String = City.ToString()
 Dim _StateProvince As String = StateProvince.ToString()

 Select Case _Country
 Case "USA"
 Link = "http://maps.yahoo.com/maps_result?addr=&csz=" & _City &
"%2C+" & _StateProvince & "&country=us&new=1&name=&qty="
 Case "Canada"
 Link = "http:file://ca.maps.yahoo.com/maps_result?csz=%2C+" &
_StateProvince & "&country=ca"
 Case Else
 Link = ""
 End Select

 Return Link
End Function

ActiveReports 14 1162

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Note: Custom code is helpful if you intend to reuse code throughout the report or if code is too complex to
use in an expression. Code must be instance based and written in Visual Basic.NET. You can include multiple
methods, but if you want to use classes or other .NET languages, create a custom assembly. See Using Script in
a Page Report for further details.

To reference embedded code in a field expression

1. On the Designer tab of the report, click the detail cell in the second table column (containing the expression
=Fields!City.Value) to select it and under the Properties window, click the Property dialog link. This is a
command to open the respective control's dialog. See Properties Window for more on how to access commands. .

2. In the Textbox - General dialog that appears, go to the Navigation page.
3. Select the radio button next to Jump to URL, and enter the following expression in the combo box below it. =

Code.MapLink(Fields!Country.Value, Fields!City.Value, Fields!StateProvince.Value)
4. Click OK to close the dialog and use the code to create a hyperlink for the field.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Custom Resource Locator
Page reports can get resources from your file system using file paths, but sometimes resources are preserved in very specific sources,
such as a database. With page reports, you can create a custom resource locator to read any resources that might be required by your
reports from any location. This walkthrough is based on the Custom Resource Locator sample and illustrates how to load pictures from
the user's My Pictures directory.

This walkthrough is split into the following procedures:

Adding an ActiveReports to the Visual Studio project
Creating a layout for the report
Adding the new MyPicturesLocator class
Creating the PreviewForm that contains the Viewer control to view the report.

Note: Although this walkthrough uses Page reports, you can also implement this using RDL reports.

When you complete this walkthrough you get a layout that looks similar to the following at run time.

ActiveReports 14 1163

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add an ActiveReports to the Visual Studio project

1. Create a new Visual Studio Windows Forms Application project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Page Report and in the Name field, rename the file as

DemoReport.rdlx.
4. Click the Add button to open a new fixed page report.

To create a layout for the report

1. From the toolbox, drag an Image control onto the design surface and in the Properties window, set the following properties.

Property Name Property Value

Name Image1

Location 0.1in, 0.1in

Size 2.8in, 2.8in

Value MyPictures:Penguins.jpg

2. From the toolbox, drag another Image control onto the design surface and in the Properties window, set the following properties.

Property Name Property Value

Name Image2

Location 3.1in, 0.1in

Size 2.8in, 2.8in

Value MyPictures:Desert.jpg

3. In the Solution Explorer, select DemoReport.rdlx and in the Properties window, set Build Action to Embedded Resource.

To add the new MyPicturesLocator class

1. In the Solution Explorer window, right-click on your project name and select Add and then New Item.
2. In the Add New Item dialog that appears, select Class.
3. Change the name of the class to MyPicturesLocator and click the Add button.
4. Replace the existing code with the following code to the new class.

To write the code in Visual Basic.NET

VB code. Paste on TOP

Imports System
Imports System.Drawing
Imports GrapeCity.ActiveReports.Extensibility
Imports System.Globalization
Imports System.IO
Imports System.Runtime.InteropServices

VB code. Paste INSIDE the class

 Inherits ResourceLocator

 Private Const UriSchemeMyImages As String = "MyPictures:"

 ' Obtain and return the resource.
 Public Overrides Function GetResource(resourceInfo As ResourceInfo) As Resource

ActiveReports 14 1164

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Dim name As String = resourceInfo.Name
 If name Is Nothing OrElse name.Length = 0 Then
 Throw New ArgumentException("The name of resource to be obtained should be non-
empty string.", "name")
 End If
 Dim uri As New Uri(name)
 Dim stream As Stream = GetPictureFromSpecialFolder(name)
 If stream Is Nothing Then
 stream = New MemoryStream()
 End If
 Return New Resource(stream, uri)
 End Function

 ' Returns the specified image from Public Pictures folder.
 Private Shared Function GetPictureFromSpecialFolder(path As String) As Stream
 Dim startPathPos As Integer = UriSchemeMyImages.Length
 If startPathPos >= path.Length Then
 Return Nothing
 End If
 Dim pictureName As String = path.Substring(startPathPos)
 Dim myPicturesPath As String = Environment.GetEnvironmentVariable("public") &
"\Pictures"
 If Not myPicturesPath.EndsWith("\") Then
 myPicturesPath += "\"
 End If
 Dim picturePath As String = System.IO.Path.Combine(myPicturesPath, pictureName)
 If Not File.Exists(picturePath) Then
 Return Nothing
 End If
 Dim stream As New MemoryStream()
 Try
 Dim picture As Image = Image.FromFile(picturePath)
 picture.Save(stream, picture.RawFormat)
 stream.Position = 0
 Catch generatedExceptionName As OutOfMemoryException
 ' The file is not valid image, or GDI+ doesn't support such images.
 Return Nothing
 Catch generatedExceptionName As ExternalException
 Return Nothing
 End Try
 Return stream
End Function

To write the code in C#

C# code. Paste on TOP

using System;
using System.Drawing;
using System.Globalization;
using System.IO;
using System.Runtime.InteropServices;
using System.Windows.Forms;
using GrapeCity.ActiveReports.Extensibility;

ActiveReports 14 1165

Copyright © 2020 GrapeCity, Inc. All rights reserved.

using your_project_name.Properties;

C# code. Paste BELOW the Using statements

namespace your_project_name
{
 // Look for the resources in My Pictures folder.
 internal sealed class MyPicturesLocator : ResourceLocator
 {
 private const string UriSchemeMyImages = "MyPictures:";
 // Obtain and return the resource.
 public override Resource GetResource(ResourceInfo resourceInfo)
 {
 string name = resourceInfo.Name;
 if (name == null || name.Length == 0)
 {
 throw new ArgumentException("The name of resource to be obtained should be
non-empty string.", "name");
 }
 Uri uri = new Uri(name);
 Stream stream = GetPictureFromSpecialFolder(name);
 if (stream == null)
 {
 stream = new MemoryStream();
 }
 return new Resource(stream, uri);
 }
 // Returns the specified image from Public Pictures folder.
 private static Stream GetPictureFromSpecialFolder(string path)
 {
 int startPathPos = UriSchemeMyImages.Length;
 if (startPathPos >= path.ToString().Length)
 {
 return null;
 }
 string pictureName = path.ToString().Substring(startPathPos);
 string myPicturesPath = Environment.GetEnvironmentVariable("public") + \\Pictures;
 if (!myPicturesPath.EndsWith("\\")) myPicturesPath += "\\";
 string picturePath = Path.Combine(myPicturesPath, pictureName);
 if (!File.Exists(picturePath)) return null;
 MemoryStream stream = new MemoryStream();
 try
 {
 Image picture = Image.FromFile(picturePath);
 picture.Save(stream, picture.RawFormat);
 stream.Position = 0;
 }
 catch (OutOfMemoryException) // The file is not valid image, or GDI+ doesn't
support such images.
 {
 return null;
 }
 catch (ExternalException)
 {
 return null;

ActiveReports 14 1166

Copyright © 2020 GrapeCity, Inc. All rights reserved.

file://pictures;/

 }
 return stream;
 }
 }
}

To create the PreviewForm

1. In the Solution Explorer, select the Form1 in the Design view and in the Properties window, set the properties as follows.

Property Name Property Value

Name PreviewForm

Text Preview Form

Size 1015, 770

2. From the Visual Studio toolbox, drag the Viewer control onto the PreviewForm and in the Properties window, set the following
properties.

Property Name Property Value

Name reportPreview1

Dock Fill

3. Double-click the PreviewForm to create an instance for the Load event and add the following code.

To write the code in Visual Basic.NET

VB code. Paste BELOW the Import statements

Imports GrapeCity.ActiveReports.Document
Imports System.IO
Imports GrapeCity.ActiveReports

VB code. Paste INSIDE the Load event

Dim reportData As Stream = [GetType]
().Assembly.GetManifestResourceStream("your_project_name.DemoReport.rdlx")
reportData.Position = 0
Dim reader As New StreamReader(reportData)
Dim def As New PageReport(reader)
def.ResourceLocator = New MyPicturesLocator()
Dim runtime As New PageDocument(def)
reportPreview1.ReportViewer.LoadDocument(runtime)

To write the code in C#

C# code. Paste BELOW the Using statements

using GrapeCity.ActiveReports.Document;
using System.IO;
using GrapeCity.ActiveReports;

C# code. Paste INSIDE the Load event

string myPicturesPath = Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);
Stream reportData =
GetType().Assembly.GetManifestResourceStream("your_project_name.DemoReport.rdlx");

ActiveReports 14 1167

Copyright © 2020 GrapeCity, Inc. All rights reserved.

reportData.Position = 0;
StreamReader reader = new StreamReader(reportData);
PageReport def = new PageReport(reader);
def.ResourceLocator = new MyPicturesLocator();
PageDocument runtime = new PageDocument(def);
reportPreview1.ReportViewer.LoadDocument(runtime);

4. Press F5 to run the project.

Custom Data Provider
A custom data provider allows you to use non-traditional data sources in your page reports, both at run time and at design
time. This walkthrough illustrates how to create a solution with projects that create a custom data provider and
demonstrate how it pulls data from a comma separated values (CSV) file.

This walkthrough is split into the following activities:

Creating a Designer project to demonstrate the custom data provider
Configuring the project to use a custom data provider
Adding a report to show the data
Adding a second project to contain the custom data provider
Adding a button to the query editor

When you complete this walkthrough, you will have a designer pre-loaded with a report that pulls data from a CSV file and
looks like the following.

To create a Designer project to demonstrate the custom data provider

1. In Visual Studio, create a Windows Forms project and name it CustomDataProviderDemo.
2. From the Visual Studio toolbox ActiveReports 14 tab, drag a ReportExplorer and drop it onto the default Windows

form, resizing the form to a comfortable working area.
3. In the Properties window, set the Dock property of the ReportExplorer control to Left.
4. From the toolbox Common Controls tab, drag a RichTextBox control onto the form and set the Dock property to

Top.
5. Add the following text to the Text property. (Drop down the box to ensure that all of the lines of text are added.)

Text. Paste in the Text property of the RichTextBox.

1. In the Report Explorer, right-click the Data Sources node and select Add Data
Source.
2. In the Report Data Source dialog that appears, on the General tab, drop down the

ActiveReports 14 1168

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Type box, select CSV Data Provider, and click OK.
3. In the Report Explorer, right-click DataSource1 and select Add Data Set.
4. In the dialog that appears, select the Query page.
5. Drop down the Query String box to display the custom query editor.
6. Click the Select CSV File button and open the Categories.csv file in this
project.
7. Click OK to save the changes and close the dialog.
8. Click Preview to see the report with data from the csv file.

6. From the toolbox ActiveReports 14 tab, drag a Designer control and drop it on the empty part of the form.
7. Set the Dock property to Fill, then right-click the Designer control on the form and select Bring to front.
8. Select the ReportExplorer control and in the Properties window, drop down the ReportDesigner property and select

Designer1.
9. Double-click on the form's title bar to create a form Load event, and add code like the following above the class.

Visual Basic code. Paste above the class.

Imports System.Xml
Imports System.IO
Imports GrapeCity.ActiveReports.Design

C# code. Paste above the class.

using System.Xml;
using System.IO;
using GrapeCity.ActiveReports.Design;

10. Add the following code to the form Load event.

Visual Basic code. Paste inside the form Load event.

Using reportStream = File.OpenRead("DemoReport.rdlx")
 Using reader = XmlReader.Create(reportStream)
 Designer1.LoadReport(reader, DesignerReportType.Page)
 End Using
End Using

C# code. Paste inside the form Load event.

using (var reportStream = File.OpenRead("DemoReport.rdlx"))
 {
 using (var reader = XmlReader.Create(reportStream))
 {
 designer1.LoadReport(reader, DesignerReportType.Page);
 }
 }

To configure the project to use a custom data provider

1. In the Solution Explorer, right-click the project and select Add, then New Item.
2. In the dialog that appears, select Text File, name it GrapeCity.ActiveReports.config, and click Add.
3. In the Solution Explorer, select the new file and in the Properties window, set its Copy to Output Directory property

to Copy always.
4. Paste the following text into the file and save it. (You can safely ignore the warning that the 'Configuration' element

is not declared.)

ActiveReports 14 1169

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Paste into the config file.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
 <Extensions>
 <Data>
 <Extension Name="CSV" DisplayName="CSV Data Provider"
 Type="CustomDataProvider.CsvDataProvider.CsvDataProviderFactory,
 CustomDataProvider"
 CommandTextEditorType="CustomDataProvider.CSVDataProvider.QueryEditor,
 CustomDataProvider"/>
 </Data>
 </Extensions>
</Configuration>

5. In the Solution Explorer, right-click the project and select Add, then New Item.
6. In the dialog that appears, select Text File, name it Categories.csv, and click Add.
7. In the Solution Explorer, click to select the file, and in the Properties window, change the Copy to Output

Directory property to Copy always.
8. Paste the following text into the file and save it.

Paste into the text file.

EmployeeID(int32),LastName,FirstName,Role,City
1,James,Yolanda,Owner,Columbus
7,Reed,Marvin,Manager,Newton
9,Figg,Murray,Cashier,Columbus
12,Snead,Lance,Store Keeper,Columbus
15,Halm,Jeffry,Store Keeper,Columbus
17,Hames,Alma,Store Keeper,Oak Bay
18,Nicki,Aubrey,Store Keeper,Columbus
24,Cliett,Vikki,Store Keeper,Newton

To add a report to show the data from the custom data provider

1. In the Solution Explorer, right-click the project and select Add, then New Item.
2. In the dialog that appears, select ActiveReports 14 RDL Report, name it DemoReport, and click Add.
3. In the Solution Explorer, click to select the report, and in the Properties window, change the Copy to Output

Directory property to Copy always.
4. From the ActiveReports 14 RDL Report Toolbox, drag a Table report control onto the report.

Note: In case you are still working on Page report layout, set the FixedSize property of the Table control to
display all data on one page.

5. Click inside the table to reveal the table adorners, then right-click the table adorner to the left of the footer row and
select Delete Rows. The footer row is removed from the table.

6. In the Report Explorer, select each of the textboxes in turn and set the properties as in the following table. (If you do
not see the Report Explorer, from the View menu, select Other Windows, then Report Explorer 14.)

TextBox
Name

Value Property BackgroundColor
Property

TextBox1 Name MediumSlateBlue

TextBox2 Role MediumSlateBlue

ActiveReports 14 1170

Copyright © 2020 GrapeCity, Inc. All rights reserved.

TextBox3 City MediumSlateBlue

TextBox4 =Fields!FirstName.Value & " " &
Fields!LastName.Value

TextBox5 =Fields!Role.Value

TextBox6 =Fields!City.Value

7. In the Report Explorer, select the Table1 node and in the Properties window, set the Location property to 0in, 1in
and the Size property to 6in, 0.5in to make the table wide enough to see all of the data.

8. With Table1 still selected in the Properties window, in the DataSetName property, enter the text DataSet1.

To add a class library project to the solution to contain the custom data provider

1. From the File menu, select Add, then New Project.
2. In the Add New Project dialog, select Class Library, and name the project CustomDataProvider.
3. In the Solution Explorer, right-click the default class and select Delete. (We will add our classes to a folder below.)
4. Install packages from nuget as follows:

i) Go to Tools > Nuget Package Manager > Manage Nuget Packages for Solution...
ii) Browse the following packages one by one and click Install.
 GrapeCity.ActiveReports
 GrapeCity.ActiveReports.Extensibility

5. Right-click the CustomDataProvider project and select Add, then New Folder, and name the folder
CSVDataProvider.

6. Right-click the folder and select Add, then Class, then name the class CsvColumn and add code like the following to
replace the default stub in the class.

Visual Basic code

Visual Basic code. Paste it to replace the default stub in the class.

Namespace CSVDataProvider
 ' Represents information about fields in the data source.
 Friend Structure CsvColumn
 Private ReadOnly _fieldName As String
 Private ReadOnly _dataType As Type

 ' Creates a new instance of the CsvColumn class.
 ' The fieldName parameter is the name of the field represented by
this instance of the CsvColumn.
 ' The dataType parameter is the Type of the field represented by
this instance of the CsvColumn.
 Public Sub New(fieldName As String, dataType As Type)
 If fieldName Is Nothing Then
 Throw New ArgumentNullException("fieldName")
 End If
 If dataType Is Nothing Then
 Throw New ArgumentNullException("dataType")
 End If
 _fieldName = fieldName
 _dataType = dataType
 End Sub

ActiveReports 14 1171

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ' Gets the name of the field represented by this instance of the
CsvColumn.
 Public ReadOnly Property FieldName() As String
 Get
 Return _fieldName
 End Get
 End Property

 ' Gets the the Type of the field represented by this instance of the
CsvColumn.
 Public ReadOnly Property DataType() As Type
 Get
 Return _dataType
 End Get
 End Property

 ' Returns a String that represents this instance of the CsvColumn.
 Public Overrides Function ToString() As String
 Return [String].Concat(New String() {FieldName, "(",
DataType.ToString(), ")"})
 End Function

 ' Determines whether two CsvColumn instances are equal.
 ' The obj represents the CsvColumn to compare with the current
CsvColumn.
 ' Returns True if the specified CsvColumn is equal to the current
CsvColumn; otherwise, False.
 Public Overrides Function Equals(obj As Object) As Boolean
 Dim flag As Boolean

 If TypeOf obj Is CsvColumn Then
 flag = Equals(CType(obj, CsvColumn))
 Else
 flag = False
 End If
 Return flag
 End Function

 Private Overloads Function Equals(column As CsvColumn) As Boolean
 Return column.FieldName = FieldName
 End Function

ActiveReports 14 1172

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ' Serves as a hash function for a CsvColumn, suitable for use in
hashing algorithms and data structures like a hash table.
 ' Returns a hash code for the current CsvColumn instance.
 Public Overrides Function GetHashCode() As Integer
 Return (FieldName.GetHashCode() + DataType.GetHashCode())
 End Function
 End Structure
End Namespace

C# code

C# code. Paste it to replace the default stub in the class.

using System;

namespace CustomDataProvider.CSVDataProvider
{
 // Represents information about fields in the data source.
 internal struct CsvColumn
 {
 private readonly string _fieldName;
 private readonly Type _dataType;

 // Creates a new instance of the CsvColumn class.
 // The fieldName parameter is the name of the field represented by
this instance of the CsvColumn.
 // The dataType parameter is the Type of the field represented by
this instance of the CsvColumn.
 public CsvColumn(string fieldName, Type dataType)
 {
 if (fieldName == null)
 throw new ArgumentNullException("fieldName");
 if (dataType == null)
 throw new ArgumentNullException("dataType");
 _fieldName = fieldName;
 _dataType = dataType;
 }

 // Gets the name of the field represented by this instance of the
CsvColumn.
 public string FieldName
 {
 get { return _fieldName; }
 }

 // Gets the the Type of the field represented by this instance of
the CsvColumn.

ActiveReports 14 1173

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 public Type DataType
 {
 get { return _dataType; }
 }

 // Returns a String that represents this instance of the CsvColumn.
 public override string ToString()
 {
 return String.Concat(new string[] {FieldName, "(",
DataType.ToString(), ")"});
 }

 // Determines whether two CsvColumn instances are equal.
 // The obj represents the CsvColumn to compare with the current
CsvColumn.
 // Returns True if the specified CsvColumn is equal to the current
CsvColumn; otherwise, False.
 public override bool Equals(object obj)
 {
 bool flag;

 if (obj is CsvColumn)
 {
 flag = Equals((CsvColumn) obj);
 }
 else
 {
 flag = false;
 }
 return flag;
 }

 private bool Equals(CsvColumn column)
 {
 return column.FieldName == FieldName;
 }

 // Serves as a hash function for a CsvColumn, suitable for use in
hashing algorithms and data structures like a hash table.
 // Returns a hash code for the current CsvColumn instance.
 public override int GetHashCode()
 {
 return (FieldName.GetHashCode() + DataType.GetHashCode());
 }
 }

ActiveReports 14 1174

Copyright © 2020 GrapeCity, Inc. All rights reserved.

}

7. Right-click the CSVDataProvider folder and select Add, then Class, then name the class CsvDataReader and add
code like the following to replace the default stub in the class.

Visual Basic code

Visual Basic code. Paste it to replace the default stub in the class.

Imports System
Imports System.Collections
Imports System.Globalization
Imports System.IO
Imports System.Text.RegularExpressions
Imports GrapeCity.ActiveReports.Extensibility.Data

Namespace CSVDataProvider

 ' Provides an implementation of IDataReader for the .NET Framework CSV Data
Provider.
 Friend Class CsvDataReader
 Implements IDataReader
 'NOTE: HashcodeProvider and Comparer need to be case-insensitive since
TypeNames are capitalized differently in places.
 'Otherwise data types end up as strings when using Int32 vs int32.
 Private _typeLookup As New
Hashtable(StringComparer.Create(CultureInfo.InvariantCulture, False))

 Private _columnLookup As New Hashtable()
 Private _columns As Object()
 Private _textReader As TextReader
 Private _currentRow As Object()

 'The regular expressions are set to be pre-compiled to make it faster. Since
we were concerned about
 'multi-threading, we made the properties read-only so no one can change any
properties on these objects.
 Private Shared ReadOnly _rxDataRow As New Regex(",(?=(?:[^""]*""[^""]*"")*
(?![^""]*""))", RegexOptions.Compiled)
 'Used to parse the data rows.

 Private Shared ReadOnly _rxHeaderRow As New Regex("(?<fieldName>(\w*\s*)*)\
((?<fieldType>\w*)\)", RegexOptions.Compiled)
 'Used to parse the header rows.

 ' Creates a new instance of the CsvDataReader class.
 ' The textReader parameter represents the TextReader to use to read the
data.

ActiveReports 14 1175

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Public Sub New(textReader As TextReader)
 _textReader = textReader
 ParseCommandText()
 End Sub

 ' Parses the passed-in command text.
 Private Sub ParseCommandText()
 If _textReader.Peek() = -1 Then
 Return
 End If
 'Command text is empty or at the end already.
 FillTypeLookup()

 Dim header As String = _textReader.ReadLine()
 header = AddDefaultTypeToHeader(header)

 If Not ParseHeader(header) Then
 Throw New InvalidOperationException(_
 "Field names and types are not defined. " & _
 "The first line in the CommandText must contain the field names and
data types. e.g FirstName(string)")
 End If
 End Sub

 'A hashtable is used to return a type for the string value used in the
header text.
 Private Sub FillTypeLookup()
 _typeLookup.Add("string", GetType([String]))
 _typeLookup.Add("byte", GetType([Byte]))
 _typeLookup.Add("boolean", GetType([Boolean]))
 _typeLookup.Add("datetime", GetType(DateTime))
 _typeLookup.Add("decimal", GetType([Decimal]))
 _typeLookup.Add("double", GetType([Double]))
 _typeLookup.Add("int16", GetType(Int16))
 _typeLookup.Add("int32", GetType(Int32))
 _typeLookup.Add("int", GetType(Int32))
 _typeLookup.Add("integer", GetType(Int32))
 _typeLookup.Add("int64", GetType(Int64))
 _typeLookup.Add("sbyte", GetType([SByte]))
 _typeLookup.Add("single", GetType([Single]))
 _typeLookup.Add("time", GetType(DateTime))
 _typeLookup.Add("date", GetType(DateTime))
 _typeLookup.Add("uint16", GetType(UInt16))
 _typeLookup.Add("uint32", GetType(UInt32))
 _typeLookup.Add("uint64", GetType(UInt64))
 End Sub

ActiveReports 14 1176

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ' Returns a type based on the string value passed in from the header text
string. If no match is found,
 ' a string type is returned.
 ' The fieldType parameter represents the String value from the header
command text string.
 Private Function GetFieldTypeFromString(fieldType As String) As Type
 If _typeLookup.Contains(fieldType) Then
 Return TryCast(_typeLookup(fieldType), Type)
 End If
 Return GetType([String])
 End Function

 ' Parses the first line in the passed-in command text string to create the
field names and field data types.
 ' The field information is stored in a CsvColumn struct, and these column
info items are stored
 ' in an ArrayList. The column name is also added to a hashtable for easy
lookup later.
 ' The header parameter represents the header string that contains all the
fields.
 ' Returns True if it can parse the header string; otherwise False.
 Private Function ParseHeader(header As String) As Boolean
 Dim fieldName As String
 Dim index As Integer = 0
 If header.IndexOf("(") = -1 Then
 Return False
 End If

 Dim matches As MatchCollection = _rxHeaderRow.Matches(header)
 _columns = New Object(matches.Count - 1) {}
 For Each match As Match In matches
 fieldName = match.Groups("fieldName").Value
 Dim fieldType As Type =
GetFieldTypeFromString(match.Groups("fieldType").Value)
 _columns.SetValue(New CsvColumn(fieldName, fieldType), index)
 _columnLookup.Add(fieldName, index)
 index += 1
 Next

 Return True
 End Function

 ' Ensures that the header contains columns in the form of name(type)
 ' The line parameter represents the raw header line from the file to fix up.
 ' Returns a modified header with default types appended to column names.

ActiveReports 14 1177

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Private Shared Function AddDefaultTypeToHeader(line As String) As String
 Const ColumnWithDataTypeRegex As String = "[""]?\w+[\""]?\(.+\)"
 Dim columns As String() = line.Split(New String() {","},
StringSplitOptions.None)
 Dim ret As String = Nothing
 For Each column As String In columns
 If Not String.IsNullOrEmpty(ret) Then
 ret += ","
 End If
 If Not Regex.Match(column, ColumnWithDataTypeRegex).Success Then
 ret += column + "(string)"
 Else
 ret += column
 End If
 Next
 Return ret
 End Function

 ' Parses a row of data using a regular expression and stores the information
inside an object
 ' array that is the current row of data.
 ' If the row does not have the correct number of fields, an exception is
raised.
 ' The dataRow parameter represents the String value representing a comma
delimited data row.
 ' Returns True if it can parse the data string; otherwise False.
 Private Function ParseDataRow(dataRow As String) As Boolean
 Dim index As Integer = 0
 Dim tempData As String() = _rxDataRow.Split(dataRow)

 _currentRow = New Object(tempData.Length - 1) {}
 If tempData.Length <> _columns.Length Then
 Dim [error] As String = String.Format(CultureInfo.InvariantCulture,
_
 "Invalid row ""{0}"". The row does not contain the
same number of data columns as the table header definition.", dataRow)
 Throw New InvalidOperationException([error])
 End If
 For i As Integer = 0 To tempData.Length - 1
 Dim value As String = tempData(i)

 If value.Length > 1 Then
 If value.IndexOf(""""c, 0) = 0 AndAlso value.IndexOf(""""c, 1) =
value.Length - 1 Then
 value = value.Substring(1, value.Length - 2)
 End If
 End If

ActiveReports 14 1178

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 _currentRow.SetValue(ConvertValue(GetFieldType(index), value),
index)
 index += 1
 Next
 Return True
 End Function

 ' Coverts the string value coming from the command text to the appropriate
data type, based on the field's type.
 ' This also checks a few string value rules to decide if a String.Empty of
System.Data.DBNull needs to be returned.
 ' The type parameter represents the Type of the current column the data
belongs to.
 ' The originalValue parameter represents the String value coming from the
command text.
 ' Returns the object resulting from the converted string, based on the type.
 Private Function ConvertValue(type As Type, originalValue As String) As
Object
 Dim fieldType As Type = type
 Dim invariantCulture As CultureInfo = CultureInfo.InvariantCulture
 Try
 If originalValue = """""" OrElse originalValue = " " Then
 Return String.Empty
 End If
 If originalValue = "" Then
 Return DBNull.Value
 End If
 If originalValue = "DBNull" Then
 Return DBNull.Value
 End If
 If fieldType.Equals(GetType([String])) Then
 Return originalValue.Trim()
 End If
 If fieldType.Equals(GetType(Int32)) Then
 Return Convert.ToInt32(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType([Boolean])) Then
 Return Convert.ToBoolean(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType(DateTime)) Then
 Return Convert.ToDateTime(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType([Decimal])) Then
 Return Convert.ToDecimal(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType([Double])) Then
 Return Convert.ToDouble(originalValue, invariantCulture)

ActiveReports 14 1179

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 End If
 If fieldType.Equals(GetType(Int16)) Then
 Return Convert.ToInt16(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType(Int64)) Then
 Return Convert.ToInt64(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType([Single])) Then
 Return Convert.ToSingle(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType([Byte])) Then
 Return Convert.ToByte(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType([SByte])) Then
 Return Convert.ToSByte(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType(UInt16)) Then
 Return Convert.ToUInt16(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType(UInt32)) Then
 Return Convert.ToUInt32(originalValue, invariantCulture)
 End If
 If fieldType.Equals(GetType(UInt64)) Then
 Return Convert.ToUInt64(originalValue, invariantCulture)
 End If
 Catch e As Exception
 Throw New InvalidOperationException(String.Format("Input value '{0}'
could not be converted to the type '{1}'.", originalValue, type), e)
 End Try
 'If no match is found return DBNull instead.
 Return DBNull.Value
 End Function

#Region "IDataReader Members"

 ' Advances the CsvDataReader to the next record.
 ' Returns True if there are more rows; otherwise, False.
 Public Function Read() As Boolean Implements IDataReader.Read
 If _textReader.Peek() > -1 Then
 ParseDataRow(_textReader.ReadLine())
 Else
 Return False
 End If

 Return True
 End Function

ActiveReports 14 1180

Copyright © 2020 GrapeCity, Inc. All rights reserved.

#End Region

#Region "IDisposable Members"

 ' Releases the resources used by the CsvDataReader.
 Public Sub Dispose() Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

 Private Sub Dispose(disposing As Boolean)
 If disposing Then
 If _textReader IsNot Nothing Then
 _textReader.Close()
 End If
 End If

 _typeLookup = Nothing
 _columnLookup = Nothing
 _columns = Nothing
 _currentRow = Nothing
 End Sub

 ' Allows an Object to attempt to free resources and perform
 ' other cleanup operations before the Object is reclaimed by garbage
collection.
 Protected Overrides Sub Finalize()
 Try
 Dispose(False)
 Finally
 MyBase.Finalize()
 End Try
 End Sub

#End Region

#Region "IDataRecord Members"

 ' Gets the number of columns in the current row.
 Public ReadOnly Property FieldCount() As Integer Implements
IDataRecord.FieldCount
 Get
 Return _columns.Length
 End Get
 End Property

ActiveReports 14 1181

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ' The i parameter represents the index of the field to find.
 ' Returns the Type information corresponding to the type of Object that
would be returned from GetValue.
 Public Function GetFieldType(i As Integer) As Type Implements
IDataReader.GetFieldType
 If i > _columns.Length - 1 Then
 Return Nothing
 End If

 Return DirectCast(_columns.GetValue(i), CsvColumn).DataType
 End Function

 ' Gets the name for the field to find.
 ' The i parameter represents the index of the field to find.
 ' Returns the name of the field or an empty string (""), if there is no
value to return.
 Public Function GetName(i As Integer) As String Implements
IDataRecord.GetName
 If i > _columns.Length - 1 Then
 Return String.Empty
 End If

 Return DirectCast(_columns.GetValue(i), CsvColumn).FieldName
 End Function

 ' The name parameter represents the name of the field to find.
 ' Returns the index of the named field.
 Public Function GetOrdinal(name As String) As Integer Implements
IDataRecord.GetOrdinal
 Dim value As Object = _columnLookup(name)
 If value Is Nothing Then
 Throw New IndexOutOfRangeException("name")
 End If
 Return CInt(value)
 End Function

 ' The i parameter represents the index of the field to find.
 ' Returns the Object which contains the value of the specified field.
 Public Function GetValue(i As Integer) As Object Implements
IDataRecord.GetValue
 If i > _columns.Length - 1 Then
 Return Nothing

ActiveReports 14 1182

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 End If

 Return _currentRow.GetValue(i)
 End Function

 Public Overridable Function GetData(fieldIndex As Integer) As IDataReader
Implements IDataReader.GetData
 Throw New NotSupportedException()
 End Function

#End Region
 End Class
End Namespace

C# code

C# code. Paste it to replace the default stub in the class.

using System;
using System.Collections;
using System.Globalization;
using System.IO;
using System.Text.RegularExpressions;
using GrapeCity.ActiveReports.Extensibility.Data;

namespace CustomDataProvider.CSVDataProvider
{

 // Provides an implementation of IDataReader for the .NET Framework CSV Data
Provider.
 internal class CsvDataReader : IDataReader
 {
 //NOTE: HashcodeProvider and Comparer need to be case-insensitive
since TypeNames are capitalized differently in places.
 //Otherwise data types end up as strings when using
Int32 vs int32.
 private Hashtable _typeLookup =
 new
Hashtable(StringComparer.Create(CultureInfo.InvariantCulture, false));
 private Hashtable _columnLookup = new Hashtable();
 private object[] _columns;
 private TextReader _textReader;
 private object[] _currentRow;

 //The regular expressions are set to be pre-compiled to make it
faster. Since we were concerned about
 //multi-threading, we made the properties read-only so no one can
change any properties on these objects.

ActiveReports 14 1183

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 private static readonly Regex _rxDataRow = new Regex(@",(?=(?:
[^""]*""[^""]*"")*(?![^""]*""))", RegexOptions.Compiled);
 //Used to parse the data rows.

 private static readonly Regex _rxHeaderRow =
 new Regex(@"(?<fieldName>(\w*\s*)*)\((?<fieldType>\w*)\)",
RegexOptions.Compiled);
 //Used to parse the header rows.

 // Creates a new instance of the CsvDataReader class.
 // The textReader parameter represents the TextReader to use to read
the data.
 public CsvDataReader(TextReader textReader)
 {
 _textReader = textReader;
 ParseCommandText();
 }

 // Parses the passed-in command text.
 private void ParseCommandText()
 {
 if (_textReader.Peek() == -1)
 return; //Command text is empty or at the end
already.

 FillTypeLookup();

 string header = _textReader.ReadLine();
 header = AddDefaultTypeToHeader(header);

 if (!ParseHeader(header))
 throw new InvalidOperationException(
 "Field names and types are not defined. The
first line in the CommandText must contain the field names and data types. e.g
FirstName(string)");
 }

 //A hashtable is used to return a type for the string value used in
the header text.
 private void FillTypeLookup()
 {
 _typeLookup.Add("string", typeof (String));
 _typeLookup.Add("byte", typeof (Byte));
 _typeLookup.Add("boolean", typeof (Boolean));
 _typeLookup.Add("datetime", typeof (DateTime));
 _typeLookup.Add("decimal", typeof (Decimal));

ActiveReports 14 1184

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 _typeLookup.Add("double", typeof (Double));
 _typeLookup.Add("int16", typeof (Int16));
 _typeLookup.Add("int32", typeof (Int32));
 _typeLookup.Add("int", typeof (Int32));
 _typeLookup.Add("integer", typeof (Int32));
 _typeLookup.Add("int64", typeof (Int64));
 _typeLookup.Add("sbyte", typeof (SByte));
 _typeLookup.Add("single", typeof (Single));
 _typeLookup.Add("time", typeof (DateTime));
 _typeLookup.Add("date", typeof (DateTime));
 _typeLookup.Add("uint16", typeof (UInt16));
 _typeLookup.Add("uint32", typeof (UInt32));
 _typeLookup.Add("uint64", typeof (UInt64));
 }

 // Returns a type based on the string value passed in from the
header text string. If no match is found, a string type is returned.
 // The fieldType parameter represents the String value from the
header command text string.
 private Type GetFieldTypeFromString(string fieldType)
 {
 if (_typeLookup.Contains(fieldType))
 return _typeLookup[fieldType] as Type;
 return typeof (String);
 }

 // Parses the first line in the passed-in command text string to
create the field names and field data types. The field information
 // is stored in a CsvColumn struct, and these column info items are
stored in an ArrayList. The column name is also added
 // to a hashtable for easy lookup later.

 // The header parameter represents the header string that contains
all the fields.
 // Returns True if it can parse the header string; otherwise False.
 private bool ParseHeader(string header)
 {
 string fieldName;
 int index = 0;
 if (header.IndexOf("(") == -1)
 return false;

 MatchCollection matches = _rxHeaderRow.Matches(header);
 _columns = new object[matches.Count];
 foreach (Match match in matches)
 {

ActiveReports 14 1185

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 fieldName = match.Groups["fieldName"].Value;
 Type fieldType =
GetFieldTypeFromString(match.Groups["fieldType"].Value);
 _columns.SetValue(new CsvColumn(fieldName,
fieldType), index);
 _columnLookup.Add(fieldName, index);
 index++;
 }

 return true;
 }

 // Ensures that the header contains columns in the form of
name(type)
 // The line parameter represents the raw header line from the file
to fix up.
 // Returns a modified header with default types appended to column
names.
 private static string AddDefaultTypeToHeader(string line)
 {
 const string ColumnWithDataTypeRegex = @"[""]?\w+[\""]?\
(.+\)";
 string[] columns = line.Split(new string[] { "," },
StringSplitOptions.None);
 string ret = null;
 foreach (string column in columns)
 {
 if (!string.IsNullOrEmpty(ret))
 ret += ",";
 if (!Regex.Match(column,
ColumnWithDataTypeRegex).Success)
 {
 ret += column + "(string)";
 }
 else
 {
 ret += column;
 }
 }
 return ret;
 }

 // Parses a row of data using a regular expression and stores the
information inside an object array that is the current row of data.
 // If the row does not have the correct number of fields, an
exception is raised.

ActiveReports 14 1186

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 // The dataRow parameter represents the String value representing a
comma delimited data row.
 // Returns True if it can parse the data string; otherwise False.
 private bool ParseDataRow(string dataRow)
 {
 int index = 0;
 string[] tempData = _rxDataRow.Split(dataRow);

 _currentRow = new object[tempData.Length];
 if (tempData.Length != _columns.Length)
 {
 string error =
 string.Format(CultureInfo.InvariantCulture,
 "Invalid row \"{0}\". The row
does not contain the same number of data columns as the table header definition.",
 dataRow);
 throw new InvalidOperationException(error);
 }
 for (int i = 0; i < tempData.Length; i++)
 {
 string value = tempData[i];

 if (value.Length > 1)
 {
 if (value.IndexOf('"', 0) == 0 &&
value.IndexOf('"', 1) == value.Length - 1)
 value = value.Substring(1,
value.Length - 2);
 }

_currentRow.SetValue(ConvertValue(GetFieldType(index), value), index);
 index++;
 }
 return true;
 }

 // Coverts the string value coming from the command text to the
appropriate data type, based on the field's type.
 // This also checks a few string value rules to decide if a
String.Empty of System.Data.DBNull needs to be returned.
 // The type parameter represents the Type of the current column the
data belongs to.
 // The originalValue parameter represents the String value coming
from the command text.
 // Returns the object resulting from the converted string, based on
the type.
 private object ConvertValue(Type type, string originalValue)

ActiveReports 14 1187

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 {
 Type fieldType = type;
 CultureInfo invariantCulture = CultureInfo.InvariantCulture;
 try
 {
 if (originalValue == "\"\"" || originalValue == " ")
 return string.Empty;
 if (originalValue == "")
 return DBNull.Value;
 if (originalValue == "DBNull")
 return DBNull.Value;
 if (fieldType.Equals(typeof (String)))
 return originalValue.Trim();
 if (fieldType.Equals(typeof (Int32)))
 return Convert.ToInt32(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (Boolean)))
 return Convert.ToBoolean(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (DateTime)))
 return Convert.ToDateTime(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (Decimal)))
 return Convert.ToDecimal(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (Double)))
 return Convert.ToDouble(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (Int16)))
 return Convert.ToInt16(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (Int64)))
 return Convert.ToInt64(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (Single)))
 return Convert.ToSingle(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (Byte)))
 return Convert.ToByte(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (SByte)))
 return Convert.ToSByte(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (UInt16)))
 return Convert.ToUInt16(originalValue,
invariantCulture);
 if (fieldType.Equals(typeof (UInt32)))
 return Convert.ToUInt32(originalValue,

ActiveReports 14 1188

Copyright © 2020 GrapeCity, Inc. All rights reserved.

invariantCulture);
 if (fieldType.Equals(typeof (UInt64)))
 return Convert.ToUInt64(originalValue,
invariantCulture);
 }
 catch (Exception e)
 {
 throw new InvalidOperationException(
 string.Format("Input value '{0}' could not
be converted to the type '{1}'.", originalValue, type), e);
 }
 //If no match is found return DBNull instead.
 return DBNull.Value;
 }

 #region IDataReader Members

 // Advances the CsvDataReader to the next record.
 // Returns True if there are more rows; otherwise, False.
 public bool Read()
 {
 if (_textReader.Peek() > -1)
 ParseDataRow(_textReader.ReadLine());
 else
 return false;

 return true;
 }

 #endregion

 #region IDisposable Members

 // Releases the resources used by the CsvDataReader.
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (disposing)
 {
 if (_textReader != null)
 _textReader.Close();

ActiveReports 14 1189

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 }

 _typeLookup = null;
 _columnLookup = null;
 _columns = null;
 _currentRow = null;
 }

 // Allows an Object to attempt to free resources and perform other
cleanup operations before the Object is reclaimed by garbage collection.
 ~CsvDataReader()
 {
 Dispose(false);
 }

 #endregion

 #region IDataRecord Members

 // Gets the number of columns in the current row.
 public int FieldCount
 {
 get { return _columns.Length; }
 }

 // The i parameter represents the index of the field to find.
 // Returns the Type information corresponding to the type of Object
that would be returned from GetValue.
 public Type GetFieldType(int i)
 {
 if (i > _columns.Length - 1)
 return null;

 return ((CsvColumn) _columns.GetValue(i)).DataType;
 }

 // Gets the name for the field to find.
 // The i parameter represents the index of the field to find.
 // Returns the name of the field or an empty string (""), if there
is no value to return.
 public string GetName(int i)
 {
 if (i > _columns.Length - 1)
 return string.Empty;

ActiveReports 14 1190

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 return ((CsvColumn) _columns.GetValue(i)).FieldName;
 }

 // The name parameter represents the name of the field to find.
 // Returns the index of the named field.
 public int GetOrdinal(string name)
 {
 object value = _columnLookup[name];
 if (value == null)
 throw new IndexOutOfRangeException("name");
 return (int) value;
 }

 // The i parameter represents the index of the field to find.
 // Returns the Object which contains the value of the specified
field.
 public object GetValue(int i)
 {
 if (i > _columns.Length - 1)
 return null;

 return _currentRow.GetValue(i);
 }

 public virtual IDataReader GetData(int fieldIndex)
 {
 throw new NotSupportedException();
 }

 #endregion
 }
}

8. Right-click the CSVDataProvider folder and select Add, then Class, then name the class CsvCommand and add code
like the following to replace the default stub in the class.

Visual Basic code

Visual Basic code. Paste it to replace the default stub in the class.

Imports System
Imports System.IO
Imports GrapeCity.ActiveReports.Extensibility.Data

Namespace CSVDataProvider

ActiveReports 14 1191

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ' Provides the IDbCommand implementation for the .NET Framework CSV Data
Provider.
 Public NotInheritable Class CsvCommand
 Implements IDbCommand
 Private _commandText As String
 Private _connection As IDbConnection
 Private _commandTimeout As Integer
 Private _commandType As CommandType

 ' Creates a new instance of the CsvCommand class.
 Public Sub New()
 Me.New(String.Empty)
 End Sub

 ' Creates a new instance of the CsvCommand class with command text.
 ' The commandText parameter represents the command text.
 Public Sub New(commandText As String)
 Me.New(commandText, Nothing)
 End Sub

 ' Creates a new instance of the CsvCommand class with command text and a
CsvConnection.
 ' The commandText parameter represents the command text.
 ' The connection parameter represents a CsvConnection to a data source.
 Public Sub New(commandText As String, connection As CsvConnection)
 _commandText = commandText
 _connection = connection
 End Sub

 ' Gets or sets the command to execute at the data source.
 Public Property CommandText() As String Implements IDbCommand.CommandText
 Get
 Return _commandText
 End Get
 Set(value As String)
 _commandText = value
 End Set
 End Property

 ' Gets or sets the wait time before terminating an attempt to execute the
command and generating an error.
 Public Property CommandTimeout() As Integer Implements
IDbCommand.CommandTimeout

ActiveReports 14 1192

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Get
 Return _commandTimeout
 End Get

 Set(value As Integer)
 _commandTimeout = value
 End Set
 End Property

 ' Gets or sets a value indicating how the CommandText property is
interpreted.
 ' Remarks: We don't use this one for the Csv Data Provider.
 Public Property CommandType() As CommandType Implements
IDbCommand.CommandType
 Get
 Return _commandType
 End Get

 Set(value As CommandType)
 _commandType = value
 End Set
 End Property

 ' Gets or sets the CsvConnection used by this instance of the CsvCommand.
 Public Property Connection() As IDbConnection
 Get
 Return _connection
 End Get

 Set(value As IDbConnection)
 _connection = value
 End Set
 End Property

 ' Sends the CommandText to the CsvConnection, and builds a CsvDataReader
using one of the CommandBehavior values.
 ' The behavior parameter represents a CommandBehavior value.
 ' Returns a CsvDataReader object.
 Public Function ExecuteReader(behavior As CommandBehavior) As IDataReader
Implements IDbCommand.ExecuteReader
 Return New CsvDataReader(New StringReader(_commandText))
 End Function

 ' Returns a string that represents the command text with the parameters

ActiveReports 14 1193

Copyright © 2020 GrapeCity, Inc. All rights reserved.

expanded into constants.
 Public Function GenerateRewrittenCommandText() As String Implements
IDbCommand.GenerateRewrittenCommandText
 Return _commandText
 End Function

 ' Sends the CommandText to the CsvConnection and builds a CsvDataReader.
 ' Returns a CsvDataReader object.
 Public Function ExecuteReader() As IDataReader Implements
IDbCommand.ExecuteReader
 Return ExecuteReader(CommandBehavior.SchemaOnly)
 End Function

#Region "Non implemented IDbCommand Members"

 Public ReadOnly Property Parameters() As IDataParameterCollection Implements
IDbCommand.Parameters
 Get
 Throw New NotImplementedException()
 End Get
 End Property

 Public Property Transaction() As IDbTransaction Implements
IDbCommand.Transaction
 Get
 Throw New NotImplementedException()
 End Get

 Set(value As IDbTransaction)
 Throw New NotImplementedException()
 End Set
 End Property

 Public Sub Cancel() Implements IDbCommand.Cancel

 End Sub

 Public Function CreateParameter() As IDataParameter Implements
IDbCommand.CreateParameter
 Throw New NotImplementedException()
 End Function

#End Region

#Region "IDisposable Members"

ActiveReports 14 1194

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ' Releases the resources used by the CsvCommand.
 Public Sub Dispose() Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

 Private Sub Dispose(disposing As Boolean)
 If disposing Then
 If _connection IsNot Nothing Then
 _connection.Dispose()
 _connection = Nothing
 End If
 End If
 End Sub

#End Region
 End Class
End Namespace

C# code

C# code. Paste it to replace the default stub in the class.

using System;
using System.IO;
using GrapeCity.ActiveReports.Extensibility.Data;

namespace CustomDataProvider.CSVDataProvider
{

 // Provides the IDbCommand implementation for the .NET Framework CSV Data
Provider.
 public sealed class CsvCommand : IDbCommand
 {
 private string _commandText;
 private IDbConnection _connection;
 private int _commandTimeout;
 private CommandType _commandType;

 /// Creates a new instance of the CsvCommand class.
 public CsvCommand()
 : this(string.Empty)
 {
 }

 // Creates a new instance of the CsvCommand class with command text.

ActiveReports 14 1195

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 // The commandText parameter represents the command text.
 public CsvCommand(string commandText)
 : this(commandText, null)
 {
 }

 // Creates a new instance of the CsvCommand class with command text
and a CsvConnection.
 // The commandText parameter represents the command text.
 // The connection parameter represents a CsvConnection to a data
source.?
 public CsvCommand(string commandText, CsvConnection connection)
 {
 _commandText = commandText;
 _connection = connection;
 }

 // Gets or sets the command to execute at the data source.
 public string CommandText
 {
 get { return _commandText; }
 set { _commandText = value; }
 }

 // Gets or sets the wait time before terminating an attempt to
execute the command and generating an error.
 public int CommandTimeout
 {
 get { return _commandTimeout; }

 set { _commandTimeout = value; }
 }

 // Gets or sets a value indicating how the CommandText property is
interpreted.
 // Remarks: We don't use this one for the Csv Data Provider.
 public CommandType CommandType
 {
 get { return _commandType; }

 set { _commandType = value; }
 }

ActiveReports 14 1196

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 // Gets or sets the CsvConnection used by this instance of the
CsvCommand.
 public IDbConnection Connection
 {
 get { return _connection; }

 set { _connection = value; }
 }

 // Sends the CommandText to the CsvConnection, and builds a
CsvDataReader using one of the CommandBehavior values.
 // The behavior parameter represents a CommandBehavior value.
 // Returns a CsvDataReader object.
 public IDataReader ExecuteReader(CommandBehavior behavior)
 {
 return new CsvDataReader(new StringReader(_commandText));
 }

 // Returns a string that represents the command text with the
parameters expanded into constants.
 public string GenerateRewrittenCommandText()
 {
 return _commandText;
 }

 // Sends the CommandText to the CsvConnection and builds a
CsvDataReader.
 // Returns a CsvDataReader object.
 public IDataReader ExecuteReader()
 {
 return ExecuteReader(CommandBehavior.SchemaOnly);
 }

 #region Non implemented IDbCommand Members

 public IDataParameterCollection Parameters
 {
 get { throw new NotImplementedException(); }
 }

 public IDbTransaction Transaction
 {
 get { throw new NotImplementedException(); }

 set { throw new NotImplementedException(); }

ActiveReports 14 1197

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 }

 public void Cancel()
 {

 }

 public IDataParameter CreateParameter()
 {
 throw new NotImplementedException();
 }

 #endregion

 #region IDisposable Members

 // Releases the resources used by the CsvCommand.
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (disposing)
 {
 if (_connection != null)
 {
 _connection.Dispose();
 _connection = null;
 }
 }
 }

 #endregion
 }
}

9. Right-click the CSVDataProvider folder and select Add, then Class, then name the class CsvConnection and add
code like the following to replace the default stub in the class. (You can safely ignore the errors, as they will go away
when you add the CsvConnection class.)

Visual Basic code

Visual Basic code. Paste it to replace the default stub in the class.

Imports System

ActiveReports 14 1198

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Imports System.Collections.Specialized
Imports GrapeCity.ActiveReports.Extensibility.Data

Namespace CSVDataProvider

 ' Provides an implementation of IDbConnection for the .NET Framework CSV Data
Provider.
 Public NotInheritable Class CsvConnection
 Implements IDbConnection
 Private _localizedName As String

 ' Creates a new instance of the CsvConnection class.
 Public Sub New()
 _localizedName = "Csv"
 End Sub

 ' Creates a new instance of the CsvConnection class.
 ' The localizedName parameter represents the localized name for the
CsvConnection instance.
 Public Sub New(localizeName As String)
 _localizedName = localizeName
 End Sub

#Region "IDbConnection Members"

 ' Gets or sets the string used to open the connection to the data source.
 ' Remarks: We don't use this one for the Csv Data Provider.
 Public Property ConnectionString() As String Implements
IDbConnection.ConnectionString
 Get
 Return String.Empty
 End Get

 Set(value As String)

 End Set
 End Property

 ' Gets the amount of time to wait while trying to establish a connection
before terminating
 ' the attempt and generating an error.
 ' Remarks: We don't use this one for the Csv Data Provider.
 Public ReadOnly Property ConnectionTimeout() As Integer Implements
IDbConnection.ConnectionTimeout
 Get
 Throw New NotImplementedException()
 End Get

ActiveReports 14 1199

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 End Property

 ' Begins a data source transaction.
 ' Returns an object representing the new transaction.
 ' Remarks: We don't use this one for the Csv Data Provider.
 Public Function BeginTransaction() As IDbTransaction Implements
IDbConnection.BeginTransaction
 Return Nothing
 End Function

 ' Opens a data source connection.
 ' Remarks: We don't use this one for the Csv Data Provider.
 Public Sub Open() Implements IDbConnection.Open

 End Sub

 ' Closes the connection to the data source. This is the preferred method of
closing any open connection.
 Public Sub Close() Implements IDbConnection.Close
 Dispose()
 End Sub

 ' Creates and returns a CsvCommand object associated with the CsvConnection.
 Public Function CreateCommand() As IDbCommand Implements
IDbConnection.CreateCommand
 Return New CsvCommand(String.Empty)
 End Function

 Public Property DataProviderService() As IDataProviderService Implements
IDbConnection.DataProviderService
 Get
 Return Nothing
 End Get
 Set(value As IDataProviderService)
 End Set
 End Property

#End Region

#Region "IDisposable Members"

 ' Releases the resources used by the CsvConnection.
 Public Sub Dispose() Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

ActiveReports 14 1200

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Private Sub Dispose(disposing As Boolean)
 End Sub

 ' Allows an Object to attempt to free resources and perform other cleanup
operations
 ' before the Object is reclaimed by garbage collection.
 Protected Overrides Sub Finalize()
 Try
 Dispose(False)
 Finally
 MyBase.Finalize()
 End Try
 End Sub

#End Region

#Region "IExtension Members"

 ' Gets the localized name of the CsvConnection.
 Public ReadOnly Property LocalizedName() As String Implements
IDbConnection.LocalizedName
 Get
 Return _localizedName
 End Get
 End Property

 ' Specifies any configuration information for this extension.
 ' The configurationSettings parameter represents a NameValueCollection of the
settings.
 Public Sub SetConfiguration(configurationSettings As NameValueCollection)
Implements IDbConnection.SetConfiguration
 End Sub

#End Region
 End Class
End Namespace

C# code

C# code. Paste it to replace the default stub in the class.

using System;
using System.Collections.Specialized;
using GrapeCity.ActiveReports.Extensibility.Data;

namespace CustomDataProvider.CSVDataProvider
{

 // Provides an implementation of IDbConnection for the .NET Framework CSV

ActiveReports 14 1201

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Data Provider.
 public sealed class CsvConnection : IDbConnection
 {
 private string _localizedName;

 // Creates a new instance of the CsvConnection class.
 public CsvConnection()
 {
 _localizedName = "Csv";
 }

 // Creates a new instance of the CsvConnection class.
 // The localizedName parameter represents the localized name for the
CsvConnection instance.
 public CsvConnection(string localizeName)
 {
 _localizedName = localizeName;
 }

 #region IDbConnection Members

 // Gets or sets the string used to open the connection to the data
source.
 // Remarks: We don't use this one for the Csv Data Provider.
 public string ConnectionString
 {
 get { return string.Empty; }

 set { ; }
 }

 // Gets the amount of time to wait while trying to establish a
connection before terminating the attempt and generating an error.
 // Remarks: We don't use this one for the Csv Data Provider.
 public int ConnectionTimeout
 {
 get { throw new NotImplementedException(); }
 }

 // Begins a data source transaction.
 // Returns an object representing the new transaction.
 // Remarks: We don't use this one for the Csv Data Provider.
 public IDbTransaction BeginTransaction()

ActiveReports 14 1202

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 {
 return null;
 }

 // Opens a data source connection.
 // Remarks: We don't use this one for the Csv Data Provider.
 public void Open()
 {
 ;
 }

 // Closes the connection to the data source. This is the preferred
method of closing any open connection.
 public void Close()
 {
 Dispose();
 }

 // Creates and returns a CsvCommand object associated with the
CsvConnection.
 public IDbCommand CreateCommand()
 {
 return new CsvCommand(string.Empty);
 }

 public IDataProviderService DataProviderService
 {
 get { return null; }
 set { }
 }

 #endregion

 #region IDisposable Members

 // Releases the resources used by the CsvConnection.
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {

ActiveReports 14 1203

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 }

 // Allows an Object to attempt to free resources and perform other
cleanup operations before the Object is reclaimed by garbage collection.
 ~CsvConnection()
 {
 Dispose(false);
 }

 #endregion

 #region IExtension Members

 // Gets the localized name of the CsvConnection.
 public string LocalizedName
 {
 get { return _localizedName; }
 }

 // Specifies any configuration information for this extension.
 // The configurationSettings parameter represents a
NameValueCollection of the settings.
 public void SetConfiguration(NameValueCollection
configurationSettings)
 {
 }

 #endregion
 }
}

10. Right-click the CSVDataProvider folder and select Add, then Class, then name the class CsvDataProviderFactory
and add code like the following to replace the default stub in the class.

Visual Basic code

Visual Basic code. Paste it to replace the default stub in the class.

Imports GrapeCity.ActiveReports.Extensibility.Data
Imports GrapeCity.BI.Data.DataProviders

Namespace CSVDataProvider

 ' Implements the DataProviderFactory for .NET Framework CSV Data Provider.
 Public Class CsvDataProviderFactory
 Inherits DataProviderFactory

ActiveReports 14 1204

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ' Creates new instance of the CsvDataProviderFactory class.
 Public Sub New()
 End Sub

 ' Returns a new instance of the the CsvCommand.
 Public Overrides Function CreateCommand() As IDbCommand
 Return New CsvCommand()
 End Function

 ' Returns a new instance of the the CsvConnection.
 Public Overrides Function CreateConnection() As IDbConnection
 Return New CsvConnection()
 End Function
 End Class
End Namespace

C# code

C# code. Paste it to replace the default stub in the class.

using GrapeCity.ActiveReports.Extensibility.Data;
using GrapeCity.BI.Data.DataProviders;

namespace CustomDataProvider.CSVDataProvider
{

 // Implements the DataProviderFactory for .NET Framework CSV Data Provider.
 public class CsvDataProviderFactory : DataProviderFactory
 {

 // Creates new instance of the CsvDataProviderFactory class.
 public CsvDataProviderFactory()
 {
 }

 // Returns a new instance of the the CsvCommand.
 public override IDbCommand CreateCommand()
 {
 return new CsvCommand();
 }

 // Returns a new instance of the the CsvConnection.
 public override IDbConnection CreateConnection()
 {
 return new CsvConnection();
 }
 }
}

ActiveReports 14 1205

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To add a button to the query editor

1. In the Solution Explorer, right-click the CSVDataProvider folder and select Add, then Class, then name the class
QueryEditor and add code like the following to replace the default stub in the class.

Visual Basic code

Visual Basic code. Paste it to replace the default stub in the class.

Imports System.Collections.Generic
Imports System.Drawing.Design
Imports System.IO
Imports System.Linq
Imports System.Text
Imports System.Text.RegularExpressions
Imports System.Windows.Forms
Imports System.Windows.Forms.Design

Namespace CustomDataProvider.CSVDataProvider
 Public NotInheritable Class QueryEditor
 Inherits UITypeEditor
 Public Overrides Function GetEditStyle(context As
System.ComponentModel.ITypeDescriptorContext) As UITypeEditorEditStyle
 Return UITypeEditorEditStyle.DropDown
 End Function
 Public Overrides Function EditValue(context As
System.ComponentModel.ITypeDescriptorContext, provider As System.IServiceProvider,
value As Object) As Object
 Dim edSvc As IWindowsFormsEditorService =
DirectCast(provider.GetService(GetType(IWindowsFormsEditorService)),
IWindowsFormsEditorService)
 Dim path = ""
 Dim btn = New Button()
 btn.Text = "Select CSV File..."
 Dim pdg = btn.Padding
 pdg.Bottom += 2
 btn.Padding = pdg
 btn.Click += Sub() Using openDlg = New OpenFileDialog()
 openDlg.Filter = "CSV Files (*.csv)|*.csv|All Files (*.*)|*.*"
 If openDlg.ShowDialog() <> DialogResult.OK Then
 path = ""
 Else
 path = openDlg.FileName
 End If
 End Using
 edSvc.DropDownControl(btn)
 If String.IsNullOrEmpty(path) Then
 Return String.Empty
 End If

ActiveReports 14 1206

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 If Not File.Exists(path) Then
 Return String.Empty
 End If
 Return GetCSVQuery(path)
 End Function

 Private Function GetCSVQuery(path As String) As Object
 Dim sr As StreamReader = Nothing
 Try
 sr = New StreamReader(path)
 Dim ret As String = String.Empty
 Dim currentLine As String
 Dim line As Integer = 0
 While (InlineAssignHelper(currentLine, sr.ReadLine())) IsNot Nothing
 If line = 0 Then
 ret += ProcessColumnsDefinition(currentLine) &
Convert.ToString(vbCr & vbLf)
 Else
 ret += currentLine & Convert.ToString(vbCr & vbLf)
 End If
 line += 1
 End While
 Return ret
 Catch generatedExceptionName As IOException
 Return String.Empty
 Finally
 If sr IsNot Nothing Then
 sr.Close()
 End If
 End Try
 End Function
 Private Function ProcessColumnsDefinition(currentLine As String) As String
 Const ColumnWithDataTypeRegex As String = "[""]?\w+[\""]?\(.+\)"
 Dim columns As String() = currentLine.Split(New String() {","},
StringSplitOptions.None)
 Dim ret As String = Nothing
 For Each column As String In columns
 If Not String.IsNullOrEmpty(ret) Then
 ret += ","
 End If
 If Not Regex.Match(column, ColumnWithDataTypeRegex).Success Then
 ret += column & Convert.ToString("(string)")
 Else
 ret += column
 End If
 Next
 Return ret
 End Function
 Private Shared Function InlineAssignHelper(Of T)(ByRef target As T, value As

ActiveReports 14 1207

Copyright © 2020 GrapeCity, Inc. All rights reserved.

T) As T
 target = value
 Return value
 End Function
 End Class
End Namespace

C# code

C# code. Paste it to replace the default stub in the class.

using System;
using System.Collections.Generic;
using System.Drawing.Design;
using System.IO;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;
using System.Windows.Forms;
using System.Windows.Forms.Design;
namespace CustomDataProvider.CSVDataProvider
{
 public sealed class QueryEditor : UITypeEditor
 {
 public override UITypeEditorEditStyle
GetEditStyle(System.ComponentModel.ITypeDescriptorContext context)
 {
 return UITypeEditorEditStyle.DropDown;
 }

 public override object
EditValue(System.ComponentModel.ITypeDescriptorContext context,
System.IServiceProvider provider, object value)
 {
 IWindowsFormsEditorService edSvc =
(IWindowsFormsEditorService)provider.GetService(typeof(IWindowsFormsEditorService));
 var path = "";
 var btn = new Button();
 btn.Text = "Select CSV File...";
 var pdg = btn.Padding;
 pdg.Bottom += 2;
 btn.Padding = pdg;
 btn.Click += delegate
 {
 using (var openDlg = new OpenFileDialog())
 {
 openDlg.Filter = "CSV Files (*.csv)|*.csv|All Files (*.*)|*.*";
 if (openDlg.ShowDialog() != DialogResult.OK)
 path = "";
 else

ActiveReports 14 1208

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 path = openDlg.FileName;
 }
 };
 edSvc.DropDownControl(btn);
 if (string.IsNullOrEmpty(path)) return string.Empty;
 if (!File.Exists(path)) return string.Empty;
 return GetCSVQuery(path);
 }
 private object GetCSVQuery(string path)
 {
 StreamReader sr = null;
 try
 {
 sr = new StreamReader(path);
 string ret = string.Empty;
 string currentLine;
 int line = 0;
 while ((currentLine = sr.ReadLine()) != null)
 {
 if (line == 0)
 ret += ProcessColumnsDefinition(currentLine) + "\r\n";
 else
 ret += currentLine + "\r\n";
 line++;
 }
 return ret;
 }
 catch (IOException)
 {
 return string.Empty;
 }
 finally
 {
 if (sr != null)
 sr.Close();
 }
 }
 private string ProcessColumnsDefinition(string currentLine)
 {
 const string ColumnWithDataTypeRegex = @"[""]?\w+[\""]?\(.+\)";
 string[] columns = currentLine.Split(new string[] { "," },
StringSplitOptions.None);
 string ret = null;
 foreach (string column in columns)
 {
 if (!string.IsNullOrEmpty(ret))
 ret += ",";
 if (!Regex.Match(column, ColumnWithDataTypeRegex).Success)

ActiveReports 14 1209

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 {
 ret += column + "(string)";
 }
 else
 {
 ret += column;
 }
 }
 return ret;
 }
 }
}

2. In the Solution Explorer, right-click the CustomDataProviderDemo project and select Add Reference. In the
Reference Manager dialog that appears, on the Projects tab, select CustomDataProvider and click OK.

3. Run the project, and follow the instructions in the RichTextBox to see the custom data provider in action.

Section Report Walkthroughs
Section Report walkthroughs cover scenarios to introduce the key features of code-based and XML-based section reports.
Learn about different section report walkthroughs categorized as follows.

Data
This section contain the walkthroughs that explain various ways of working with data sources.

Layout
This section contain the walkthroughs that explain how to create different section report layouts.

Chart
This section contain the walkthroughs that demonstrate how to work with the ActiveReports Chart control in a section
report.

Export
This section contains the walkthrough that demonstrates how to set up report custom exporting to PDF, Excel, TIFF,
RTF, and plain text formats.

Script
This section contain the walkthroughs that demonstrate how to embed script in reports so that code becomes
portable when you save a report layout to XML-based RPX format.

Parameters
This section contain the walkthroughs that demonstrate how to use parameters in SubReport and Chart controls.

Web
This section contains the walkthroughs that explain how to create a simple web service for each scenario and how to
create a Document Windows application.

Data
This section contains the following walkthroughs that fall under the Data category.

Basic Data Bound Reports
This walkthrough demonstrates the basics of setting up bound section reports.

Basic XML-Based Reports (RPX)
This walkthrough demonstrates how to create a simple section report, using the XML-based report template.

ActiveReports 14 1210

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Run-Time Data Sources
Describes how to change the report data source at run time using the ReportStart event.

Bind a Section Report to CSV Data Source
Describes how to bind a report to a CSV data source.

Basic Data Bound Reports
In ActiveReports, the simplest reporting style is a tabular listing of fields from a data source.

This walkthrough illustrates the basics of setting up bound reports by introducing the ideas of using the DataSource icon
and dragging fields from the Report Explorer onto the report.

The walkthrough is split up into the following activities:

Adding an ActiveReport to the Visual Studio project
Connecting to a data source
Adding controls to the report
Viewing the report

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptBound.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. On the detail section band, click the Data Source Icon.

ActiveReports 14 1211

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

2. In the Report Data Source dialog that appears, on the OLE DB tab, next to Connection String, click the Build
button.

3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next
button to move to the Connection tab.

4. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open
once you have selected the appropriate database path.

5. Click the Test Connection button to see if you have successfully connected to the database.
6. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
7. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT * FROM Products

8. Click OK to save the data source and return to the report design surface.

To create a layout for the report

1. In the Visual Studio toolbox, expand the ActiveReports 14 Section Report node and drag three TextBox
controls onto the detail section and set the properties of each textbox as indicated:

TextBox1

Property Name Property Value

DataField ProductName

Text Product Name

Location 0, 0in

Size 2.3, 0.2in

TextBox2

Property Name Property Value

DataField QuantityPerUnit

Text Quantity

Location 2.4, 0in

Size 1.5, 0.2in

TextBox3

Property Name Property Value

DataField UnitsInStock

Text Stock

ActiveReports 14 1212

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Location 4, 0in

Size 1, 0.2in

2. Click just below the fields to select the Detail section, and in the Properties Window, set the CanShrink property to
True to eliminate white space in the rendered report.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Basic XML-Based Reports (RPX)
ActiveReports allows you to create reports with embedded script and save them to the XML-based RPX file format. By
embedding script in reports saved as RPX files, you can later load, run, and display reports directly in the viewer control
without rebuilding the application. This walkthrough illustrates how to create a simple report, using the XML-based report
template.

This walkthrough is split into the following activities:

Adding an ActiveReport to the Visual Studio project
Creating a layout for the report
Adding scripting to supply data for the controls
Applying scripting to set alternate row colors in the detail section
Loading an XML-based report from resources

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you have finished this walkthrough, you get a report that looks similar to the following at design time and at run
time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

ActiveReports 14 1213

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (xml-based) and in the Name

field, rename the file as rptScript.
4. Click the Add button to open a new section report in the designer.
5. In the Solution Explorer click the rptScript.rpx item and in the properties window set the Build Action property to

Embedded Resource.

See Quick Start for information on adding different report layouts.

To create a layout for the report

1. In the Visual Studio toolbox, expand the ActiveReports 14 Section Report node and drag three TextBox
controls onto the detail section and set the properties of each textbox as indicated:

TextBox1

Property Name Property Value

DataField ProductName

Text Product Name

Location 0, 0in

Size 2.3, 0.2in

TextBox2

Property Name Property Value

DataField QuantityPerUnit

Text Quantity

Location 2.4, 0in

Size 2.4, 0.2in

TextBox3

Property Name Property Value

DataField UnitsInStock

Text Stock

Location 4, 0in

Size 1, 0.2in

2. Click just below the fields to select the Detail section, and in the Properties Window, set the CanShrink property to
True to eliminate white space in the rendered report.

To add scripting to the report to supply data for the controls

1. Click the Script tab located at the bottom of the report designer to access the script editor.

ActiveReports 14 1214

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. Add the scripting code.

The following example shows what the scripting code looks like.

Warning: Do not access the Fields collection outside the DataInitialize and FetchData events. Accessing the
Fields collection outside of these events is not supported, and has unpredictable results.

To write the script in Visual Basic.NET

Visual Basic.NET script. Paste in the script editor window.

Private Shared m_cnn As System.Data.OleDb.OleDbConnection

Public Sub ActiveReport_ReportStart()
 'Set up a data connection for the report
 Dim connString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\NWIND.mdb"
 Dim sqlString As String = "SELECT * FROM products"

 m_cnn = new System.Data.OleDb.OleDbConnection(connString)
 Dim m_Cmd As System.Data.OleDb.OleDbCommand = new
System.Data.OleDb.OleDbCommand(sqlString, m_cnn)

 If m_cnn.State = System.Data.ConnectionState.Closed Then
 m_cnn.Open
 End If
 rpt.DataSource = m_Cmd.ExecuteReader
End Sub

Public Sub ActiveReport_ReportEnd()
 'Close the data reader and connection
 m_cnn.Close
End Sub

To write the script in C#

C# script. Paste in the script editor window.

private static System.Data.OleDb.OleDbConnection m_cnn;

public void ActiveReport_ReportStart()
{
 //Set up a data connection for the report
 string m_cnnString = @"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\NWIND.mdb";
 string sqlString = "SELECT * FROM products";
 m_cnn = new System.Data.OleDb.OleDbConnection(m_cnnString);
 System.Data.OleDb.OleDbCommand m_Cmd = new
System.Data.OleDb.OleDbCommand(sqlString, m_cnn);

ActiveReports 14 1215

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 if(m_cnn.State == System.Data.ConnectionState.Closed)
 {
 m_cnn.Open();
 }
 rpt.DataSource = m_Cmd.ExecuteReader();
}

public void ActiveReport_ReportEnd()
{
 //Close the data reader and connection
 m_cnn.Close();
}

To add scripting to alternate colors in the detail section

1. Click the Script tab located at the bottom edge of the report designer to access the scripting editor.
2. Add the scripting code to set alternate colors in the rows of the detail section.

The following example shows what the scripting code looks like.

To write the script in Visual Basic.NET

Visual Basic.NET script. Paste in the script editor window.

Dim b as boolean = true

Sub Detail_Format
 if b then
 Me.Detail.BackColor = Color.AliceBlue
 b= false
 else
 me.Detail.BackColor = Color.Cyan
 b = true
 End If
End Sub

To write the script in C#

C# script. Paste in the script editor window.

bool color = true;
public void Detail_Format()
{
 if(color)
 {
 this.Detail.BackColor = System.Drawing.Color.AliceBlue;
 color = false;
 }
 else

ActiveReports 14 1216

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 {
 this.Detail.BackColor = System.Drawing.Color.Cyan;
 color = true;
 }
}

Loading the report to the Viewer

You can quickly view your report at design time by clicking the Preview tab at the bottom of the designer. You can also
load the report to the Viewer control.

Drag the ActiveReports Viewer control from the Visual Studio toolbox onto the Windows Form and set its Dock
property to Fill.
Double-click the title bar of the Windows Form containing the viewer to create a Form_Load event and add the
code needed to load the RPX into a generic ActiveReport and display it in the viewer.

The following example shows what the code for the method looks like.

To write the script in Visual Basic.NET

Visual Basic.NET script. Paste INSIDE the Form_Load event.

Dim sectionReport As New GrapeCity.ActiveReports.SectionReport()
Dim xtr As New System.Xml.XmlTextReader("..\..\rptScript.rpx")
sectionReport.LoadLayout(xtr)
xtr.Close()
Viewer1.LoadDocument(sectionReport)

To write the script in C#

C# script. Paste INSIDE the Form_Load event.

GrapeCity.ActiveReports.SectionReport sectionReport = new
GrapeCity.ActiveReports.SectionReport();
System.Xml.XmlTextReader xtr = new
System.Xml.XmlTextReader(@"..\..\rptScript.rpx");
sectionReport.LoadLayout(xtr);
xtr.Close();
viewer1.LoadDocument(sectionReport);

Run-Time Data Sources
ActiveReports allows you to change the data source of a report at run time. This walkthrough illustrates how to change
the data source at run time.

This walkthrough is split up into the following activities:

Adding an ActiveReports to the Visual Studio project
Connecting the report to a design time data source
Adding controls to the report to display data
Adding code to change the data source at run time

ActiveReports 14 1217

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding code to close the data connection
Viewing the report

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptModifyDS.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

Tip: Even if you will change the data source at run time, setting a design time data source allows you to drag fields
onto the report from the Report Explorer.

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, on the OLE DB tab, next to Connection String, click the Build
button.

3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next
button to move to the Connection tab.

4. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open
once you have selected the appropriate database path.

5. Click the Test Connection button to see if you have successfully connected to the database.
6. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
7. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

ActiveReports 14 1218

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

SELECT * FROM Products

8. Click OK to save the data source and return to the report design surface.

To create a layout for the report

1. On the design surface of the report, select the detail section and in the Properties window, set the CanShrink
property to True.

2. In the Report Explorer, expand the Fields node, then the Bound node. Drag the following fields onto the detail
section and in the Properties window, set the following properties.

TextBox1 (ProductID)

Property Name Property Value

Location 0, 0 in

Size 0.5, 0.2 in

TextBox2 (ProductName)

Property Name Property Value

Location 0.6, 0 in

Size 2.8, 0.2 in

TextBox3 (UnitsInStock)

Property Name Property Value

Location 3.5, 0 in

Size 0.5, 0.2 in

Alignment Right

TextBox4 (UnitsOnOrder)

Property Name Property Value

Location 4.1, 0 in

Size 0.5, 0.2 in

Alignment Right

TextBox5 (UnitPrice)

Property Name Property Value

Location 4.7, 0 in

Size 0.9, 0.2 in

Alignment Right

ActiveReports 14 1219

Copyright © 2020 GrapeCity, Inc. All rights reserved.

OutputFormat Currency

To change the data source at run time

To change the data source at run time

1. Double-click in the gray area below rptModifyDS to create an event-handling method for the ReportStart event.
2. Add code to the handler to change the data source at run time.

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste JUST ABOVE the ReportStart event.

Dim conn As System.Data.OleDb.OleDbConnection
Dim reader As System.Data.OleDb.OleDbDataReader

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Dim connString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + "[User
Folder]\Samples14\Data\NWIND.mdb"
conn = New System.Data.OleDb.OleDbConnection(connString)
Dim cmd As New System.Data.OleDb.OleDbCommand("SELECT * FROM Products WHERE UnitPrice =
18", conn)
conn.Open()
reader = cmd.ExecuteReader()
Me.DataSource = reader

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste JUST ABOVE the ReportStart event.

private static System.Data.OleDb.OleDbConnection conn;
private static System.Data.OleDb.OleDbDataReader reader;

C# code. Paste INSIDE the ReportStart event.

string connString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + @"[User
Folder]\Samples14\Data\NWIND.mdb";
conn = new System.Data.OleDb.OleDbConnection(connString);
System.Data.OleDb.OleDbCommand cmd = new System.Data.OleDb.OleDbCommand("SELECT * FROM
Products WHERE UnitPrice = 18", conn);
conn.Open();
reader = cmd.ExecuteReader();
this.DataSource = reader;

To close the data connection

To write the code in Visual Basic

ActiveReports 14 1220

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. In design view of rptModifyDS, drop down the field at the top left of the code view and select (rptModifyDS
Events).

2. Drop down the field at the top right of the code view and select ReportEnd. This creates an event-handling
method for ReportEnd event.

3. Add code to the handler to close the data connection.

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the ReportEnd event.

reader.Close()
conn.Close()

To write the code in C#

1. Click in the gray area below rptModifyDS to select the report.
2. Click the events icon in the Properties Window to display available events for the report.
3. Double-click ReportEnd. This creates an event-handling method for the ReportEnd event.
4. Add code to the handler to close the data connection.

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the ReportEnd event.

reader.Close();
conn.Close();

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Bind a Section Report to CSV Data Source
This walkthrough illustrates binding a section report to a CSV data source.

The walkthrough is split up into the following activities:

Adding an ActiveReport to the Visual Studio project
Connecting to a data source
Creating a layout for the report
Viewing the report

Note: This walkthrough uses the Products_header_tab.csv sample database. The Products_header_tab.csv file can be
downloaded from GitHub: ..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

ActiveReports 14 1221

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptProductsStock.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. On the detail section band, click the Data Source icon.

2. In the Report Data Source dialog, on the CSV tab, click the Build button next to Connection String.
3. To specify the File Path, click the Open button and navigate to the Products_header_tab.csv file.
4. Select the Column Separator as Tab from the drop-down menu. See the Sample CSV Connection String drop-

down in CSV Data Provider topic for further details.
5. Click OK to save the changes and close the Configure CSV Data Source wizard. The Connection String tab

displays the generated connection string as shown below:
Path=C:\\[User folder]\\Samples14\\Data\\Products_header_tab.csv;Locale=en-US;
TextQualifier=";ColumnsSeparator= ;RowsSeparator=\r\n;HasHeaders=True

6. Click OK to close the Report Data Source dialog. You have successfully connected the report to the CSV data
source.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Layout

ActiveReports 14 1222

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This section contains the following walkthroughs that fall under the Layout category.

Address Labels
This walkthrough demonstrates how to create a report that repeats labels using the LayoutAction property.

Columnar Reports
This walkthrough demonstrates how to create a simple report using columns.

Group On Unbound Fields
This walkthrough demonstrates how to set up grouping in an unbound section report.

Mail Merge with RichText
This walkthrough demonstrates how to create a mail-merge report using the RichText control.

Overlaying Reports (Letterhead)
This walkthrough demonstrates how to overlay an ActiveReport with a static letterhead report.

Run-Time Layouts
Describes how to create and modify report layouts dynamically.

Subreports with XML Data
Learn how to use XML data with subreports.

Subreports with Run-Time Data Sources
Learn how to embed a subreport in a main report, passing the data source from the main report to the subreport at
run time.

Address Labels
ActiveReports can be used to print any label size by using the newspaper column layout.

This walkthrough illustrates how to create a report that repeats labels using the LayoutAction property and prints labels to
a laser printer. The labels in this example are 1" x 2.5" and print 30 labels per 8½" x 11" sheet.

The walkthrough is split up into the following activities:

Connecting the report to a data source
Adding controls to the report to display data
Adding code to the detail_Format event to repeat labels
Viewing the report

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you have finished this walkthrough, you get a report that looks similar to the following at design time and at run
time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1223

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptLabels.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, on the OLE DB tab, next to Connection String, click the Build
button.

3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next
button to move to the Connection tab.

4. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open
once you have selected the appropriate database path.

5. Click the Test Connection button to see if you have successfully connected to the database.
6. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
7. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT ContactName, CompanyName, Address, City, PostalCode, Country
FROM Customers

8. Click OK to save the data source and return to the report design surface.

To create a layout for the report

1. Right-click the PageHeader section and select Delete to remove the PageHeader and Footer sections from the
report.

2. In the Report menu, select Settings and change the margins as follows:
Top margin: 0.5
Bottom margin: 0.5
Left margin: 0.2
Right margin: 0.2

3. In the Report Explorer, select Report and in the Properties Window, set the PrintWidth property to 8.1 (the width
of the label sheet less the Left and Right margins).

4. Click the detail section of the report to select it and in the Properties window, set the properties as follows.

Property Name Property Value

ActiveReports 14 1224

Copyright © 2020 GrapeCity, Inc. All rights reserved.

CanGrow False

ColumnCount 3

ColumnDirection AcrossDown

ColumnSpacing 0.2

Height 1

5. From the toolbox, drag six TextBox controls onto the detail section and set the properties of each textbox as
follows.

TextBox1

Property Name Property Value

DataField ContactName

Location 0, 0 in

Size 2.5, 0.2 in

Font > Bold True

TextBox2

Property Name Property Value

DataField CompanyName

Location 0, 0.2 in

Size 2.5, 0.2 in

TextBox3

Property Name Property Value

DataField Address

Location 0, 0.4 in

Size 2.5, 0.2 in

TextBox4

Property Name Property Value

DataField City

Location 0, 0.6 in

Size 2.5, 0.2 in

TextBox5

Property Name Property Value

ActiveReports 14 1225

Copyright © 2020 GrapeCity, Inc. All rights reserved.

DataField PostalCode

Location 0, 0.8 in

Size 1.45, 0.2 in

TextBox6

Property Name Property Value

DataField Country

Location 1.5, 0.8 in

Size 1, 0.2 in

6. Select all of the textboxes, and in the Properties Window, set the CanGrow property to False. This prevents
overlapping text, but may crop data if one of the fields contains more data than the control size allows.

If you preview the report at this point, one copy of each label appears on the page.

To add code to the detail_Format event to repeat labels

1. Double-click in the detail section to create a detail_Format event.
2. Add the following code to the event to repeat each label across all three columns.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Format event.

'print each label three times
Static counter As Integer
counter = counter + 1
If counter <= 2 Then
 Me.LayoutAction = GrapeCity.ActiveReports.LayoutAction.MoveLayout Or
 GrapeCity.ActiveReports.LayoutAction.PrintSection
Else
 Me.LayoutAction = GrapeCity.ActiveReports.LayoutAction.MoveLayout Or
 GrapeCity.ActiveReports.LayoutAction.NextRecord Or
 GrapeCity.ActiveReports.LayoutAction.PrintSection
 counter = 0
End If

To write the code in C#

C# code. Paste JUST ABOVE the Format event.

int counter=0;

C# code. Paste INSIDE the Format event.

//print each label three times
counter = counter + 1;
if (counter <= 2)

ActiveReports 14 1226

Copyright © 2020 GrapeCity, Inc. All rights reserved.

{
 this.LayoutAction = GrapeCity.ActiveReports.LayoutAction.MoveLayout|
GrapeCity.ActiveReports.LayoutAction.PrintSection;
}
else
{
 this.LayoutAction = GrapeCity.ActiveReports.LayoutAction.MoveLayout|
GrapeCity.ActiveReports.LayoutAction.NextRecord|
GrapeCity.ActiveReports.LayoutAction.PrintSection;
 counter = 0;
}

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Columnar Reports
ActiveReports supports newspaper column layouts in both the Detail and Group sections. You can render the columns
either horizontally or vertically in the section with options to break the column on the Group section (i.e. start a new
column on the change of a group).

There is also a Boolean ColumnGroupKeepTogether property on the GroupHeader. When set to True, the
ColumnGroupKeepTogether property attempts to prevent a group from splitting across columns. If a group cannot fit in
the current column, it tries the next. If the group is too large for a single column, the property is ignored.

Note: The ColumnGroupKeepTogether property only works when the GroupHeader's GroupKeepTogether
property is set to All.

This walkthrough illustrates how to create a simple report using columns, and is split up into the following activities:

Connecting the report to a data source
Adding controls to the report to display data
Viewing the report

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

ActiveReports 14 1227

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptColumnar.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, on the OLE DB tab, next to Connection String, click the Build
button.

3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next
button to move to the Connection tab.

4. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open
once you have selected the appropriate database path.

5. Click the Test Connection button to see if you have successfully connected to the database.
6. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
7. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT Country, CompanyName, ContactName, Phone FROM Customers ORDER BY Country

8. Click OK to save the data source and return to the report design surface.

To create a layout for the report

1. Right-click the design surface of the report and select Insert, then Group Header/Footer to add a
GroupHeader/Footer section.

2. Select the group header and in the Properties Window, set the properties as follows.

Property Name Property Value

ActiveReports 14 1228

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name ghCountry

BackColor Gold

DataField Country

ColumnGroupKeepTogether True

GroupKeepTogether All

3. Select the group footer and in the Properties window, set the BackColor property to Goldenrod.
4. In the Report Explorer, drag the Country field onto the GroupHeader section and in the Properties window,

set its properties as follows.

Property Name Property Value

Location 0, 0 in

Size 3.25, 0.2 in

Alignment Center

Font > Size 12

Font > Bold True

5. Select the PageHeader section and in the Properties window, set the BackColor property to Linen.
6. From the toolbox, drag a Label control onto the PageHeader section and in the Properties window, set the

properties as follows:

Property Name Property Value

Location 0, 0 in

Size 6.5, 0.25 in

Alignment Center

Font > Size 14

Text Customer Telephone List by Country

7. Select the Detail section and in the Properties window, set the properties as follows.

Property Name Property Value

CanShrink True

ColumnCount 2

8. In the Report Explorer, expand the Fields node, then the Bound node. Drag the following fields onto the Detail
section and set the properties of each textbox as indicated.

TextBox1

Property Name Property Value

DataField CompanyName

Location 0, 0 in

Size 1.15, 0.2 in

Font > Size 8pt

ActiveReports 14 1229

Copyright © 2020 GrapeCity, Inc. All rights reserved.

TextBox2

Property Name Property Value

DataField ContactName

Location 1.15, 0 in

Size 1.15, 0.2 in

Font > Size 8pt

TextBox3

Property Name Property Value

DataField Phone

Location 2.3, 0 in

Size 0.95, 0.2 in

Font > Size 8pt

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Group On Unbound Fields
ActiveReports allows you to set up grouping in unbound reports. When setting up grouping, the group header's DataField
property is used to retrieve the grouping data from the database in the same manner as a textbox's DataField property.
This walkthrough illustrates how to set up grouping in an unbound report.

This walkthrough is split into the following activities:

Adding code to connect the report to a data source
Adding controls to contain the data
Using the DataInitialize event to add fields to the report's fields collection
Using the FetchData event to populate the report fields
Adding code to close the connection to the data source
Viewing the report

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

ActiveReports 14 1230

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptGroupUnbound.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To add code to connect the report to a data source

1. Double-click the gray area below the report. This creates an event-handling method for the report's ReportStart
event.

2. Add code to the handler to:
Set the data source connection string
Set the data source SQL query
Open the connection and retrieve the data with the data reader

The following examples show what the code for the method looks like in Visual Basic.NET and C#.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste JUST ABOVE the ReportStart event.

Dim connection As System.Data.OleDb.OleDbConnection
Dim reader As System.Data.OleDb.OleDbDataReader

Visual Basic.NET code. Paste INSIDE the ReportStart event.

'Create the data connection and change the data source path as necessary
Dim connectionString As String
connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\NWIND.mdb"

ActiveReports 14 1231

Copyright © 2020 GrapeCity, Inc. All rights reserved.

connection = New System.Data.OleDb.OleDbConnection(connectionString)
connection.Open()

Dim sqlString As String
sqlString = "SELECT * FROM categories INNER JOIN products ON categories.categoryid=
products.categoryid ORDER BY categories.CategoryID"
Dim command As New System.Data.OleDb.OleDbCommand(sqlString, connection)
'Retrieve data
reader = command.ExecuteReader()

To write the code in C#

C# code. Paste JUST ABOVE the ReportStart event.

private System.Data.OleDb.OleDbConnection connection;
private System.Data.OleDb.OleDbDataReader reader;

C# code. Paste INSIDE the ReportStart event.

//Create the data connection and change the data source path as necessary
string connectionString = @"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\NWIND.mdb";
connection=new System.Data.OleDb.OleDbConnection(connectionString);
connection.Open();

string sqlString = "SELECT * FROM categories INNER JOIN products ON
categories.categoryid = products.categoryid ORDER BY categories.CategoryID";
System.Data.OleDb.OleDbCommand command = new System.Data.OleDb.OleDbCommand(sqlString,
connection);

//Retrieve data
reader = command.ExecuteReader();

To create a layout for the report

1. On the design surface of the report, right-click and select Insert, then Group Header/Footer to add group header
and footer sections.

2. Select the group header and in the Properties window, set the properties as follows.

Property Name Property Value

Name ghCategories

BackColor Silver

CanShrink True

DataField CategoryID

GroupKeepTogether All

KeepTogether True

3. Select the group footer, and in the Properties Window, change the Name property to gfCategories.

ActiveReports 14 1232

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. Select the Detail section, and in the Properties Window, change the CanShrink property to True.
5. From the toolbox, drag the following controls to the Group Header section (drag the bottom edge of the section

down to display all of the controls) and in the Properties window, set the properties of each control as follows.

TextBox1

Property Name Property Value

DataField CategoryName

Name txtCategoryName

Text Category Name

Location 0, 0 in

Size 2, 0.2 in

ForeColor Blue

BackColor Silver

Font > Size 12

Font > Bold True

TextBox2

Property Name Property Value

DataField Description

Name txtDescription

Text Description

Location 0, 0.3 in

Size 6, 0.2 in

Label1

Property Name Property Value

Name lblProductName

Text Product Name

Location 0, 0.6 in

Font > Bold True

Label2

Property Name Property Value

Name lblUnitsInStock

Text Units In Stock

ActiveReports 14 1233

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Location 4.4, 0.6 in

Font > Bold True

Alignment Right

6. From the toolbox, drag two Textbox controls to the Detail section and in the Properties window, set the properties
of each control as follows.

TextBox1

Property Name Property Value

DataField ProductName

Name txtProductName

Text Product Name

Location 0, 0 in

Size 4, 0.2 in

TextBox2

Property Name Property Value

DataField UnitsInStock

Name txtUnitsInStock

Text Units In Stock

Location 4.4, 0 in

Alignment Right

7. From the toolbox, drag the following controls to the Group Footer section and in the Properties window, set the
properties of each control as follows.

Label

Property Name Property Value

DataField TotalLabel

Name lblTotalLabel

Location 2, 0 in

Size 2.4, 0.2 in

TextBox

Property Name Property Value

DataField ProductName

ActiveReports 14 1234

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name txtTotalItems

Text Total Items

Location 4.4, 0 in

SummaryType SubTotal

SummaryFunc Count

SummaryRunning Group

SummaryGroup ghCategories

Alignment Right

Line

Property Name Property Value

Name Line1

LineWeight 3

X1 1.2

X2 6.45

Y1 0

Y2 0

8. Right-click the Page Header section and select Delete.

To add fields using the DataInitialize event

Warning: Do not access the Fields collection outside the DataInitialize and FetchData events. Accessing the Fields
collection outside of these events is not supported, and has unpredictable results.

To write the code in Visual Basic

1. Right-click in any section of the design surface of the report, and select View Code to display the code view for the
report.

2. At the top left of the code view of the report, click the drop-down arrow and select (YourReportName Events).
3. At the top right of the code window, click the drop-down arrow and select DataInitialize. This creates an event-

handling method for the report's DataInitialize event.
4. Add code to the handler to add fields to the report's Fields collection.

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the DataInitialize event.

Fields.Add("CategoryID")
Fields.Add("CategoryName")
Fields.Add("ProductName")
Fields.Add("UnitsInStock")

ActiveReports 14 1235

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Fields.Add("Description")
Fields.Add("TotalLabel")

To write the code in C#

1. Click in the gray area below the report to select it.
2. Click the events icon in the Properties Window to display available events for the report.
3. Double-click DataInitialize. This creates an event-handling method for the report's DataInitialize event.
4. Add code to the handler to add fields to the report's Fields collection.

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the DataInitialize event.

Fields.Add("CategoryID");
Fields.Add("CategoryName");
Fields.Add("ProductName");
Fields.Add("UnitsInStock");
Fields.Add("Description");
Fields.Add("TotalLabel");

To populate the fields using the FetchData event

To write the code in Visual Basic

1. At the top left of the code view for the report, click the drop-down arrow and select (YourReportName Events).
2. At the top right of the code window, click the drop-down arrow and select FetchData. This creates an event-

handling method for the report's FetchData event.
3. Add code to the handler to retrieve information to populate the report fields.

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the FetchData event.

Try
 reader.Read()
 Me.Fields("CategoryID").Value = reader("categories.CategoryID")
 Me.Fields("CategoryName").Value = reader("CategoryName")
 Me.Fields("ProductName").Value = reader("ProductName")
 Me.Fields("UnitsInStock").Value = reader("UnitsInStock")
 Me.Fields("Description").Value = reader("Description")
 Me.Fields("TotalLabel").Value = "Total Number of " + reader("CategoryName") + ":"
 eArgs.EOF = False
Catch
 eArgs.EOF = True
End Try

To write the code in C#

1. Back in design view, click in the gray area below the report to select it.
2. Click the events icon in the Properties window to display available events for the report.

ActiveReports 14 1236

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Double-click FetchData. This creates an event-handling method for the report's FetchData event.
4. Add code to the handler to retrieve information to populate the report fields.

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the FetchData event.

try
 {
 reader.Read();
 Fields["CategoryID"].Value = reader["categories.CategoryID"].ToString();
 Fields["CategoryName"].Value = reader["CategoryName"].ToString();
 Fields["ProductName"].Value = reader["ProductName"].ToString();
 Fields["UnitsInStock"].Value = reader["UnitsInStock"].ToString();
 Fields["Description"].Value = reader["Description"].ToString();
 Fields["TotalLabel"].Value = "Total Number of " +
reader["CategoryName"].ToString() + ":";
 eArgs.EOF = false;
 }
catch
 {
 eArgs.EOF = true;
 }

To add code to close the connection to the data source

To write the code in Visual Basic

1. At the top left of the code view for the report, click the drop-down arrow and select (YourReportName Events).
2. At the top right of the code window, click the drop-down arrow and select ReportEnd. This creates an event-

handling method for the report's ReportEnd event.
3. Add code to the handler to close the connection.

Visual Basic.NET code. Paste INSIDE the ReportEnd event.

reader.Close()
connection.Close()

To write the code in C#

1. Back in design view, click in the gray area below the report to select it.
2. Click the events icon in the Properties window to display available events for the report.
3. Double-click ReportEnd. This creates an event-handling method for the report's ReportEnd event.
4. Add code to the handler to close the connection.

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the ReportEnd event.

reader.Close();
connection.Close();

ActiveReports 14 1237

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Mail Merge with RichText
ActiveReports supports field merged reports using the RichText control. The RichText control can contain field place
holders that can be replaced with values (merged) at run time. This walkthrough illustrates how to create a mail-merge
report using the RichText control.

This walkthrough is split up into the following activities:

Adding an ActiveReports to the Visual Studio project
Connecting the report to a data source
Adding controls and formatting the report
Adding fields and text to the RichText control
Using the FetchData event to conditionally format data
Adding code to update RichText fields with current date and conditional values
Adding code to send the group subtotal value to the RichText field
Viewing the report

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

ActiveReports 14 1238

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptLetter.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, on the OLE DB tab, next to Connection String, click the Build
button.

3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next
button to move to the Connection tab.

4. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open
once you have selected the appropriate database path.

5. Click the Test Connection button to see if you have successfully connected to the database.
6. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
7. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT Customers.CustomerID, Customers.CompanyName, Customers.ContactName,
Customers.Address, Customers.City, Customers.Region, Customers.Country,
Customers.PostalCode, Orders.OrderID, Orders.OrderDate, [Order Subtotals].Subtotal
FROM Customers INNER JOIN ([Order Subtotals] INNER JOIN Orders ON [Order
Subtotals].OrderID = Orders.OrderID) ON Customers.CustomerID = Orders.CustomerID

8. Click OK to save the data source and return to the report design surface.

To create a layout for the report

1. On the design surface of the report, right-click and select Insert, then Group Header/Footer to add group header
and footer sections.

2. On the design surface, select the grey area outside the report and in the Properties window, set the PrintWidth
property to 6.5.

3. Select the group header and in the Properties window, set the properties as follows.

ActiveReports 14 1239

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

DataField CustomerID

Height 2.5

KeepTogether True

4. On the design surface of the report, select the group footer section and in the Properties window, set the following
properties.

Property Name Property Value

Height 1.1

KeepTogether True

NewPage After

5. On the design surface of the report, select the detail section and in the Properties window, set the CanShrink
property to True.

6. On the design surface of the report, select the pageHeader section and in the Properties window, set the following
properties.

Property Name Property Value

Height 0.8

BackColor Coral

7. From the toolbox, drag the Label control to the pageHeader section and in the Properties window, set the
properties as follows.

Label

Property Name Property Value

Location 0, 0 in

Size 6.5, 0.65 in

Text GrapeCity

Font > Size 36

Font > Bold True

8. In the Report Explorer, expand the Fields node, then the Bound node. Drag the SubTotal field onto the
groupHeader section and in the Properties window, set the following properties.

Property Name Property Value

Location 4, 0 in

Size 1, 0.2 in

Name txtSubtotal1

OutputFormat Currency

Visible False

SummaryType SubTotal

ActiveReports 14 1240

Copyright © 2020 GrapeCity, Inc. All rights reserved.

SummaryGroup groupHeader1

Note: Even though txtSubtotal1 is hidden, setting its properties is important as it provides the value and the
formatting that is displayed in the RichText control.

9. From the toolbox, drag the following controls to the groupHeader section and in the Properties window, set the
properties as follows.

RichTextBox

Property Name Property Value

Location 0, 0 in

Size 6.5, 2.1 in

AutoReplaceFields True

Label1

Property Name Property Value

Location 0.875, 2.25 in

Size 1, 0.2 in

Text Order ID

Font > Bold True

Label2

Property Name Property Value

Location 1.875, 2.25 in

Size 1, 0.2 in

Text Order Date

Font > Bold True

Label3

Property Name Property Value

Location 4.375, 2.25 in

Size 1, 0.2 in

Text Amount

Font > Bold True

Alignment Right

10. In the Report Explorer, expand the Fields node, then the Bound node. Drag the following fields onto the detail
section and in the Properties window, set the properties of each textbox as follows.

ActiveReports 14 1241

Copyright © 2020 GrapeCity, Inc. All rights reserved.

TextBox1 (OrderID)

Property Name Property Value

Location 0.875, 0 in

Size 1, 0.2 in

TextBox2 (OrderDate)

Property Name Property Value

Location 1.875, 0 in

Size 1, 0.2 in

OutputFormat Date (MM/dd/yy)

TextBox3 (Subtotal)

Property Name Property Value

Location 4.375, 0 in

Size 1, 0.2 in

OutputFormat Currency

Alignment Right

11. From the toolbox, drag the following controls to the groupFooter section and in the Properties window, set the
properties as follows.

Label1

Property Name Property Value

Location 5.15, 0.15 in

Size 1.35, 0.2 in

Text Best regards,

Alignment Right

Label2

Property Name Property Value

Location 5.15, 0.8 in

Size 1.35, 0.2 in

Text Accounts Receivable

To add fields to the RichText control

ActiveReports 14 1242

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Double-click the RichTextBox control box and delete the default text.
2. Right-click the box and choose Insert Fields.
3. In the Insert Field dialog that appears, enter Date and click OK.
4. Place the cursor in front of the text [!Date] that appears in the RichText control, and add spaces until the text is at

the right edge of the control (but not overlapping to the next line).
5. Place the cursor at the end of the text, and press the Enter key to move to the next line.
6. Insert each of the following fields using the Insert Field dialog (see design time image above for fields

arrangement):
CompanyName
ContactName
Address
City
Region
Country
PostalCode
SubTotal

7. Add the following text to the RichText control box after all of the fields.

Paste into the RichText control

Dear [!ContactName],

Thank you for your business. Below is a list of your orders for the past year with
a total of [!SubTotal].
Please take this opportunity to review each order and total for accuracy. Call us
at 1-800-DNT-CALL with
any questions or concerns.

8. Arrange the text and fields within the control as you would in any text editor.

To use the FetchData event to conditionally format data

To write the code in Visual Basic

1. At the top left of the code view for the report, click the drop-down arrow and select (rptLetter Events).
2. At the top right of the code window, click the drop-down arrow and select FetchData. This creates an event-

handling method for the report's FetchData event.
3. Add code to the handler to add a comma and a space if there is a Region value for the customer's address.

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste JUST ABOVE the FetchData event.

Dim region As String

Visual Basic.NET code. Paste INSIDE the FetchData event.

'If there is no region for the customer, display nothing
If Fields("Region").Value Is System.DBNull.Value Then
 region = ""
Else
'If there is a region, add a comma and a space
 region = ", " + Fields("Region").Value
End If

ActiveReports 14 1243

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write the code in C#

1. Back in design view, click in the gray area below the report to select it.
2. Click the events icon in the Properties window to display available events for the report.
3. Double-click FetchData. This creates an event-handling method for the report's FetchData event.
4. Add code to the handler to add a comma and a space if there is a Region value for the customer's address.

The following example shows what the code for the method looks like.

C# code. Paste JUST ABOVE the FetchData event.

string region;

C# code. Paste INSIDE the FetchData event.

if(Fields["Region"].Value is System.DBNull)
 region = "";
else
 region = ", " + Fields["Region"].Value.ToString();

To add code to update RichText fields with the current date and conditional values

1. Double-click in the group header section of the report to create an event-handling method for the group header's
Format event.

2. Add code to the handler to:
Replace the Date field in the RichText control with the current system date
Replace the Region field with the conditional value created in the FetchData event

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Group Header Format event.

'Use the current date in the letter
Me.RichTextBox1.ReplaceField("Date", System.DateTime.Today.Date.ToShortDateString())
'Use the value returned by the FetchData event
Me.RichTextBox1.ReplaceField("Region", region)

To write the code in C#

C# code. Paste INSIDE the Group Header Format event.

//Use the current date in the letter
this.richTextBox1.ReplaceField("Date", System.DateTime.Today.Date.ToShortDateString());
//Use the value returned by the FetchData event
this.richTextBox1.ReplaceField("Region", region);

To add code to send the group subtotal value to the RichText field

To write the code in Visual Basic.NET

1. Right-click in any section of the design window of rptLetter, and click on View Code to display the code view for
the report.

ActiveReports 14 1244

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. At the top left of the code view for rptLetter, click the drop-down arrow and select GroupHeader1.
3. At the top right of the code window, click the drop-down arrow and select BeforePrint. This creates an event-

handling method for rptLetter's GroupHeader1_BeforePrint event.

Note: We use the BeforePrint event instead of the Format event to get the final value of the subtotal field just
prior to printing. For more information on section event usage, see the Section Events topic.

4. Add code to the handler to replace the value of the Subtotal field in the RichText control with the value of the
hidden textbox in the group header.

Visual Basic.NET code. Paste INSIDE the Group Header BeforePrint event.

'Use the value from the hidden group subtotal field
Me.RichTextBox1.ReplaceField("SubTotal", Me.txtSubtotal1.Text)

To write the code in C#

1. Back in design view, click the group header section to select it.
2. Click the events icon in the Properties window to display available events for the group header.
3. Double-click BeforePrint. This creates an event-handling method for the report's BeforePrint event.

Add code to the handler to replace the value of the Subtotal field in the RichText control with the value of the
hidden textbox in the group header.
The following example shows what the code for the method looks like.

C# code. Paste INSIDE the Group Header BeforePrint event.

//Use the value from the hidden group subtotal field
this.richTextBox1.ReplaceField("SubTotal", this.txtSubtotal1.Text);

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Overlaying Reports (Letterhead)
ActiveReports allows you to overlay static report formats over data reports. This walkthrough illustrates how to overlay an
ActiveReport with a static letterhead report.

This walkthrough is split up into the following activities:

Adding an ActiveReports to the Visual Studio project
Connecting the data report to a data source
Adding controls to the letterhead and data reports
Adding code to overlay the data report pages with the letterhead report
Viewing the report

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

ActiveReports 14 1245

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Design-Time Layout (rptLetterhead)

Design-Time Layout (rptData)

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptLetterhead.
4. Click the Add button to open a new section report in the designer.
5. From the Project menu, select Add New Item.
6. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptData.
7. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the rptData to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, on the OLE DB tab, next to Connection String, click the Build
button.

3. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next

ActiveReports 14 1246

Copyright © 2020 GrapeCity, Inc. All rights reserved.

button to move to the Connection tab.
4. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open

once you have selected the appropriate database path.
5. Click the Test Connection button to see if you have successfully connected to the database.
6. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
7. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT * FROM Customers ORDER BY Country

8. Click OK to save the data source and return to the report design surface.

To create a layout for the rptData

1. Select the PageHeader section and in the Properties Window, set the Height property to 0.65. (This will match the
height of the page header in the template.)

2. On the design surface, select the grey area outside the report and in the Properties window, set the PrintWidth
property to 6.5.

3. Right-click the report and select Insert > GroupHeader/Footer to add group header and group footer sections.
4. Select the group header and in the Properties window, set the properties as follows.

Property Name Property Value

Name ghCustomers

BackColor MediumSlateBlue

CanShrink True

DataField Country

GroupKeepTogether FirstDetail

KeepTogether True

5. From the toolbox, drag the following controls to ghCustomers and in the Properties window, set the properties as
follows.

TextBox1

Property Name Property Value

DataField ="Customers in " + Country
(DataField)

Size 2, 0.2 in

Location 0, 0 in

Font Bold True

ForeColor White

Font Size 12

Label1

ActiveReports 14 1247

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

Text ID

Size 0.6, 0.2 in

Location 0, 0.2 in

Font Bold True

ForeColor DarkSlateBlue

Label2

Property Name Property Value

Text Company Name

Size 1.1, 0.2 in

Location 0.7, 0.2 in

Font Bold True

ForeColor DarkSlateBlue

Label3

Property Name Property Value

Text Address

Size 1, 0.2 in

Location 2.7, 0.2 in

Font Bold True

ForeColor DarkSlateBlue

Label4

Property Name Property Value

Text City

Size 1, 0.2 in

Location 5.5, 0.2 in

Font Bold True

ForeColor DarkSlateBlue

6. Click the Detail section and in the Properties window, set the properties as follows.

Property Name Property Value

BackColor LightGray

CanShrink True

ActiveReports 14 1248

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. From the toolbox, drag four TextBox controls onto the Detail section and set the properties of each textbox as
follows.

TextBox1

Property Name Property Value

DataField CustomerID

Size 0.6, 0.2 in

Location 0, 0 in

TextBox2

Property Name Property Value

DataField CompanyName

Size 2, 0.2 in

Location 0.7, 0 in

TextBox3

Property Name Property Value

DataField Address

Size 2.8, 0.2 in

Location 2.7, 0 in

TextBox4

Property Name Property Value

DataField City

Size 1, 0.2 in

Location 5.5, 0.2 in

8. Select the group footer and in the Properties window, set the Height property to 0.

To create a layout for the rptLetterhead

1. Select the Page Header and in the Properties window, set the properties as follows.

Property Name Property Value

BackColor DarkSlateBlue

Height 0.65

2. From the toolbox, drag a Label control onto the Page Header and in the Properties window, set the properties as
follows.

Label1

ActiveReports 14 1249

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

Size 6.5, 0.65 in

Location 0, 0 in

Font Size 36

Font Bold True

ForeColor White

Text GrapeCity

3. Select the Page Footer and in the Properties window, set the BackColor property to DarkSlateBlue.
4. From the toolbox, drag a Label control onto the Page Footer and in the Properties window, set the properties as

follows.

Property
Name

Property Value

Size 6.5, 0.2 in

Location 0, 0 in

Alignment Center

Font Bold True

ForeColor White

Text 984-242-0700,
https://www.grapecity.com/activereportsnet,
us.sales@grapecity.com

To add code to overlay the data report pages with the letterhead report

To write the code in Visual Basic.NET

Add the ActiveReports viewer control to the Windows Form. Then, double-click the top of the Windows Form to
create an event-handling method for the form's Load event. Add code to the handler to:

Set the viewer to display the rptData report document
Overlay rptLetterhead on rptData

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the Form Load event.

 Dim rpt As New rptData()
 rpt.Run()
 Dim rpt2 As New rptLetterhead()
 rpt2.Run()
 Dim i As Integer
 For i = 0 To rpt.Document.Pages.Count - 1
 rpt.Document.Pages(i).Overlay(rpt2.Document.Pages(0))
 Next

ActiveReports 14 1250

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/activereportsnet
mailto:us.sales@grapecity.com

 Viewer1.Document = rpt.Document

To write the code in C#

Add the ActiveReports viewer control to the Windows Form. Then, double-click the top of the Windows Form to
create an event-handling method for the form's Load event. Add code to the handler to:

Set the viewer to display the rptData report document
Overlay rptLetterhead on rptData

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the Form Load event.

 rptData rpt = new rptData();
 rpt.Run();
 rptLetterhead rpt2 = new rptLetterhead();
 rpt2.Run();
 for(int i = 0; i < rpt.Document.Pages.Count; i++)
 {
 rpt.Document.Pages[i].Overlay(rpt2.Document.Pages[0]);
 }
 viewer1.Document = rpt.Document;

To view the report

Open the report in the Viewer. See Windows Forms Viewer for further information.

Run-Time Layouts
ActiveReports objects and controls are completely accessible at run time. You can modify the properties of any of the report
sections or controls to produce a dynamic report. The section Format event allows you to modify the properties of the section
and its controls, including height, visibility, and other visual properties. The Format event is the only event in which you can
modify the printable area of a section. Once this event has run, any changes to the section's height are not reflected in the
report output.

This walkthrough illustrates how to create a report layout at run time based on user input.

Note: Add controls dynamically in the ReportStart event, otherwise, results may be unpredictable. For more information
on events, see the Section Report Events topic.

This walkthrough is split into the following activities:

Adding an ActiveReport to the Visual Studio project
Adding controls to the Windows Form to display fields and a viewer
Generating a dataset for the Windows Form
Adding code to create the report layout
Adding code to fill the check list with fields and to launch the report
Adding code to alternate colors in the detail section
Adding code to the ReportStart event to call the report layout code
Adding code to the button's Click event to collect the selected values and launch the report

ActiveReports 14 1251

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding code to enable the button when fields are selected
Adding code to the Form_Load event to call the fill check list code
Viewing the report

Note: This walkthrough uses the NWind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout (Windows form)

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptRunTime.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To add controls to the form

1. Resize the Windows Form so that it is large enough to accommodate a number of controls.
2. From the Visual Studio toolbox, drag the Panel control to the Windows Form and in the Properties Window, set the

properties as follows.

Panel

Property Name Property Value

Dock Left

Name Panel1

3. From the Visual Studio toolbox, drag the following controls onto the Panel1 and in the Properties Window, set the

ActiveReports 14 1252

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

properties listed below.

Label

Property Name Property Value

Dock Top

Name lblSelectFields

Text Select Fields for Your Report

CheckedListBox

Property Name Property Value

Dock Fill

Name clbFields

Button

Property Name Property Value

Dock Bottom

Name btnGenRep

Text Generate Report

CheckBox

Property Name Property Value

Dock Bottom

Name chkGroup

Text Group By Category ID

4. From the Visual Studio toolbox, drag the Viewer control to the Windows Form and in the Properties Window, set the
properties as follows.

Viewer

Property Name Property Value

Dock Fill

Name Viewer1

To generate a dataset for the Form

1. From the Project menu, select Add New Item.
2. Select DataSet, rename the file NWINDDataSet.xsd and click the Add button.
3. In the DataSet Designer that appears, click the Server Explorer link.
4. In the Server Explorer, expand the node for your local copy of the Northwind database, then the Tables node, and drag

the Products table onto the DataSet designer.

ActiveReports 14 1253

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tip: If you do not see a copy of the Northwind database, click the Connect to Database icon on top of the Server
Explorer and follow the prompts.

5. Open the Form and from the Visual Studio toolbox, drag DataSet onto the Form.
6. From the Add DataSet dialog that appears, select Typed dataset and click OK.

To add code to create the report layout

1. Right-click on rptRunTime and select View Code.
2. Add the following code within the class declaration of the report to:

Create an array of fields
Create an option for whether to use groups
Set properties on the report sections
Add textboxes and labels to the report based on the array of fields
Handle exceptions

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste JUST BELOW the statements at the top of the code view

Imports GrapeCity.ActiveReports.SectionReportModel

Visual Basic.NET code. Paste INSIDE the class declaration of the report.

Private m_arrayFields As ArrayList
Private m_useGroups As Boolean
'Create an array to hold the fields selected by the user
Public WriteOnly Property FieldsList() As ArrayList
 Set(ByVal Value As ArrayList)
 m_arrayFields = Value
 End Set
End Property
'Create a property to hold the user's grouping choice
Public WriteOnly Property UseGroups() As Boolean
 Set(ByVal Value As Boolean)
 m_useGroups = False
 m_useGroups = Value
 End Set
End Property
Private m_defaultHeight As Single = 0.2F
Private m_defaultWidth As Single = 4.0F
Private m_currentY As Single = 0.0F
'Set up report formatting and add fields based on user choices
Private Sub constructReport()
 Try

ActiveReports 14 1254

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Me.Detail1.CanGrow = True
 Me.Detail1.CanShrink = True
 Me.Detail1.KeepTogether = True
 If m_useGroups = True Then
 'If the user wants grouping, add a group header and footer and set the grouping
field
 Me.Sections.InsertGroupHF()
 CType(Me.Sections("GroupHeader1"), GroupHeader).DataField = "CategoryID"
 Me.Sections("GroupHeader1").BackColor = System.Drawing.Color.Gray
 Me.Sections("GroupHeader1").CanGrow = True
 Me.Sections("GroupHeader1").CanShrink = True
 CType(Me.Sections("GroupHeader1"), GroupHeader).RepeatStyle =
RepeatStyle.OnPageIncludeNoDetail
 'Add a textbox to display the group's category ID
 Dim txt As New TextBox
 txt.DataField = "CategoryID"
 txt.Location = New System.Drawing.PointF(0.0F, 0)
 txt.Width = 2.0F
 txt.Height = 0.3F
 txt.Style = "font-weight: bold; font-size: 16pt"
 Me.Sections("GroupHeader1").Controls.Add(txt)
 End If
 Dim i As Integer
 For i = 0 To m_arrayFields.Count - 1
 'For all fields selected by the user (except CategoryID) create a label and a
textbox
 If m_arrayFields(i).ToString <> "CategoryID" Then
 Dim lbl As New Label
 'Set the label to display the name of the selected field
 lbl.Text = m_arrayFields(i) + ":"
 'Set the location of each label
 '(m_currentY gets the height of each control added on each iteration)
 lbl.Location() = New System.Drawing.PointF(0.0F, m_currentY)
 lbl.Width = 0.9F
 lbl.Height = m_defaultHeight
 Me.Detail1.Controls.Add(lbl)
 Dim txt As New TextBox
 'Set the textbox to display data
 txt.DataField = m_arrayFields(i)
 'Set the location of the textbox
 txt.Location = New System.Drawing.PointF(1.0F, m_currentY)
 txt.Width = m_defaultWidth
 txt.Height = m_defaultHeight
 Me.Detail1.Controls.Add(txt)
 'Set the textbox to use currency formatting if the field is UnitPrice
 If m_arrayFields(i) = "UnitPrice" Then
 txt.OutputFormat = "$#.00"
 End If
 'Increment the vertical location by adding the height of the added controls
 m_currentY = m_currentY + m_defaultHeight

ActiveReports 14 1255

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 End If
 Next
 Catch ex As Exception
 System.Windows.Forms.MessageBox.Show("Error in Report-constructReport: " +
ex.Message, "Project Error", System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Error)
 End Try
End Sub

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste JUST BELOW the statements at the top of the code view

using GrapeCity.ActiveReports.SectionReportModel;

C# code. Paste INSIDE the class declaration of the report.

private ArrayList m_arrayFields;
 //Create an array to hold the fields selected by the user
public ArrayList FieldsList
{
 set{m_arrayFields = value;}
}
private bool m_useGroups = false;
 //Create a property to hold the user's grouping choice
public bool UseGroups
{
 set{m_useGroups = value;}
}
float m_defaultHeight = .2f;
float m_defaultWidth = 4f;
float m_currentY = 0f;
 //Set up report formatting and add fields based on user choices
private void constructReport()
{
 try
 {
 this.detail.CanGrow = true;
 this.detail.CanShrink = true;
 this.detail.KeepTogether = true;
 if(m_useGroups)
 {
 //If the user wants grouping, add a group header and footer and set the grouping
field
 this.Sections.InsertGroupHF();
 ((GroupHeader)this.Sections["GroupHeader1"]).DataField = "CategoryID";
 this.Sections["GroupHeader1"].BackColor = System.Drawing.Color.Gray;
 this.Sections["GroupHeader1"].CanGrow = true;
 this.Sections["GroupHeader1"].CanShrink = true;
 ((GroupHeader)this.Sections["GroupHeader1"]).RepeatStyle =

ActiveReports 14 1256

Copyright © 2020 GrapeCity, Inc. All rights reserved.

RepeatStyle.OnPageIncludeNoDetail;
 this.Sections["GroupFooter1"].Height = 0;
 //Add a textbox to display the group's category ID
 TextBox txt = new TextBox();
 txt.DataField = "CategoryID";
 txt.Location = new System.Drawing.PointF(0f,0);
 txt.Width =2f;
 txt.Height = .3f;
 txt.Style = "font-weight: bold; font-size: 16pt;";
 this.Sections["GroupHeader1"].Controls.Add(txt);
 }
 for(int i=0;i<m_arrayFields.Count;i++)
 {
 if(!m_useGroups || (m_useGroups && m_arrayFields[i].ToString() != "CategoryID"))
 //'For all fields selected by the user (except CategoryID) create a label and a
textbox
 {
 Label lbl = new Label();
 //Set the label to display the name of the selected field
 lbl.Text = m_arrayFields[i].ToString() + ":";
 //Set the location of each label
 //(m_currentY gets the height of each control added on each iteration)
 lbl.Location = new System.Drawing.PointF(0f,m_currentY);
 lbl.Width =.9f;
 lbl.Height = m_defaultHeight;
 this.detail.Controls.Add(lbl);
 TextBox txt = new TextBox();
 //Set the textbox to display data
 txt.DataField = m_arrayFields[i].ToString();
 //Set the location of the textbox
 txt.Location = new System.Drawing.PointF(1f,m_currentY);
 txt.Width = m_defaultWidth;
 txt.Height = m_defaultHeight;
 this.detail.Controls.Add(txt);
 //Set the textbox to use currency formatting if the field is UnitPrice
 if (m_arrayFields[i].ToString().Equals("UnitPrice"))
 {
 txt.OutputFormat = "$#.00";
 }
 //Increment the vertical location by adding the height of the added controls
 m_currentY = m_currentY + m_defaultHeight;
 }
 }
 }
 catch(Exception ex)
 {
 System.Windows.Forms.MessageBox.Show("Error in Report-constructReport: " +
ex.Message,"Project
Error",System.Windows.Forms.MessageBoxButtons.OK,System.Windows.Forms.MessageBoxIcon.Error);
 }

ActiveReports 14 1257

Copyright © 2020 GrapeCity, Inc. All rights reserved.

}

To add code to fill the check list with fields and to launch the report

1. Right-click the Windows Form and select View Code.
2. Add code within the class declaration of the form to:

Fill the check list with fields
Launch the report

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste JUST BELOW the statements at the top of the code view

Imports System.Collections

Visual Basic.NET code. Paste INSIDE the class declaration of the form.

Dim i As Integer
Dim c As Integer
Dim m_arrayField As New ArrayList()
Private Sub fillCheckBox()
 For i = 0 To Me.NwindDataSet1.Tables.Count - 1
 For c = 0 To Me.NwindDataSet1.Tables(i).Columns.Count - 1
 Me.clbFields.Items.Add(Me.NwindDataSet1.Tables(i).Columns(c).ColumnName)
 Next
 Next
End Sub
Private Sub launchReport()
 Dim rpt As New rptRunTime()
 Dim dataAdapter As New NWINDDataSetTableAdapters.ProductsTableAdapter
 Try
 rpt.FieldsList = m_arrayField
 rpt.UseGroups = chkGroup.Checked
 dataAdapter.Fill(NwindDataSet1.Products)
 rpt.DataSource = Me.NwindDataSet1.Products
 Viewer1.Document = rpt.Document
 rpt.Run()
 Catch ex As Exception
 System.Windows.Forms.MessageBox.Show(Me, "Error in launchReport: " + ex.Message,
"Project Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
End Sub

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste JUST BELOW the statements at the top of the code view

using System.Collections;

C# code. Paste INSIDE the class declaration of the form.

ActiveReports 14 1258

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ArrayList m_arrayField = new ArrayList();
private void fillCheckBox()
{
 for(int i = 0; i < this.nwindDataSet1.Tables.Count; i++)
 {
 for(int c = 0; c < this.nwindDataSet1.Tables[i].Columns.Count; c++)
 {
 this.clbFields.Items.Add(this.nwindDataSet1.Tables[i].Columns[c].ColumnName);
 }
 }
}
private void launchReport()
{
 try
 {
 rptRunTime rpt = new rptRunTime();
 rpt.FieldsList = m_arrayField;
 rpt.UseGroups = chkGroup.Checked;
 NWINDDataSetTableAdapters.ProductsTableAdapter dataAdapter = new
NWINDDataSetTableAdapters.ProductsTableAdapter();
 dataAdapter.Fill(this.nwindDataSet1.Products);
 rpt.DataSource = this.nwindDataSet1.Products;
 this.Viewer1.Document = rpt.Document;
 rpt.Run();
 }
 catch(Exception ex)
 {
 MessageBox.Show(this,"Error in launchReport: " + ex.Message,"Project
Error",MessageBoxButtons.OK,MessageBoxIcon.Error);
 }
}

To add code to alternate colors in the detail section

1. Double-click the detail section of rptRunTime. This creates an event-handling method for rptRunTime's Detail_Format
event.

2. Add code to the handler to alternate colors for a green bar report effect.

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste JUST ABOVE the Detail Format event.

Dim m_count As Integer

Visual Basic.NET code. Paste INSIDE the Detail Format event.

If m_count Mod 2 = 0 Then
 Me.Detail1.BackColor = System.Drawing.Color.SlateGray
Else
 Me.Detail1.BackColor = System.Drawing.Color.Gainsboro

ActiveReports 14 1259

Copyright © 2020 GrapeCity, Inc. All rights reserved.

End If
m_count = m_count + 1

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste JUST ABOVE the Detail Format event.

int m_count;

C# code. Paste INSIDE the Detail Format event.

if(m_count % 2 == 0)
{
 this.detail.BackColor = System.Drawing.Color.SlateGray;
}
else
{
 this.detail.BackColor = System.Drawing.Color.Gainsboro;
}
 m_count++;

To add code to the ReportStart event to call the report layout code

1. Double-click the gray area below rptRunTime to create an event-handling method for rptRunTime's ReportStart event.
2. Add code to call the constructReport method.

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the ReportStart event.

constructReport()

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the ReportStart event.

constructReport();

To add code to the button's Click event to collect the selected values and launch the report

1. Double-click btnGenRep to create an event-handling method for the button click event.
2. Add code to the handler to collect the selected values and launch the report.

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the button click event.

Me.m_arrayField.Clear()

ActiveReports 14 1260

Copyright © 2020 GrapeCity, Inc. All rights reserved.

For Me.i = 0 To Me.clbFields.CheckedItems.Count - 1
 m_arrayField.Add(Me.clbFields.CheckedItems(i).ToString)
Next
launchReport()

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the button click event.

this.m_arrayField.Clear();
for(int i = 0; i < this.clbFields.CheckedItems.Count; i++)
{
 m_arrayField.Add(this.clbFields.CheckedItems[i].ToString());
}
launchReport();

To add code to enable the button when fields are selected

1. Select the checked list box (clbFields) and go to the Properties Window.
2. At the top of Properties Window, select the Events icon to open the events list.
3. Double-click the SelectedIndexChanged event. This creates an event-handling method for the

clbFields_SelectedIndexChanged event.
4. Add code to the handler to enable the button when fields are selected.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the SelectedIndexChanged event.

If Me.clbFields.CheckedItems.Count < 0 Then
 Me.btnGenRep.Enabled = False
Else
 Me.btnGenRep.Enabled = True
End If

To write the code in C#

C# code. Paste INSIDE the SelectedIndexChanged event.

if(this.clbFields.CheckedItems.Count>0)
{
 this.btnGenRep.Enabled = true;
}
else
{
 this.btnGenRep.Enabled = false;
}

To add code to the Form_Load event to call the fill check list code

ActiveReports 14 1261

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Double-click the title bar of the form. This creates an event-handling method for the Windows Form_Load event.
2. Add code to the handler to call the fillCheckBox() method to populate clbFields with field values and to handle

exceptions.

To write the code in Visual Basic.NET

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the Form Load event.

Try
 fillCheckBox()
Catch ex As Exception
 System.Windows.Forms.MessageBox.Show(Me, "Error in Form1_Load: " + ex.Message, "Project
Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the Form Load event.

try
{
 fillCheckBox();
}
catch(Exception ex)
{
 MessageBox.Show(this,"Error in Form1_Load: " + ex.Message,"Project Error",
MessageBoxButtons.OK,MessageBoxIcon.Error);
}

To view the report

Press F5 to run the project.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Subreports with XML Data
Using XML data requires some setup that is different from other types of data. This walkthrough illustrates how to set up
a subreport bound to the XML DataSource in the parent report.

This walkthrough is split up into the following activities:

Adding an ActiveReport to the Visual Studio project
Connecting the parent report to an XML data source
Adding controls to display the data
Adding code to create a new instance of the subreport

ActiveReports 14 1262

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding code to pass a subset of the parent report's data to the subreport
Viewing the report

Note: This walkthrough uses Customer.xml. The Customer.xml file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptMain.
4. Click the Add button to open a new section report in the designer.
5. From the Project menu, select Add New Item.
6. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptSub.
7. Click the Add button to open a second new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the Parent Report (rptMain) to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog, on the XML tab, click the ellipsis (...) button next to File URL field.
3. In the Open File window that appears, navigate to Customer.xml and click the Open button.
4. In the Recordset Pattern field, enter //CUSTOMER.
5. Click OK to save the data source and return to the report design surface.

To create a layout for the Parent Report (rptMain)

1. On the design surface, select the pageHeader section and in the Properties window, set the Height property to 0.3.
2. On the design surface, select the grey area outside the report and in the Properties window, set the

ActiveReports 14 1263

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

PrintWidth property to 6.5.
3. On the design surface, select the detail section and in the Properties window, set the CanShrink property to True

to eliminate white space.
4. From the toolbox, drag the Label control onto the pageHeader section and in the Properties window, set

the properties as follows.

Property Name Property Value

Text Orders by Customer

Location 0, 0 in

Size 6.5, 0.25 in

Font Arial, 14pt, style=Bold

Alignment Center

5. From the toolbox, drag the controls onto the detail section and in the Properties window, set the properties of
each control as follows.

TextBox1

Property Name Property Value

DataField NAME

Location 1.2, 0 in

Size 2, 0.2 in

Label1

Property Name Property Value

Text Customer Name:

Location 0, 0 in

Size 1.2, 0.2 in

Font Bold True

Label2

Property Name Property Value

Text Orders:

Location 1.2, 0.25 in

Size 1, 0.2 in

Font Bold True

Subreport

Property Name Property Value

ActiveReports 14 1264

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Location 2.3, 0.25 in

Size 4, 1 in

To create a layout for the Child Report (rptSub)

1. On the design surface, select the detail section and in the Properties window, set the properties as follows.

Property Name Property Value

CanShrink True

BackColor LightSteelBlue

Tip: Even if you do not want colors in your finished reports, using background colors on subreports can help in
troubleshooting layout issues.

2. On the design surface, right-click the pageHeader or pageFooter section and select Delete. Subreports do not
render these sections, so deleting them saves processing time.

3. From the toolbox, drag the following controls to the detail section and in the Properties window, set the properties
as follows.

TextBox1

Property Name Property Value

DataField TITLE

Name txtTitle

Location 0, 0 in

Size 2.9, 0.2 in

TextBox2

Property Name Property Value

DataField PRICE

Name txtPrice

Location 3, 0 in

Size 1, 0.2 in

Alignment Right

OutputFormat $#,##0.00 (or select Currency in the dialog)

To add code to create a new instance of the Child Report (rptSub)

Warning: Do not create a new instance of the subreport in the Format event. Doing so creates a new subreport each
time the section Format code is run, which uses a lot of memory.

To write the code in Visual Basic

ActiveReports 14 1265

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Right-click the design surface of rptMain and select View Code.
2. At the top left of the code view of the report, click the drop-down arrow and select (rptMain Events).
3. At the top right of the code window, click the drop-down arrow and select ReportStart. This creates an event-

handling method for the ReportStart event.
4. Add code to the handler to create an instance of rptSub.

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste JUST ABOVE the ReportStart event.

Dim rpt As rptSub

Visual Basic.NET code. Paste INSIDE the ReportStart event.

rpt = New rptSub

To write the code in C#

1. Click in the gray area below rptMain to select it.
2. Click the events icon in the Properties Window to display available events for the report.
3. Double-click ReportStart. This creates an event-handling method for the report's ReportStart event.
4. Add code to the handler to create a new instance of rptSub.

The following example shows what the code for the method looks like.

C# code. Paste JUST ABOVE the ReportStart event.

private rptSub rpt;

C# code. Paste INSIDE the ReportStart event.

rpt = new rptSub();

To add code to pass a subset of the Parent Report's data to the Child Report

To add code to pass a subset of the parent report's data to the subreport

1. Double-click in the detail section of the design surface of rptMain to create a detail_Format event.
2. Add code to the handler to:

Create a new GrapeCity XMLDataSource
Type cast the new data source as rptMain's data source and set the NodeList to the "ORDER/ITEM" field
Display rptSub in the subreport control
Pass the new data source to the subreport

To write the code in Visual Basic

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the Format event.

 Dim xmlDS As New GrapeCity.ActiveReports.Data.XMLDataSource
 xmlDS.NodeList = CType(CType(Me.DataSource,
GrapeCity.ActiveReports.Data.XMLDataSource).Field("ORDER/ITEM", True),
System.Xml.XmlNodeList)
 rpt.DataSource = xmlDS

ActiveReports 14 1266

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 SubReport1.Report = rpt

To write the code in C#

The following example shows what the code for the method looks like.

C# code. Paste INSIDE the Format event.

 GrapeCity.ActiveReports.Data.XMLDataSource xmlDS = new
GrapeCity.ActiveReports.Data.XMLDataSource();
 xmlDS.NodeList = (System.Xml.XmlNodeList)
((GrapeCity.ActiveReports.Data.XMLDataSource) this.DataSource).Field("ORDER/ITEM",
true);
 rpt.DataSource = xmlDS;
 subReport1.Report = rpt;

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Subreports with Run-Time Data Sources
ActiveReports allows section reports to contain any number of child reports using the Subreport control. Child reports, or
subreports, are executed each time the parent section (i.e. the section in which the Subreport control is placed) is
processed. This walkthrough illustrates how to modify the subreport record source from the data in the parent report to
retrieve the correct information.

This walkthrough is split up into the following activities:

Adding a main report and a subreport to a Visual Studio project
Connecting the main report to a data source
Adding controls to the main report to display data and contain the subreport
Adding controls to the subreport to display data
Adding code to save the current record's CategoryID for use in the subreport's SQL query
Adding code to create an instance of the subreport
Adding code to assign a data source for the subreport
Viewing the report

Note: This walkthrough uses tables from the NWind database. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

Design-Time Layout

ActiveReports 14 1267

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptMain.
4. Click the Add button to open a new section report in the designer.
5. From the Project menu, select Add New Item.
6. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptSub.
7. Click the Add button to open a second new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the Parent Report (rptMain) to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, from the OLE DB tab, create a data source connection. See Bind
Reports to a Data Source for further details.

3. Once the connection string field is populated, in the Query field, enter the following SQL query.

SQL Query

SELECT * FROM Categories

4. Click OK to save the data source and return to the report design surface.

To create a layout for the Parent Report (rptMain)

1. In the Report Explorer, select the report and in the Properties window, set the PrintWidth property to 5.75.
2. On the design surface, select the detail section and in the Properties window, set the CanShrink property to True

to eliminate white space.
3. From the toolbox, drag a Label control onto the pageHeader section and in the Properties window, set the

properties as follows.

Property Name Property Value

ActiveReports 14 1268

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name lblProductsbyCategory

Text Products by Category

Location 0, 0 in

Size 5.75, 0.25 in

Font Size 14

Alignment Center

4. From the toolbox, drag the following controls onto the detail section and in the Properties window, set the
properties as follows.

TextBox1

Property Name Property Value

Name txtCategoryID1

DataField CategoryID

Visible False

TextBox2

Property Name Property Value

Name txtCategoryName1

DataField CategoryName

Location 1.15, 0.05 in

Label1

Property Name Property Value

Name lblCategoryName

Text CategoryName:

Location 0, 0.05 in

Size 1.15, 0.2 in

Font Bold True

Label2

Property Name Property Value

Name lblProducts

Text Products:

Location 2.4, 0.05 in

ActiveReports 14 1269

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Font Bold True

Subreport

Property Name Property Value

Name SubReport1

Location 3.5, 0.05 in

Size 2.25, 1 in

To create a layout for the Child Report (rptSub)

1. On the design surface, select the detail section and in the Properties window, set the following properties.

Property Name Property Value

CanShrink True

BackColor AliceBlue

Tip: Even if you do not want colors in your finished reports, using background colors on subreports can help in
troubleshooting layout issues.

2. On the design surface, right-click the pageHeader or pageFooter section and select Delete. Subreports do not
render these sections, so deleting them saves processing time.

3. From the toolbox, drag a TextBox control to the detail section and in the Properties window, set the following
properties.

Property Name Property Value

DataField ProductName

Name txtProductName

Text Product Name

Location 0, 0 in

Size 2.25, 0.2 in

To add code to create an instance of the subreport

Warning: Do not create a new instance of the subreport in the Format event. Doing so creates a new subreport each
time the section Format code is run, which uses a lot of memory.

To write the code in Visual Basic

1. At the top left of the code view for the report, click the drop-down arrow and select (rptMain Events).
2. At the top right of the code window, click the drop-down arrow and select ReportStart. This creates an event-

handling method for the report's ReportStart event.
3. Add code to the handler to create a new instance of the subreport.

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste JUST ABOVE the ReportStart event.

ActiveReports 14 1270

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Private rpt As rptSub
Private childDataSource As New GrapeCity.ActiveReports.Data.OleDBDataSource()

Visual Basic.NET code. Paste INSIDE the ReportStart event.

rpt = New rptSub()

To write the code in C#

1. Click in the gray area below rptMain to select it.
2. Click the events icon in the Properties Window to display available events for the report.
3. Double-click ReportStart. This creates an event-handling method for the report's ReportStart event.
4. Add code to the handler to create a new instance of the subreport.

The following example shows what the code for the method looks like.

C# code. Paste JUST ABOVE the ReportStart event.

private rptSub rpt;
private GrapeCity.ActiveReports.Data.OleDBDataSource childDataSource = new
GrapeCity.ActiveReports.Data.OleDBDataSource();

C# code. Paste INSIDE the ReportStart event.

rpt = new rptSub();

To add code to assign a data source for the Child Report (rptSub)

1. Back in design view of the Parent report (rptMain), double-click the detail section. This creates the Detail_Format
event handler.

2. Add code to the handler to:
Set the connection string for the OleDBDataSource for the subreport
Set the SQL query for the new data source and pass in the current record's CategoryID
Set the data source of the subreport to the data source
Assign rptSub to the SubReport control

To write the code in Visual Basic

The following example shows what the code for the method looks like.

Visual Basic.NET code. Paste INSIDE the Format event.

childDataSource.ConnectionString = CType(Me.DataSource,
GrapeCity.ActiveReports.Data.OleDBDataSource).ConnectionString
childDataSource.SQL = "SELECT * FROM Products WHERE CategoryID = " +
Me.txtCategoryID1.Value.ToString
rpt.DataSource = childDataSource
SubReport1.Report = rpt

To write the code in C#

C# code. Paste INSIDE the Format event.

ActiveReports 14 1271

Copyright © 2020 GrapeCity, Inc. All rights reserved.

childDataSource.ConnectionString =
((GrapeCity.ActiveReports.Data.OleDBDataSource)this.DataSource).ConnectionString;
childDataSource.SQL = "SELECT * FROM Products WHERE CategoryID = " +
this.txtCategoryID1.Value.ToString();
rpt.DataSource = childDataSource;
SubReport1.Report = rpt;

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Chart
This section contains the following walkthroughs that fall under the Chart category.

Bar Chart
This walkthrough demonstrates how to create a bar chart which compares items across categories.

3D Pie Chart
This walkthrough demonstrates how to a three dimensional pie chart which shows how the percentage of each data
item contributes to a total percentage.

Financial Chart
This walkthrough demonstrates how to create a financial chart which lets you plot high, low, opening, and closing
prices.

Unbound Chart
This walkthrough demonstrates how to create a simple unbound chart.

Bar Chart
Bar charts are useful in comparing items across categories. This walkthrough illustrates how to create a simple bar chart
using the ActiveReports chart control.

The walkthrough is split up into the following activities:

Adding a chart control to the report
Setting a data source for the chart
Setting the chart's properties

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at run time.

ActiveReports 14 1272

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as BarChart.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To add the Chart control to the report

1. From the toolbox, drag the Chart data region to the body of the report.
2. If the chart wizard appears, click Cancel.

Tip: If you do not want the chart wizard to appear each time you add a chart, clear the Auto Run Wizard
checkbox. You can still access the wizard via the command verbs (see below).

3. On the design surface, select the grey area outside the report and in the Properties window, set the PrintWidth
property to 6.5.

4. In the Properties window, set the following properties.

Property Name Property Value

Location 0, 0 in

Size 6.5, 3.5 in

5. In the Report Explorer, select Detail1 and go to the properties window to set the Height property to 3.5.

To connect the Chart to a data source

1. Select the Chart control and at the bottom of the Properties window, select the Data Source command. See
Properties Window for further details on accessing commands.

Tip: If the verb is not visible, right-click an empty space in the Properties Window and select Commands to
display verbs.

2. In the Chart DataSource dialog box that appears, click the Build button.
3. In the Data Link Properties window, select Microsoft Jet 4.0 OLE DB Provider and click the Next button.
4. Click the ellipsis button (...) to browse to the Northwind database. Click Open once you have selected the file.
5. Click the OK button to close the window and fill in the Connection String.
6. In the Query field, enter the following SQL query.

SQL Query

SELECT ShipCountry, SUM(Freight) AS FreightSum FROM Orders GROUP BY ShipCountry

7. Click OK to save the data source.

To configure the appearance of the Chart

ActiveReports 14 1273

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. Select the Chart control and at the bottom of the Properties window, select the Customize command. See
Properties Window for further details on accessing commands.

2. In the Chart Designer dialog that appears set the following.

Chart Areas

1. Click the Axes bar on the left to expand it.
2. Click Axis X, and on the Common tab in the pane to the right, type Country in the Title textbox and set the

Font size to 12.
3. On the Labels tab, select the Staggered Labels checkbox to avoid overlapping labels and set the Text

angle property to 45.

4. Click Axis Y on the left, and on the Common tab in the pane to the right, type Freight in the Title textbox
and set the Font size to 12.

Titles

1. Click the Titles bar on the left to expand it. In the list of titles, the header is selected by default.
2. In the Caption textbox, type Simple Bar Chart and increase the Font size to 14.
3. In the list of titles to the left, select the footer and delete it by clicking the Delete icon on top of the list.

Series

1. Click the Series bar on the left. The Series1 is selected by default.
2. In the Data Binding box, set X (Name) to ShipCountry, and set Y to FreightSum.
3. In the list of series to the left, select Series2 and Series3 and delete them by clicking the Delete icon on top

of the list.

Legend

1. Click the Legend bar on the left to expand it. The defaultLegend is selected by default.
2. On the Common tab, clear the Visible checkbox to hide the legend.

3. Click Finish to exit the Chart Designer.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

3D Pie Chart
Pie charts are useful in showing how the percentage of each data item contributes to the total. This walkthrough illustrates

ActiveReports 14 1274

Copyright © 2020 GrapeCity, Inc. All rights reserved.

how to create a three dimensional pie chart.

The walkthrough is split up into the following activities:

Adding a chart control to the report
Adding a series and data points to the chart
Setting the chart's properties

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as 3DPieChart.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To add the Chart control to the report

1. From the toolbox, drag the Chart data region to the body of the report.
2. If the chart wizard appears, click Cancel.

Tip: If you do not want the chart wizard to appear each time you add a chart, clear the Auto Run Wizard
checkbox. You can still access the wizard via the command verbs (see below).

3. In the Properties window, set the following properties.

Property Name Property Value

Location 0, 0in

Size 6.5, 3.5in

4. In the Report Explorer, select Detail1 and go to the properties window to set the Height property to 3.5.
5. On the design surface, select the grey area outside the report and in the Properties window, set the PrintWidth

property to 6.5.

To add a series and data points to the Chart

1. With the chart control selected, go to the Properties window and click the Series (Collection) property , then click
the ellipsis button (...) that appears.

2. In the Series Collection Editor that appears, Series1 is selected by default. There, under Series1 properties, change
the following.

Property Name Property Value

ColorPalette Confetti

Type Doughnut3D

ActiveReports 14 1275

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Click the Points (Collection) property, then click the ellipsis button that appears.
4. In the DataPoint Collection that appears, click the Add button to add a data point.
5. In the DataPoint Collection Editor that appears, go to the Properties window to set the following properties.

Property Name Property Value

LegendText Figs

YValues 19

Properties>ExplodeFactor 0.5

6. Click the Add button to add another data point.
7. In the DataPoint Collection Editor that appears, go to the Properties window to set the following properties.

Property Name Property Value

LegendText Raspberries

YValues 15

8. Click the Add button to add another data point.
9. In the DataPoint Collection Editor that appears, go to the Properties window to set the following properties.

Property Name Property Value

LegendText Blueberries

YValues 37

10. Click the Add button to add another data point.
11. In the DataPoint Collection Editor that appears, go to the Properties window to set the following properties.

Property Name Property Value

LegendText Bananas

YValues 21

12. Click OK to save the data points and return to the Series Collection Editor.
13. In the Series Collection Editor under Members, select Series2 and Series3 and click the Remove button.
14. Click OK to save the changes and return to the report design surface.

To configure the appearance of the Chart

1. With the chart control selected, go to the Properties window and click the ChartAreas (Collection)
property and then click the ellipsis button that appears.

2. In the ChartArea Collection Editor that appears, expand the Projection property node and set
the VerticalRotation property to 50. This allows you to see more of the top of the pie.

3. Click OK to return to the report design surface.
4. With the chart control highlighted, go to the Properties window and click the Titles (Collection) property and then

click the ellipsis button that appears.
5. In the Title Collection Editor that appears, under header properties, set the following properties.

Property Name Property Value

Text 3D Pie Chart

Font Size 14

6. Under Members, select the footer and click the Remove button.
7. Click OK to return to the report design surface.

ActiveReports 14 1276

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Financial Chart
Financial charts are useful for displaying stock information using High, Low, Open and Close values. This walkthrough
illustrates how to create a Candle chart.

The walkthrough is split up into the following activities:

Adding a chart control to the report
Adding a series and data points to the chart
Setting the chart's properties

When you complete this walkthrough you get a layout that looks similar to the following at design time and at run time.

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as FinancialChart.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To add the Chart control to the report

1. From the toolbox, drag the Chart data region to the body of the report.
2. If the chart wizard appears, click Cancel.

Tip: If you do not want the chart wizard to appear each time you add a chart, clear the Auto Run Wizard
checkbox. You can still access the wizard via the command verbs (see below).

3. In the Properties window, set the following properties.

Property Name Property Value

Location 0, 0in

Size 6.5, 3.5in

4. In the Report Explorer, select Detail1 and go to the properties window to set the Height property to 3.5.On the
design surface, select the grey area outside the report and in the Properties window, set the PrintWidth property

ActiveReports 14 1277

Copyright © 2020 GrapeCity, Inc. All rights reserved.

to 6.5.

To add a series and data points to the Chart

1. With the chart control selected, go to the Properties window and click the Series (Collection) property and then
click the ellipsis button.

2. In the Series Collection Editor that appears, Series1 is selected by default. There, under Series1 properties, change
the following.

Property Name Property Value

Type Candle

Properties>BodyDownswingBackdrop (Default)

Properties>BodyDownswingBackdrop>Color Fuchsia

Properties>BodyUpswingBackdrop (Default)

Properties>BodyUpswingBackdrop>Color DarkViolet

Properties>BodyWidth 5

Properties>WickLine (Default)

Legend (none)

3. Click the Points (Collection) property, then click the ellipsis button that appears.
4. In the DataPoint Collection window that appears, click Add to add a data point and set its YValues property to 99;

37; 53; 88.

Note: The first Y value is the high figure or top of the wick; the second is the low figure, or bottom of the wick;
the third is the opening figure; the fourth is the closing figure. If the fourth figure is higher than the third, the
candle is DarkViolet, the BodyUpswingBackdrop.

5. Click Add to add another data point and set its YValues property to 115; 22; 101; 35.
6. Click Add to add another data point, and set its YValues property to 87; 1; 7; 80.
7. Click Add to add another data point, and set its YValues property to 63; 14; 57; 25.
8. Click Add to add another data point, and set its YValues property to 130; 25; 25; 120.
9. Click OK to save the data points and close the window.

10. In the Series Collection Editor under Members, select Series2 and Series3 and click the Remove button.
11. Click OK to return to the report design surface.

To configure the appearance of the Chart

1. With the chart control selected, go to the Properties window and click the ChartAreas (Collection) property
and then click the ellipsis button that appears.

2. In the ChartArea Collection Editor that appears, under defaultArea properties, click the Axes (Collection)
property, then click the ellipsis button that appears.

3. In the AxisBase Collection Editor that appears, set the following properties.

AxisBase

1. Under AxisX properties, in the Title property delete the default text.
2. Click the Labels (Collection) property, then click the ellipsis button that appears. This is where you add the

labels that appear along the X axis, the line across the bottom of the chart.
3. In the Array Data Editor that appears, enter the following into the editor, each item on a separate line:

Monday

ActiveReports 14 1278

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Tuesday
Wednesday
Thursday
Friday

4. Click the OK button to return to the AxisBase Collection Editor.
5. Under Members, select the AxisY member, and under AxisY properties set the following properties.

Property Name Property Value

MajorTick>Step 10

LabelsVisible True

Min 0

Title $,000

6. Click OK to return to the ChartArea Collection Editor.
4. Click OK to return to the report design surface and see the changes reflected in the chart.
5. With the chart control selected, go to the Properties window and click the Titles (Collection) property and then

click the ellipsis button that appears.
6. In the Title Collection Editor that appears, set the following properties.

Titles

1. Under header properties, set the Text property to Candle Chart.
2. Expand the Font property and set Font Size to 14.
3. Under Members, select footer and click the Remove button.

7. Click OK to return to the report design surface.
8. With the Chart control selected, go to the Properties window and click the Legends (Collection) property and then

click the ellipsis button that appears.
9. In the Legend Collection Editor that appears, set the following properties.

Legends

1. In the Properties window, set the Visible property to False.
2. Click OK to return to the report design surface and see the completed chart.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Unbound Chart
The Chart control allows you to bind charts to any type of data source, including arrays. You can create a chart without
setting its data source and load the data into the control at run time. This walkthrough illustrates how to create a simple
unbound chart.

The walkthrough is split up into the following activities:

ActiveReports 14 1279

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding the chart control to the report and setting chart properties
Adding code to create the chart at run time

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you complete this walkthrough you get a layout that looks similar to the following at run time.

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as UnboundChart.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To add the Chart control to the report

1. From the toolbox, drag the Chart data region to the body of the report.
2. If the chart wizard appears, click Cancel.

Tip: If you do not want the chart wizard to appear each time you add a chart, clear the Auto Run Wizard
checkbox. You can still access the wizard via the command verbs (see below).

3. In the Properties window, set the following properties.

Property Name Property Value

Location 0, 0in

Size 6.5, 3.5in

4. In the Report Explorer, select Detail and go to the properties window to set the Height property to 3.5.
5. On the design surface, select the grey area outside the report and in the Properties window, set the PrintWidth

property to 6.5.

To configure the appearance of the Chart

1. Select the Chart control and at the bottom of the Properties window, select the Customize command. See
Properties Window for further details on accessing commands.

Tip: If the verb is not visible, right-click an empty space in the Properties Window and select Commands to
display verbs.

2. In the ChartAreas view which displays by default, click the Axes bar to expand it.
3. Click Axis X, and on the Common tab in the pane to the right, type Company Name in the Title textbox and set

the font size to 12.

ActiveReports 14 1280

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

4. Click Axis Y on the left, and on the Common tab in the pane to the right, type Freight in US$ in the Title textbox
and increase the Font size to 12.

5. Click the Titles bar on the left. In the list of titles, header is selected by default.
6. On the Title properties page, type Unbound Chart in the Caption textbox and set the Font size to 14.
7. Under Titles, select the footer and delete it by clicking the Delete icon on top of the list.
8. Click the Series bar on the left.
9. Under Series, select Series1, Series2 and Series3 and delete them by clicking the Delete icon on top of the list.

10. Click the Legends bar on the left. The defaultLegend is selected by default.
11. On the Common page, clear the Visible checkbox to hide the legend.
12. Click the Finish button to exit the Chart Designer.

Back on the design surface of the report, the chart appears empty except for the title.

To add the code to create a chart at run time chart in Visual Basic or C#

Double-click the gray area below the report. This creates an event-handling method for rptUnboundChart's ReportStart
event. Add code to the handler to:

Create the series
Create the dataset
Set the chart properties
Angle the labels to avoid overlap

The following examples show what the code for the methods look like in Visual Basic.NET and C#.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event.

'create the series
Dim series As New GrapeCity.ActiveReports.Chart.Series
series.Type = Chart.ChartType.Bar3D

'connection string and data adapter
Dim dbPath As String = "[User Folder]\Samples14\Data\NWIND.mdb"
Dim connString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source= " + dbPath"
Dim da As New System.Data.OleDb.OleDbDataAdapter("SELECT * from Orders WHERE OrderDate <
#08/17/1994#", connString)

'create the dataset
Dim ds As New DataSet
da.Fill(ds, "Orders")

'set chart properties
Me.ChartControl1.DataSource = ds
Me.ChartControl1.Series.Add(series)
Me.ChartControl1.Series(0).ValueMembersY = ds.Tables("Orders").Columns(7).ColumnName
Me.ChartControl1.Series(0).ValueMemberX = ds.Tables("Orders").Columns(8).ColumnName

'angle the labels to avoid overlapping
Me.ChartControl1.ChartAreas(0).Axes(0).LabelFont.Angle = 45

ActiveReports 14 1281

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write the code in C#

C# code. Paste INSIDE the ReportStart event.

//create the series
GrapeCity.ActiveReports.Chart.Series series = new
GrapeCity.ActiveReports.Chart.Series();
series.Type = GrapeCity.ActiveReports.Chart.ChartType.Bar3D;

//connection string and data adapter
string dbPath = "[User Folder]\Samples14\Data\NWIND.mdb";
string connString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source= " + dbPath;
System.Data.OleDb.OleDbDataAdapter da = new System.Data.OleDb.OleDbDataAdapter
("SELECT * from Orders WHERE OrderDate < #08/17/1994#", connString);

// create the dataset
System.Data.DataSet ds = new System.Data.DataSet();
da.Fill(ds, "Orders");

// set chart properties
this.chartControl1.DataSource = ds;
this.chartControl1.Series.Add(series);
this.chartControl1.Series[0].ValueMembersY = ds.Tables["Orders"].Columns[7].ColumnName;
this.chartControl1.Series[0].ValueMemberX = ds.Tables["Orders"].Columns[8].ColumnName;

// angle the labels to avoid overlapping
this.chartControl1.ChartAreas[0].Axes[0].LabelFont.Angle = 45;

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Export
This section contains the following walkthroughs that fall under the Export category.

Custom Web Exporting (Std Edition)
This walkthrough demonstrates how to set up report custom exporting to PDF, Excel, TIFF, RTF, and plain text
formats.

Custom HTML Outputter
This walkthrough demonstrates how to create a custom HTML outputter for your ActiveReports ASP.NET Web
Application.

Custom Web Exporting (Std Edition)

ActiveReports 14 1282

Copyright © 2020 GrapeCity, Inc. All rights reserved.

ActiveReports provides components that allow you to set up report custom exporting to PDF, Excel, TIFF, RTF, and plain
text formats. You can similarly export to HTML, or you can create a custom HTML outputter.

To add a report and export references to the Web project

1. From the View menu, select Component Designer to go to the design view of the aspx file.
2. From the Project menu, select Add New Item.
3. In the Add New Item window that appears, select the ActiveReports 14 Section Report (xml-based) template, set

the report's name to SectionReport1, and click the Add button.
4. Install Export packages from nuget as follows:

i) Go to Tools > Nuget Package Manager > Manage Nuget Packages for Solution...
ii) Browse the following packages one by one and click Install.
 GrapeCity.ActiveReports.Export.Excel
 GrapeCity.ActiveReports.Export.Html
 GrapeCity.ActiveReports.Export.Image
 GrapeCity.ActiveReports.Export.Pdf
 GrapeCity.ActiveReports.Export.Word
 GrapeCity.ActiveReports.Export.Xml

5. Design your report.

To add code to the Web Form to export a report to PDF

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

Dim m_stream As New System.IO.MemoryStream()
Dim rpt As New GrapeCity.ActiveReports.SectionReport
Dim xtr As New System.Xml.XmlTextReader("\SectionReport1.rpx")
rpt.LoadLayout(xtr)
xtr.Close()
rpt.Run()
Dim PdfExport1 As New GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport
PdfExport1.Export(rpt.Document, m_stream)
m_stream.Position = 0
Response.ContentType = "application/pdf"
Response.AddHeader("content-disposition", "attachment;filename=MyExport.pdf")
Response.BinaryWrite(m_stream.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

System.IO.MemoryStream m_stream = new System.IO.MemoryStream();
GrapeCity.ActiveReports.SectionReport rpt = new GrapeCity.ActiveReports.SectionReport();
System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Server.MapPath("") +
"\\SectionReport1.rpx");

ActiveReports 14 1283

Copyright © 2020 GrapeCity, Inc. All rights reserved.

rpt.LoadLayout(xtr);
xtr.Close();
rpt.Run();
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport pdfExport1 = new
GrapeCity.ActiveReports.Export.Pdf.Section.PdfExport();
pdfExport1.Export(rpt.Document, m_stream);
Response.ContentType = "application/pdf";
Response.AddHeader("content-disposition", "inline;filename=MyExport.pdf");
Response.BinaryWrite(m_stream.ToArray());
Response.End();

Note: To use the one-touch printing option, add the following to the code above.

Visual Basic.NET code. Paste INSIDE the Page Load event.

pdfExport1.Options.OnlyForPrint = True

C# code. Paste INSIDE the Page Load event.

pdfExport1.Options.OnlyForPrint = true;

To add code to the Web Form to export a report to Excel

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

Dim m_stream As New System.IO.MemoryStream()
Dim rpt As New GrapeCity.ActiveReports.SectionReport
Dim xtr As New System.Xml.XmlTextReader("\SectionReport1.rpx")
rpt.LoadLayout(xtr)
xtr.Close()
rpt.Run()
Dim XlsExport1 As New GrapeCity.ActiveReports.Export.Excel.Section.XlsExport
XlsExport1.MinColumnWidth = 0.5
XlsExport1.Export(rpt.Document, m_stream)
m_stream.Position = 0
Response.ContentType = "application/vnd.ms-excel"
Response.AddHeader("content-disposition", "inline; filename=MyExport.xls")
Response.BinaryWrite(m_stream.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

System.IO.MemoryStream m_stream = new System.IO.MemoryStream();
GrapeCity.ActiveReports.SectionReport rpt = new GrapeCity.ActiveReports.SectionReport();

ActiveReports 14 1284

Copyright © 2020 GrapeCity, Inc. All rights reserved.

System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Server.MapPath("") +
"\\SectionReport1.rpx");
rpt.LoadLayout(xtr);
xtr.Close();
rpt.Run();
GrapeCity.ActiveReports.Export.Excel.Section.XlsExport XlsExport1 = new
GrapeCity.ActiveReports.Export.Excel.Section.XlsExport();
XlsExport1.MinColumnWidth = 0.5f;
XlsExport1.Export(rpt.Document, m_stream);
m_stream.Position = 0;
Response.ContentType = "application/vnd.ms-excel";
Response.AddHeader("content-disposition","inline; filename=MyExport.xls");
Response.BinaryWrite(m_stream.ToArray());
Response.End();

To add code to the Web Form to export a report to TIFF

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

Dim m_stream As New System.IO.MemoryStream()
Dim rpt As New GrapeCity.ActiveReports.SectionReport
Dim xtr As New System.Xml.XmlTextReader(Server.MapPath("\SectionReport1.rpx"))
rpt.LoadLayout(xtr)
xtr.Close()
rpt.Run()
Dim TiffExport1 As New GrapeCity.ActiveReports.Export.Image.Tiff.Section.TiffExport
Me.TiffExport1.CompressionScheme =
GrapeCity.ActiveReports.Export.Image.Tiff.Section.CompressionScheme.None
Me.TiffExport1.Export(rpt.Document, m_stream)m_stream.Position = 0
Response.ContentType = "image/tiff"
Response.AddHeader("content-disposition", "inline; filename=MyExport.tiff")
Response.BinaryWrite(m_stream.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

System.IO.MemoryStream m_stream = new System.IO.MemoryStream();
GrapeCity.ActiveReports.SectionReport rpt = new GrapeCity.ActiveReports.SectionReport();
System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Server.MapPath("") +
"\\SectionReport1.rpx");
rpt.LoadLayout(xtr);
xtr.Close();
rpt.Run();

ActiveReports 14 1285

Copyright © 2020 GrapeCity, Inc. All rights reserved.

GrapeCity.ActiveReports.Export.Image.Tiff.Section.TiffExport tiffExport1 = new
GrapeCity.ActiveReports.Export.Image.Tiff.Section.TiffExport();
tiffExport1.CompressionScheme =
GrapeCity.ActiveReports.Export.Image.Tiff.Section.CompressionScheme.None;
tiffExport1.Export(rpt.Document, m_stream);
m_stream.Position = 0;
Response.ContentType = "image/tiff";
Response.AddHeader("content-disposition","inline; filename=MyExport.tiff");
Response.BinaryWrite(m_stream.ToArray());
Response.End();

To add code to the Web Form to export a report to RTF

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

Dim m_stream As New System.IO.MemoryStream()
Dim rpt As New GrapeCity.ActiveReports.SectionReport
Dim xtr As New System.Xml.XmlTextReader("\SectionReport1.rpx")
rpt.LoadLayout(xtr)
xtr.Close()
rpt.Run()
Dim RtfExport1 As New GrapeCity.ActiveReports.Export.Word.Section.RtfExport
RtfExport1.Export(rpt.Document, m_stream)
m_stream.Position = 0
Response.ContentType = "application/msword"
Response.AddHeader("content-disposition", "inline; filename=MyExport.rtf")
Response.BinaryWrite(m_stream.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

System.IO.MemoryStream m_stream = new System.IO.MemoryStream();
GrapeCity.ActiveReports.SectionReport rpt = new GrapeCity.ActiveReports.SectionReport();
System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Server.MapPath("") +
"\\SectionReport1.rpx");
rpt.LoadLayout(xtr);
xtr.Close();
rpt.Run();
GrapeCity.ActiveReports.Export.Word.Section.RtfExport rtfExport1 = new
GrapeCity.ActiveReports.Export.Word.Section.RtfExport();
rtfExport1.Export(rpt.Document, m_stream);
m_stream.Position = 0;
Response.ContentType = "application/msword";

ActiveReports 14 1286

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Response.AddHeader("content-disposition","inline; filename=MyExport.rtf");
Response.BinaryWrite(m_stream.ToArray());
Response.End();

To add code to the Web Form to export a report to Plain Text

1. Double-click on the design view of the aspx page. This creates an event-handling method for the Page_Load event.
2. Add code like the following to the Page_Load event.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

Dim m_stream As New System.IO.MemoryStream()
Dim rpt As New GrapeCity.ActiveReports.SectionReport
Dim xtr As New System.Xml.XmlTextReader("\SectionReport1.rpx")
rpt.LoadLayout(xtr)
xtr.Close()
rpt.Run()
Dim TextExport1 As New GrapeCity.ActiveReports.Export.Xml.Section.TextExport
TextExport1.Export(rpt.Document, m_stream)
m_stream.Position = 0
Response.ContentType = "text/plain"
Response.AddHeader("content-disposition", "attachment; filename=MyExport.txt")
Response.BinaryWrite(m_stream.ToArray())
Response.End()

To write the code in C#

C# code. Paste INSIDE the Page Load event.

System.IO.MemoryStream m_stream = new System.IO.MemoryStream();
GrapeCity.ActiveReports.SectionReport rpt = new GrapeCity.ActiveReports.SectionReport();
System.Xml.XmlTextReader xtr = new System.Xml.XmlTextReader(Server.MapPath("") +
"\\SectionReport1.rpx");
rpt.LoadLayout(xtr);
xtr.Close();
rpt.Run();
GrapeCity.ActiveReports.Export.Xml.Section.TextExport textExport1 = new
GrapeCity.ActiveReports.Export.Xml.Section.TextExport ();
textExport1.Export(rpt.Document, m_stream);
m_stream.Position = 0;
Response.ContentType = "text/plain";
Response.AddHeader("content-disposition", "attachment; filename=MyExport.txt");
Response.BinaryWrite(m_stream.ToArray());
Response.End();

To run the project

Press F5 to run the project.

ActiveReports 14 1287

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Custom HTML Outputter
You can create a custom HTML outputter for your ActiveReports ASP.NET Web Application.

Note: You cannot create a custom HTML outputter for a page report because the html rendering extension does not
support the custom output formatter.

This walkthrough is split up into the following activities:

Creating a public class for the HTML outputter
Adding code to create the Html Export object and export the report
Adding a folder for report output

To create a public class for the HTML outputter

1. In the Solution Explorer window, right-click on your project name and select Add, then New Item.
2. In the Add New Item dialog that appears, select Class.
3. Change the name of the class to MyCustomHtmlOutputter and click the Add button.
4. This opens the code view of the class file where you can add the code needed to create the public class.
5. For C# code, add the IOutputHtml interface to MyCustomHtmlOutputter class.

C# code.

public class MyCustomHtmlOutputter: IOutputHtml

The following example shows what the complete code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste JUST ABOVE the class.

Imports System
Imports System.IO
Imports System.Web
Imports System.Text
Imports GrapeCity.ActiveReports
Imports GrapeCity.ActiveReports.Export.Html

Visual Basic.NET code. Paste INSIDE the class.

Implements IOutputHtml
'The http context of the request.
Private context As System.Web.HttpContext = Nothing
'The directory in which to save filename--this ensures that the filename
'is unique.
Private dirToSave As System.IO.DirectoryInfo = Nothing
Public mainPage As String = ""
Public Sub New(ByVal context As System.Web.HttpContext)
If context Is Nothing Then
Throw New ArgumentNullException("context")
End If
Me.context = context

ActiveReports 14 1288

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Dim dirName As String = context.Server.MapPath("ReportOutput")
Me.dirToSave = New DirectoryInfo(dirName)
End Sub
#Region "Implementation of IOutputHtml"
Public Function OutputHtmlData(ByVal info As HtmlOutputInfoArgs) As String Implements
IOutputHtml.OutputHtmlData
Dim temp As String = ""
Select Case info.OutputKind
Case HtmlOutputKind.BookmarksHtml
Case HtmlOutputKind.FramesetHtml
temp = Me.GenUniqueFileNameWithExtension(".html")
Dim fs As New FileStream(temp, FileMode.CreateNew)
Me.WriteStreamToStream(info.OutputStream, fs)
fs.Close()
Return temp
Case HtmlOutputKind.HtmlPage
'Store the name of the main page so we can redirect the
'browser to it
Me.mainPage = Me.GenUniqueFileNameWithExtension(".html")
Dim fs As New FileStream(Me.mainPage, FileMode.CreateNew)
Me.WriteStreamToStream(info.OutputStream, fs)
fs.Close()
Return Me.mainPage
Case HtmlOutputKind.ImageJpg
'Create a file with a .jpg extension:
temp = Me.GenUniqueFileNameWithExtension(".jpg")
Dim fs As New FileStream(temp, FileMode.CreateNew)
fs = File.Create(temp)
Me.WriteStreamToStream(info.OutputStream, fs)
fs.Close()
Return temp
Case HtmlOutputKind.ImagePng
'Create a file with a .png extension:
temp = Me.GenUniqueFileNameWithExtension(".png")
Dim fs As New FileStream(temp, FileMode.CreateNew)
Me.WriteStreamToStream(info.OutputStream, fs)
fs.Close()
Return temp
Case Else
'Default to html:
temp = Me.GenUniqueFileNameWithExtension(".html")
Dim fs As New FileStream(temp, FileMode.CreateNew)
Me.WriteStreamToStream(info.OutputStream, fs)
fs.Close()
Return temp
End Select
End Function Public Sub Finish() Implements IOutputHtml.Finish
End Sub

ActiveReports 14 1289

Copyright © 2020 GrapeCity, Inc. All rights reserved.

#End Region
Private Sub WriteStreamToStream(ByVal sourceStream As Stream, ByVal targetStream As
Stream)
'Find the size of the source stream:
Dim size As Integer = CType(sourceStream.Length, Integer)
'Create a buffer that same size
Dim buffer(size) As Byte
'Move the source stream to the beginning
sourceStream.Seek(0, SeekOrigin.Begin)
'Copy the sourceStream into our buffer
sourceStream.Read(buffer, 0, size)
'Write out the buffer to the target stream
targetStream.Write(buffer, 0, size)
End Sub
Private Function GenUniqueFileNameWithExtension(ByVal extensionWithDot As String) As
String
Dim r As New System.Random()
Dim unique As Boolean = False
Dim filePath As String = ""
Dim iRandom As Integer = 0
'Generate a random name until it's unique
While Not unique
iRandom = r.Next()
'Build the full filename
Dim sb = New StringBuilder()
sb.Append(Me.dirToSave.FullName)
sb.Append(Path.DirectorySeparatorChar)
sb.Append(iRandom.ToString())
sb.Append(extensionWithDot)
filePath = sb.ToString()
If File.Exists(filePath) = False Then
unique = True
Else
unique = False
End If
End While
Return filePath
End Function
End Class

To write the code in C#

C# code. Paste JUST ABOVE the class.

using System;
using System.IO;
using System.Web;
using System.Text;

ActiveReports 14 1290

Copyright © 2020 GrapeCity, Inc. All rights reserved.

using GrapeCity.ActiveReports;
using GrapeCity.ActiveReports.Export.Html;

C# code. Paste INSIDE the class.

 //The http context of the request
 private System.Web.HttpContext context = null;
 //The directory in which to save filename--this ensures that the filename
 //is unique.
 private System.IO.DirectoryInfo dirToSave = null;
 public string mainPage = "";
 public MyCustomHtmlOutputter(System.Web.HttpContext context)
 {
 if(context == null)
 {
 throw new ArgumentNullException("context");
 }
 this.context = context;
 string dirName = context.Server.MapPath("ReportOutput");
 this.dirToSave = new DirectoryInfo(dirName);
 }

#region Implementation of IOutputHtml
public string OutputHtmlData(HtmlOutputInfoArgs info)
{
 string temp = "";
 switch(info.OutputKind)
 {
 case HtmlOutputKind.BookmarksHtml:
 case HtmlOutputKind.FramesetHtml:
 {
 temp = this.GenUniqueFileNameWithExtension(".html");
 FileStream fs = File.Create(temp);
 this.WriteStreamToStream(info.OutputStream, fs);
 fs.Close();
 return temp;
 }

 case HtmlOutputKind.HtmlPage:
 {
 //Store the name of the main page so we can
 //redirect the browser to it
 this.mainPage = this.GenUniqueFileNameWithExtension(".html");
 FileStream fs = File.Create(this.mainPage);
 this.WriteStreamToStream(info.OutputStream, fs);
 fs.Close();
 return this.mainPage;
 }

ActiveReports 14 1291

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 case HtmlOutputKind.ImageJpg:
 {
 // Create a file with a .jpg extension:
 temp = this.GenUniqueFileNameWithExtension(".jpg");
 FileStream fs = File.Create(temp);
 this.WriteStreamToStream(info.OutputStream, fs);
 fs.Close();
 return temp;
 }

 case HtmlOutputKind.ImagePng:
 {
 //Create a file with a .png extension:
 temp = this.GenUniqueFileNameWithExtension(".png");
 FileStream fs = File.Create(temp);
 this.WriteStreamToStream(info.OutputStream, fs);
 fs.Close();
 return temp;
 }

 default:
 {
 //Default to html:
 temp = this.GenUniqueFileNameWithExtension(".html");
 FileStream fs = File.Create(temp);
 this.WriteStreamToStream(info.OutputStream, fs);
 fs.Close();
 return temp;
 }
 }
}

public void Finish()
{
}
#endregion

private void WriteStreamToStream(Stream sourceStream, Stream targetStream)
{
 //Find the size of the source stream
 int size = (int)sourceStream.Length;

 //Create a buffer that same size
 byte[] buffer = new byte[size];

 //Move the source stream to the beginning
 sourceStream.Seek(0, SeekOrigin.Begin);

ActiveReports 14 1292

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 //Copy the sourceStream into our buffer
 sourceStream.Read(buffer, 0, size);

 //Write out the buffer to the target stream
 targetStream.Write(buffer, 0, size);
}

private string GenUniqueFileNameWithExtension(string extensionWithDot)
{
 System.Random r = new Random();
 bool unique = false;
 string filePath = "";
 int iRandom = 0;
 //Generate a random name until it's unique
 while(!unique)
 {
 iRandom = r.Next();
 //Buld the full filename
 System.Text.StringBuilder sb = new System.Text.StringBuilder();
 sb.Append(this.dirToSave.FullName);
 sb.Append(Path.DirectorySeparatorChar);
 sb.Append(iRandom.ToString());
 sb.Append(extensionWithDot);
 filePath = sb.ToString();
 unique = !File.Exists(filePath);
 }
 return filePath;
 }

To add code to the Web Form to export to HTML

1. Add an Section Report (Code-based) to the project, and name it rptCustHTML.
2. Now add a Web form and double-click on the design view of the ASPX. This creates an event-handling method for

the Web Form's Page Load event.
3. Add the following code to the Page Load event.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Page Load event.

Dim rpt As New rptCustHTML()
Try

rpt.Run(False)
Catch eRunReport As Exception
'If the report fails to run, report the error to the user

Response.Clear()

ActiveReports 14 1293

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Response.Write("<h1>Error running report:</h1>")
Response.Write(eRunReport.ToString())
Return
End Try
'Buffer this page's output until the report output is ready.

Response.Buffer = True
'Clear any part of this page that might have already been buffered for output.

Response.ClearContent()
'Clear any headers that might have already been buffered (such as the content type

'for an HTML page)

Response.ClearHeaders()
'Tell the browser and the "network" that the resulting data of this page should be

'cached since this could be a dynamic report that changes upon each request.

Response.Cache.SetCacheability(HttpCacheability.NoCache)
'Tell the browser this is an Html document so it will use an appropriate viewer.

Response.ContentType = "text/HTML"
'Create the Html export object

Dim HtmlExport1 As New GrapeCity.ActiveReports.Export.Html.Section.HtmlExport()
Dim outputter As New MyCustomHtmlOutputter(Me.Context)
HtmlExport1.Export(rpt.Document, outputter, "")
Response.Redirect("ReportOutput" + "/" + System.IO.Path.GetFileName(outputter.mainPage))

To write the code in C#

C# code. Paste INSIDE the Page Load event.

 rptCustHTML rpt = new rptCustHTML();
 try
 {
 rpt.Run(false);
 }
 catch (Exception eRunReport)
 {
 //If the report fails to run, report the error to the user
 Response.Clear();
 Response.Write("<h1>Error running report:</h1>");
 Response.Write(eRunReport.ToString());
 return;
 }
 //Buffer this page's output until the report output is ready.

ActiveReports 14 1294

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 Response.Buffer = true;

 //Clear any part of this page that might have already been buffered for output.
 Response.ClearContent();

 //Clear any headers that might have already been buffered (such as the content
 //type for an HTML page)
 Response.ClearHeaders();

 //Tell the browser and the "network" that the resulting data of this page should
 //be cached since this could be a dynamic report that changes upon each request.
 Response.Cache.SetCacheability(HttpCacheability.NoCache);

 //Tell the browser this is an Html document so it will use an appropriate viewer.
 Response.ContentType = "text/html";

 //Create the HTML export object
 GrapeCity.ActiveReports.Export.Html.Section.HtmlExport htmlExport1 = new
GrapeCity.ActiveReports.Export.Html.Section.HtmlExport();

 //Export the report to HTML in this session's webcache
 MyCustomHtmlOutputter outputter = new MyCustomHtmlOutputter(this.Context);
 htmlExport1.Export(rpt.Document, outputter, "");
 Response.Redirect("ReportOutput" + "/" +
System.IO.Path.GetFileName(outputter.mainPage));

To add a folder to the project for report output

1. In the Solution Explorer, right-click your solution and select Add, then New Folder.
2. Name the folder ReportOutput.
3. Ensure that you have write permissions for this folder.
4. To view the results in your Web browser, run the project.

Script
This section contains the following walkthroughs that fall under the Script category.

ActiveReports allows you to embed script in reports so that code becomes portable when you save a report layout to
XML-based RPX format. This characteristic allows the options of stand-alone reporting and web reporting without the
need to distribute related .vb or .cs files.

By embedding script when the report is saved as an RPX file, it can later by loaded, run and displayed directly to the
viewer control without using the designer. Script can also be used in conjunction with RPX files to allow distributed
reports to be updated without recompiling the Visual Studio project.

Script for Simple Reports
This walkthrough demonstrates how to embed script in a simple stand-alone report.

Script for Subreports

ActiveReports 14 1295

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This walkthrough demonstrates how to embed script to pass a parameter to a subreport.

Script for Simple Reports
ActiveReports allows you to use scripting to embed code in reports saved to the XML-based RPX file format. By
embedding script in reports saved as RPX files, you can later load, run, and display reports directly in the viewer control
without using the designer. This walkthrough illustrates how to include scripting in a simple report.

This walkthrough is split into the following activities:

Temporarily connecting the report to a data source
Adding controls to a report to display data
Adding scripting to supply data for the controls
Saving the report to an RPX file

Tip: For basic steps like adding a report to a Visual Studio project and viewing a report, please see the Basic Data
Bound Reports walkthrough.

Note: This walkthrough uses the the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you have finished this walkthrough, you will have a report that looks similar to the following at design time and at
run time.

Design-Time Layout

Run-Time Layout

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptSimpleScript.

ActiveReports 14 1296

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

Note: The following steps are just for convenience so that the fields list in the Report Explorer can be populated at
design time.

1. In the Report Data Source dialog, on the OLE DB tab, next to Connection String, click the Build button.
2. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next

button to move to the Connection tab.
3. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open

once you have selected the appropriate database path.
4. Click the Test Connection button to see if you have successfully connected to the database.
5. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
6. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT * FROM categories INNER JOIN products ON categories.categoryid =
products.categoryid ORDER BY products.categoryid, products.productid

7. Click OK to save the data source and return to the report design surface.

To create a layout for the report

1. Right-click the design surface of the report and select Insert then Group Header/Footer to add group header and
footer sections to your report.

2. Increase the group header section's height so that you have room to work.
3. With the GroupHeader section selected, go to the Properties Window to set the following properties.

Property Name Property Value

BackColor LightBlue

CanShrink True

DataField CategoryName

GroupKeepTogether All

KeepTogether True

4. From the toolbox, drag the following controls to the GroupHeader section and set the properties of each control as
indicated.

TextBox1

Property Name Property Value

DataField CategoryName

Location 0, 0 in

Size 6.5, 0.2 in

ActiveReports 14 1297

Copyright © 2020 GrapeCity, Inc. All rights reserved.

BackColor CadetBlue

Font Bold:True

Font Size 12

TextBox2

Property Name Property Value

DataField Description

Location 0, 0.2 in

Size 6.5, 0.2 in

BackColor CadetBlue

Label1

Property Name Property Value

Text Product Name

Location 0, 0.4 in

Size 1, 0.2 in

Font Bold:True

Label2

Property Name Property Value

Text Units in Stock

Location 5.5, 0.4 in

Size 1, 0.2 in

Font Bold:True

Alignment Right

5. From the toolbox, drag the following controls onto the detail section and set the properties of each as indicated.

TextBox1

Property Name Property Value

DataField ProductName

Location 0, 0 in

Size 5.5, 0.2 in

TextBox2

ActiveReports 14 1298

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

DataField UnitsInStock

Location 5.5, 0 in

Size 1, 0.2 in

Alignment Right

6. Click just below the fields to select the Detail section, and in the Properties Window, set the CanShrink property to
True to eliminate white space in the rendered report.

7. In the Detail section, select both TextBox1 and TextBox2, right-click and select Format Border.
Select DarkCyan in the color combo box.
Select the solid line in the Line Styles pane.
Click the bottom edge in the Preview pane.
Click the OK button to add a solid cyan line to the bottom edge of the text boxes.

8. Increase the group footer section's height so that you have room to work.
9. With the GroupFooter section selected, go to the properties window and set the following properties.

Property Name Property Value

BackColor PaleGreen

CanShrink True

10. From the toolbox, drag the following controls to the GroupFooter Section and set the properties of each control as
indicated.

TextBox1

Property Name Property Value

DataField TotalLabel

Location 2.5, 0 in

Size 3, 0.2 in

Font Bold:True

TextBox2

Property Name Property Value

DataField ProductName

Location 5.5, 0 in

SummaryType Subtotal

SummaryFunc Count

SummaryRunning Group

SummaryGroup GroupHeader1

Alignment Right

Label1

ActiveReports 14 1299

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property
Name

Property Value

Location 0, 0.25 in

Size 6.5, 0.2 in

BackColor White (creates white space after the
subtotal)

Text
Note: Delete the default text.

To add scripting to the report to supply data for the controls

1. Click in the grey area below the report to select it, and in the Properties Window, change the ScriptLanguage
property for the report to the scripting language you want to use. The default setting is C#.

2. Click the Script tab located at the bottom edge of the report designer to access the scripting editor. Add the
scripting code.

The following example shows what the scripting code looks like.

Warning: Do not access the Fields collection outside the DataInitialize and FetchData events. Accessing the Fields
collection outside of these events is not supported, and has unpredictable results.

To write the script in Visual Basic.NET.

Visual Basic.NET script. Paste in the script editor window.

Private Shared m_reader As System.Data.OleDb.OleDbDataReader
Private Shared m_cnn As System.Data.OleDb.OleDbConnection

Public Sub ActiveReport_ReportStart()
 'Set up a data connection for the report
 rpt.DataSource = ""
 Dim connString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\NWIND.mdb"
 Dim sqlString As String = "SELECT * FROM categories INNER JOIN products ON
categories.categoryid = products.categoryid ORDER BY products.categoryid,
products.productid"

 m_cnn = new System.Data.OleDb.OleDbConnection(connString)
 Dim m_Cmd As System.Data.OleDb.OleDbCommand = new
System.Data.OleDb.OleDbCommand(sqlString, m_cnn)

 If m_cnn.State = System.Data.ConnectionState.Closed Then
 m_cnn.Open
 End If
 m_reader = m_Cmd.ExecuteReader
End Sub

ActiveReports 14 1300

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Public Sub ActiveReport_DataInitialize()
 'Add data fields to the report
 rpt.Fields.Add("CategoryID")
 rpt.Fields.Add("CategoryName")
 rpt.Fields.Add("ProductName")
 rpt.Fields.Add("UnitsInStock")
 rpt.Fields.Add("Description")
 rpt.Fields.Add("TotalLabel")
End Sub

Public Function ActiveReport_FetchData(ByVal eof As Boolean) As Boolean
 Try
 m_reader.Read
 'Populated the fields with data from the data reader
 rpt.Fields("CategoryID").Value = m_reader("categories.CategoryID")
 rpt.Fields("CategoryName").Value = m_reader("CategoryName")
 rpt.Fields("ProductName").Value = m_reader("ProductName")
 rpt.Fields("UnitsInStock").Value = m_reader("UnitsInStock")
 rpt.Fields("Description").Value = m_reader("Description")
 'Concatenate static text with data
 rpt.Fields("TotalLabel").Value = "Total Number of " + m_reader("CategoryName")+ "
Products:"
 eof = False
 Catch
 'If the end of the data file has been reached, tell the FetchData function
 eof = True
 End Try
 Return eof
End Function

Public Sub ActiveReport_ReportEnd()
 'Close the data reader and connection
 m_reader.Close
 m_cnn.Close
End Sub

To write the script in C#.

C# script. Paste in the script editor window.

//C#
private static System.Data.OleDb.OleDbDataReader m_reader;
private static System.Data.OleDb.OleDbConnection m_cnn;

public void ActiveReport_ReportStart()
{
 //Set up a data connection for the report

ActiveReports 14 1301

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 rpt.DataSource = "";
 string m_cnnString = @"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Users\[User
Folder]\Samples14\Data\NWIND.mdb";
 string sqlString = "SELECT * FROM categories INNER JOIN products ON
categories.categoryid = products.categoryid ORDER BY products.categoryid,
products.productid";
 m_cnn = new System.Data.OleDb.OleDbConnection(m_cnnString);
 System.Data.OleDb.OleDbCommand m_Cmd = new
System.Data.OleDb.OleDbCommand(sqlString,m_cnn);

 if(m_cnn.State == System.Data.ConnectionState.Closed)
 {
 m_cnn.Open();
 }
 m_reader = m_Cmd.ExecuteReader();
}

public void ActiveReport_DataInitialize()
{
 //Add data fields to the report
 rpt.Fields.Add("CategoryID");
 rpt.Fields.Add("CategoryName");
 rpt.Fields.Add("ProductName");
 rpt.Fields.Add("UnitsInStock");
 rpt.Fields.Add("Description");
 rpt.Fields.Add("TotalLabel");
}

public bool ActiveReport_FetchData(bool eof)
{
 try
 {
 m_reader.Read();
 //Populated the fields with data from the data reader
 rpt.Fields["CategoryID"].Value = m_reader["categories.CategoryID"].ToString();
 rpt.Fields["CategoryName"].Value = m_reader["CategoryName"].ToString();
 rpt.Fields["ProductName"].Value = m_reader["ProductName"].ToString();
 rpt.Fields["UnitsInStock"].Value = m_reader["UnitsInStock"].ToString();
 rpt.Fields["Description"].Value = m_reader["Description"].ToString();
 //Concatenate static text with data
 rpt.Fields["TotalLabel"].Value = "Total Number of " +
m_reader["CategoryName"].ToString() + " Products:";
 eof = false;
 }
 catch
 {
 //If the end of the data file has been reached, tell the FetchData function
 eof = true;

ActiveReports 14 1302

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 }
 return eof;
}

public void ActiveReport_ReportEnd()
{
 //Close the data reader and connection
 m_reader.Close();
 m_cnn.Close();
}

To save the report to an XML-based RPX file

1. From the Report menu, select Save Layout.
2. In the Save dialog that appears, enter a name for the report, i.e. rptScript.rpx, and click the Save button.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Script for Subreports
ActiveReports allows you to use scripting to permit reports saved to an XML file to contain code. By including scripting
when reports are saved into XML, the reports later can be loaded, run, and displayed directly to the viewer control without
needing to use the designer.

This walkthrough illustrates how to use scripting when creating a subreport.

This walkthrough is split up into the following activities:

Temporarily connecting the main report to a data source
Connecting the subreport to a data source
Adding controls to each report to display data
Adding the scripting code for rptMain
Viewing the report

Tip: For basic steps like adding a report to a Visual Studio project and viewing a report, please see the Basic Data
Bound Reports walkthrough.

Note: This walkthrough uses the Northwind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

When you have finished this walkthrough, you will have a report that looks similar to the following at design time and at
run time.

Design-Time Layout (main report)

ActiveReports 14 1303

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

Run-Time Layout (main report)

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (xml-based) and in the Name

field, rename the file as rptMain.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report to a data source

Note: The following steps are just for convenience so that the fields list in the Report Explorer can be populated at
design time.

1. In the Report Data Source dialog, on the OLE DB tab, next to Connection String, click the Build button.
2. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next

button to move to the Connection tab.
3. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open

once you have selected the appropriate database path.
4. Click the Test Connection button to see if you have successfully connected to the database.
5. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
6. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT * FROM Orders INNER JOIN Customers ON Orders.CustomerID =
Customers.CustomerID ORDER BY CompanyName, OrderDate

7. Click OK to save the data source and return to the report design surface.

To add a report for the subreport

1. From the Project menu, select Add New Item.
2. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (xml-based) and in the Name

field, rename the file as rptSub.

ActiveReports 14 1304

Copyright © 2020 GrapeCity, Inc. All rights reserved.

3. Click the Add button to open a new section report in the designer.
4. Right-click the PageHeader or PageFooter section and select Delete. Subreports do not render these sections, so

deleting them saves processing time.
5. Click in the grey area below the report to select it, and in the Properties window, change the report's

ShowParameterUI property to False. This prevents the subreport from requesting a parameter from the user.

See Quick Start for information on adding different report layouts.

To connect the subreport to a data source

Note: The following steps are just for convenience so that the fields list in the Report Explorer can be populated at
design time.

1. In the Report Data Source dialog, on the OLE DB tab, next to Connection String, click the Build button.
2. In the Data Link Properties window that appears, select Microsoft Jet 4.0 OLE DB Provider and click the Next

button to move to the Connection tab.
3. Click the ellipsis (...) button to browse to your database, for example the NWind.mdb sample database. Click Open

once you have selected the appropriate database path.
4. Click the Test Connection button to see if you have successfully connected to the database.
5. Click OK to close the Data Link Properties window and return to the Report Data Source dialog. Notice that the

Connection String field gets filled automatically.
6. In the Query field on the OLE DB tab, enter the following SQL query.

SQL Query

SELECT * FROM [order details] inner join products on [order details].productid =
products.productid

7. Click OK to save the data source and return to the report design surface.

To create a layout for the main report

1. Right-click the design surface of rptMain and select Insert then Group Header/Footer to add group header and
footer sections to the report.

2. In the Properties Window, make the following changes to the group header.

Property Name Property Value

Name ghCompanies

BackColor LemonChiffon

CanShrink True

DataField CompanyName

GroupKeepTogether All

KeepTogether True

3. In the Report Explorer, expand the Fields node, then the Bound node. Drag the CompanyName field onto
ghCompanies and in the Properties window, set the properties as follows.

Property Name Property Value

Size 4, 0.2 in

Location 0, 0 in

ActiveReports 14 1305

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Font Bold True

Font Size 12

4. Right-click the design surface of rptMain and select Insert then Group Header/Footer to add the second group
header and footer sections to the report.

5. In the Properties Window, make the following changes to the second group header.

Property Name Property Value

Name ghOrders

BackColor LightYellow

CanShrink True

DataField OrderDate

GroupKeepTogether All

KeepTogether True

6. From the toolbox, drag three TextBox controls onto ghOrders and set the properties for each control as follows.

TextBox1

Property Name Property Value

DataField OrderDate

Location 1.1, 0 in

Size 1, 0.2 in

OutputFormat MM/dd/yy

TextBox2

Property Name Property Value

DataField RequiredDate

Location 3.5, 0 in

Size 1, 0.2 in

OutputFormat MM/dd/yy

TextBox3

Property Name Property Value

DataField ShippedDate

Location 5.5, 0 in

Size 1, 0.2 in

OutputFormat MM/dd/yy

Alignment Right

ActiveReports 14 1306

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. From the toolbox, drag three Label controls onto ghOrders and set the properties for each control as follows.

Label1

Property Name Property Value

Location 0, 0 in

Size 1, 0.2 in

Text Ordered:

Font Bold:True

Label2

Property Name Property Value

Location 2.5, 0 in

Size 1, 0.2 in

Text Required:

Font Bold:True

Label3

Property Name Property Value

Location 4.8, 0 in

Size 0.65, 0.2 in

Text Shipped:

Font Bold:True

8. Select the Detail section and in the Properties window, set the CanShrink property to True.
9. From the toolbox, drag the Subreport control onto the Detail section and in the Properties window, set the

properties as follows.

Property Name Property Value

ReportName full project path\rptSub.rpx

Name SubReport1

Size 6.5, 1 in

Location 0, 0 in

To create a layout for the subreport

1. Right-click the design surface of rptSub and select Insert then Group Header/Footer to add group header and
footer sections to the report.

2. In the Properties window, make the following changes to the group header.

Property Name Property Value

ActiveReports 14 1307

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name ghOrderDetails

BackColor LightSteelBlue

CanShrink True

DataField OrderID

3. From the toolbox, drag four label controls to ghOrderDetails and set the properties for each label as follows.

Label1

Property Name Property Value

Location 0, 0 in

Text Product Name

Font Bold:True

Alignment Left

Label2

Property Name Property Value

Location 3.25, 0 in

Text Quantity

Font Bold:True

Alignment Right

Label3

Property Name Property Value

Location 4.4, 0 in

Text Unit Price

Font Bold:True

Alignment Right

Label4

Property Name Property Value

Location 5.5, 0 in

Text Discount

Font Bold:True

Alignment Right

4. From the toolbox, drag four Line controls to ghOrderDetails and set the properties for each line as follows.

ActiveReports 14 1308

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Line1

Property Name Property Value

X1 3.2

X2 3.2

Y1 0

Y2 0.2

Line2

Property Name Property Value

X1 4.3

X2 4.3

Y1 0

Y2 0.2

Line3

Property Name Property Value

X1 5.45

X2 5.45

Y1 0

Y2 0.2

Line4

Property Name Property Value

X1 0

X2 6.5

Y1 0.2

Y2 0.2

5. Click the Detail section and in the Properties window, set the following properties.

Property Name Property Value

BackColor Gainsboro

CanShrink True

6. From the toolbox, drag four TextBox controls onto onto the Detail section and set the properties as follows.

TextBox1

ActiveReports 14 1309

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name Property Value

DataField ProductName

Location 0, 0 in

Size 3.15, 0.2 in

Alignment Left

TextBox2

Property Name Property Value

DataField Quantity

Location 3.25, 0 in

Size 1, 0.2 in

Alignment Right

TextBox3

Property Name Property Value

DataField Products.UnitPrice

Location 4.4, 0 in

Size 1, 0.2 in

Alignment Right

OutputFormat Currency

TextBox4

Property Name Property Value

DataField Discount

Location 5.5, 0 in

Size 1, 0.2 in

Alignment Right

OutputFormat Percentage

7. From the toolbox, drag four Line controls to the Detail section and set the properties as follows.

Line5

Property Name Property Value

X1 3.2

X2 3.2

ActiveReports 14 1310

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Y1 0

Y2 0.2

Line6

Property Name Property Value

X1 4.3

X2 4.3

Y1 0

Y2 0.2

Line7

Property Name Property Value

X1 5.45

X2 5.45

Y1 0

Y2 0.2

Line8

Property Name Property Value

X1 0

X2 6.5

Y1 0.2

Y2 0.2

To embed script in the main report

1. Change the ScriptLanguage property for the report to the appropriate scripting language. The default setting is
C#.

2. Click the Script tab located below the report designer to access the scripting editor.
3. Embed script to set the data source for the main report and pass data into the subreport.

The following example shows what the script looks like.

To write the script in Visual Basic.NET

Visual Basic.NET script. Paste in the script editor window.

Dim rptSub As GrapeCity.ActiveReports.SectionReport
Sub ActiveReport_ReportStart
 'Create a new instance of the generic report
 rptSub = new GrapeCity.ActiveReports.SectionReport()

ActiveReports 14 1311

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 'Load the rpx file into the generic report
 rptSub.LoadLayout(me.SubReport1.ReportName)
 'Connect data to the main report
 Dim connString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\NWIND.mdb;Persist Security Info=False"
 Dim sqlString As String = "Select * from orders inner join customers on
orders.customerid = customers.customerid order by CompanyName,OrderDate"
 Dim ds As new GrapeCity.ActiveReports.Data.OleDBDataSource()
 ds.ConnectionString = connString
 ds.SQL = sqlString
 rpt.DataSource = ds
End Sub

Sub Detail_Format
 Dim rptSubCtl As GrapeCity.ActiveReports.SubReport = me.SubReport1
 Dim childDataSource As New GrapeCity.ActiveReports.Data.OleDBDataSource()
 childDataSource.ConnectionString = CType(rpt.DataSource,
GrapeCity.ActiveReports.Data.OleDBDataSource).ConnectionString
 'Set a parameter in the SQL query
 childDataSource.SQL = "Select * from [order details] inner join products on [order
details].productid = products.productid where [order details].orderid = <%OrderID%>"
 'Pass the data to the subreport
 rptSub.DataSource = childDataSource
 'Display rptSub in the subreport control
 rptSubCtl.Report = rptSub
End Sub

To write the script in C#

C# code. Paste in the script editor window.

GrapeCity.ActiveReports.SectionReport rptSub;
public void Detail_Format()
{
 GrapeCity.ActiveReports.SectionReportModel.SubReport rptSubCtl = this.SubReport1;
 GrapeCity.ActiveReports.Data.OleDBDataSource childDataSource = new
GrapeCity.ActiveReports.Data.OleDBDataSource();
 childDataSource.ConnectionString = ((GrapeCity.ActiveReports.Data.OleDBDataSource)
rpt.DataSource).ConnectionString;
 //Set a parameter in the SQL query
 childDataSource.SQL = "Select * from [order details] inner join products on [order
details].productid = products.productid where [order details].orderid = <%OrderID%>";
 //Pass the data to the subreport
 rptSub.DataSource = childDataSource;
 //Display rptSub in the subreport control
 rptSubCtl.Report = rptSub;
}

ActiveReports 14 1312

Copyright © 2020 GrapeCity, Inc. All rights reserved.

public void ActiveReport_ReportStart()
{
 //Create a new instance of the generic report
 rptSub = new GrapeCity.ActiveReports.SectionReport();
 //Load the rpx file into the generic report
 rptSub.LoadLayout(this.SubReport1.ReportName);
 //Connect data to the main report
 string connString = @"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\NWIND.mdb;Persist Security Info=False";
 string sqlString = "Select * from orders inner join customers on orders.customerid =
customers.customerid order by CompanyName,OrderDate";
 GrapeCity.ActiveReports.Data.OleDBDataSource ds = new
GrapeCity.ActiveReports.Data.OleDBDataSource();
 ds.ConnectionString = connString;
 ds.SQL = sqlString;
 rpt.DataSource = ds;
}

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information on how to load the xml-based
section report onto the viewer.

Parameters
This section contains the following walkthroughs that fall under the Parameter category.

Using Parameters in Sub Reports
This walkthrough demonstrates how to link a report with a SubReport using parameters.

Parameters for Charts
This walkthrough demonstrates how to link a report with a chart using parameters.

Using Parameters in Sub Reports
Using parameters in SubReport, you can connect a SubReport to the parent report. By setting the parameter on the field
that binds the parent report to SubReport, the parent report passes the data to display in SubReport through a parameter.
This walkthrough illustrates the method to link the main report with a SubReport using parameters.

This walkthrough is split up into the following activities:

Adding a parent report and a SubReport to a Visual Studio project
Connecting the parent report to a data source
Connecting the SubReport to a data source using parameter
Adding controls to create layout of the parent report (rptParent)

ActiveReports 14 1313

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Adding controls to create a layout of the child report (rptChild)
Adding code to embed the SubReport to the SubReport control in parent report
Adding code to set the ShowParametersUI property of SubReport to False.
Viewing the report

Note: This walkthrough uses tables from the NorthWind database. The NWIND.mdb file can be downloaded
from GitHub: ..\Samples14\Data\NWIND.mdb.

Caution: SubReports do not render PageHeader and PageFooter sections.

When you complete this walkthrough you get a layout that looks similar to the following:

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptParent.
4. Click the Add button to open a new section report in the designer.
5. From the Project menu, select Add New Item.
6. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptChild.
7. Click the Add button to open a second new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the parent report (rptParent) to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, from the OLE DB tab, create a data source connection. See Bind
Reports to a Data Source for further details.

3. Once the connection string field is populated, in the Query field, enter the following SQL query.

ActiveReports 14 1314

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

SQL Query

Select * from suppliers order by country

4. Click OK to save the data source and return to the report design surface.

To connect the child report (rptChild) to a data source using parameter

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, from the OLE DB tab, create a data source connection. See Bind
Reports to a Data Source for further details.

3. Once the connection string field is populated, in the Query field, enter the following parameterized SQL query.

SQL Query

SELECT * FROM products INNER JOIN categories ON products.categoryid =
categories.categoryid WHERE Products.SupplierID = <%SupplierID%>

4. Click OK to save the data source and return to the report design surface.

To create a layout for the parent report (rptParent)

1. On the design surface, right click the PageHeader or PageFooter section and select Delete to remove the
PageHeader/Footer pair.

2. Right click on the design surface of the parent report and insert GroupHeader/Footer section pair.
3. Click the GroupHeader section to select it and go to the Properties window to set the following properties.

Property Name Property Value

Name ghSuppliers

DataField Country

4. From the toolbox, drag a TextBox control onto the groupHeader section and in the Properties window, set the
properties as follows:

Property Name Property Value

DataField Country

Name txtCountry

Text Country

Location 0, 0

Font Name:Arial, Size:13pt, Bold:True

5. Click the Detail section to select it and go to the Properties window to set the CanShrink property to True.
6. From the Visual Studio toolbox, drag and drop the following controls onto the detail section of the report and in

the Properties window, set their properties as given below:

TextBox1

Property Name Property Value

DataField CompanyName

ActiveReports 14 1315

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Name txtCompanyName

Text Company Name

Location 0.0625, 0.0625

Size 2.25, 0.2 in

BackColor Silver

Font Bold:True

TextBox2

Property Name Property Value

DataField ContactName

Name txtContactName

Text Contact Name

Location 2.312, 0.0625

Size 1.708, 0.2 in

BackColor Silver

Font Bold:True

TextBox3

Property Name Property Value

DataField Phone

Name txtPhone

Text Phone

Location 4.562, 0.0625

Size 1.542, 0.2 in

BackColor Silver

Font Bold:True

SubReport

Property Name Property Value

Name Subreport1

ReportName ProductName

Location 0.0625, 0.312

To create a layout for the child report (rptChild)

ActiveReports 14 1316

Copyright © 2020 GrapeCity, Inc. All rights reserved.

1. On the design surface, right click the PageHeader or PageFooter section and select Delete to remove the
PageHeader/Footer pair.

2. Right click on the design surface of the child report and insert GroupHeader/Footer section pair.
3. Click the GroupHeader section to select it and go to the Properties window to set the following properties.

Property Name Property Value

Name ghProducts

DataField CategoryName

4. From the toolbox, drag and drop a TextBox control onto the groupHeader section and in the Properties window,
set the following properties.

Property Name Property Value

DataField CategoryName

Name txtCategoryName

Text Category Name

Location 0.0625, 0.0625

Size 2.042, 0.2 in

ForeColor Maroon

Font Bold:True

5. Click the Detail section to select it and go to the Properties window to set the CanShrink property to True.
6. From the toolbox, drag and drop a TextBox control onto the detail section and in the Properties window, set the

following properties.

Property Name Property Value

DataField ProductName

Name txtProductName

Text Product Name

Location 0.0625, 0.0625

Size 1.99, 0.2 in

ForeColor Red

To connect the child report (rptChild) to the SubReport control in parent report (rptParent)

1. Double-click the gray area around the parent report (rptParent) to create an event-handling method for the
ReportStart event.

2. Add code like the following to the handler to create a new instance of the child report (rptChild).

To write the code in Visual Basic

Visual Basic.NET code. Paste JUST ABOVE the ReportStart event.

Dim rpt As rptChild

Visual Basic.NET code. Paste INSIDE the ReportStart event.

ActiveReports 14 1317

Copyright © 2020 GrapeCity, Inc. All rights reserved.

rpt = New rptChild()

To write the code in C#

C# code. Paste JUST ABOVE the ReportStart event.

private rptChild rpt;

C# code. Paste INSIDE the ReportStart event.

rpt = new rptChild();

3. Double-click the detail section of the parent report (rptParent) to create a detail_Format event.
4. Add code like the following to the handler to display a report in the SubReport control.

To write the code in Visual Basic

Visual Basic.NET code. Paste INSIDE the Format event.

Me.SubReport1.Report = rpt

To write the code in C#

C# code. Paste INSIDE the Format event.

this.subReport1.Report = rpt;

To set the ShowParametersUI property of SubReport to False

1. Click the gray area around the child report (rptChild) and go to the Properties window to set the
ShowParameterUI property to False.

To view the report

Click the preview tab to view the report at design time.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Parameters for Charts
Using parameters you can connect your report to the chart control. By setting the parameter on the field that connects
the report to the chart, the report passes the data to display in the chart. This walkthrough illustrates how to link report
with chart using parameters.

The walkthrough is split up into the following activities:

Adding an ActiveReport to a Visual Studio project
Connecting the report to a data source
Adding controls to the report to display data

ActiveReports 14 1318

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Connecting the Chart control to a data source using parameter
Setting the Chart's properties
Viewing the report.

When you complete this walkthrough you get a layout that looks similar to the following at run time:

Note: This topic uses table from the NorthWind database. The NWIND.mdb file can be downloaded from GitHub:
..\Samples14\Data\NWIND.mdb.

To add an ActiveReport to the Visual Studio project

1. Create a new Visual Studio project.
2. From the Project menu, select Add New Item.
3. In the Add New Item dialog that appears, select ActiveReports 14 Section Report (code-based) and in the Name

field, rename the file as rptChartParams.
4. Click the Add button to open a new section report in the designer.

See Quick Start for information on adding different report layouts.

To connect the report (rptChartParams) to a data source

1. On the detail section band, click the Data Source Icon.

2. In the Report Data Source dialog that appears, from the OLE DB tab, create a data source connection. See Bind
Reports to a Data Source for further details.

3. Once the connection string field is populated, in the Query field, enter the following SQL query.

SQL Query

SELECT * FROM Products ORDER BY CategoryID, ProductName

4. Click OK to save the data source and return to the report design surface.

To add controls to the report to display data

1. On the design surface, right click the PageHeader or PageFooter section and select Delete to remove the

ActiveReports 14 1319

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://github.com/activereports/Samples14/tree/master/Data

PageHeader/Footer pair.
2. Right click on the design surface and insert GroupHeader/Footer section pair.
3. Click the GroupHeader section to select it and go to the Properties window to set the following properties:

Property Name Property Value

Name ghCategoryID

DataField CategoryID

GroupKeepTogether All

Height 5.65 inches

4. Set Height property of Detail section to 0.23 inches and of GroupFooter section to 0 inch.
5. From the Visual Studio toolbox, drag and drop the following controls onto the GroupHeader section and set their

properties as given below:

Label1

Property Name Property Value

Name lblCategoryID

Text CategoryID

Location 1.78, 0

Label2

Property Name Property Value

Name lblProductName

Text Product Name

Location 0.23, 5.43

Label3

Property Name Property Value

Name lblUnitsInStock

Text Inventory stock

Location 5, 5.43

TextBox

Property Name Property Value

DataField CategoryID

Name txtCategoryID

Text CategoryID

Location 3.72, 0

ActiveReports 14 1320

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Chart

Property Name Property Value

Name ChartControl

Location 0, 0.313

Size 6.5, 4.66

6. From the Visual Studio toolbox, drag and drop the following controls onto the detail section and set their
properties as given below:

TextBox1

Property Name Property Value

DataField ProductName

Name txtProductName

Text ProductName

Location 0.23, 0

TextBox2

Property Name Property Value

DataField UnitsInStock

Name txtUnitsInStock

Text UnitsInStock

Location 5, 0

To connect the Chart to a data source

1. Select the Chart control and at the bottom of the Properties window, select the Data Source command. See
Properties Window for further details on accessing commands.

Tip: If the verb is not visible, right-click an empty space in the Properties Window and select Commands to
display verbs.

2. In the Chart DataSource dialog box that appears, click the Build button.
3. In the Data Link Properties window, select Microsoft Jet 4.0 OLE DB Provider and click the Next button.
4. Click the ellipsis button (...) to browse to the NorthWind database. Click Open once you have selected the file.
5. Click the OK button to close the window and fill in the Connection String.
6. In the Query field, enter the following parameterized SQL query.

SQL Query

SELECT * FROM Products WHERE CategoryID = <%CategoryID||1%> ORDER BY ProductName

Note: The chart data cannot be arranged if ORDER is not set in both the SQL statements (report and chart
statement).

ActiveReports 14 1321

Copyright © 2020 GrapeCity, Inc. All rights reserved.

7. Click OK to save the data source.

To configure the appearance of the Chart

1. With the chart control selected, go to the Properties window, click the ChartAreas (Collection) property and then
click the ellipsis button that appears.

2. In the ChartArea Collection Editor that appears with defaultArea selected under the members list, click its Axes
(Collection) property and then click the ellipsis button.

3. In the AxisBase Collection Editor that appears, set the following properties.

AxisBase

1. With AxisX selected under members list, set Angle property of LabelFont to -90.

2. Delete text from Title property to make sure that the ProductName label (lblProductName) does not

overlap.
3. Click AxisY under the members list and set its Title property to Unit Stock.
4. With AxisY selected under the members list, expand the GridLine section under MajorTick property tree

view and set its following sub-properties.

Property
Name

Property
Value

Style Dot

Color Silver

Weight 1

5. Click OK to return back to ChartArea collection editor and then click OK again to return back to report
design surface.

4. With the chart control selected, go to the Properties window, click the ChartSeries (Collection) property and then
click the ellipsis button that appears.

5. In the Series Collection Editor that appears, set the following properties:

Series

1. With Series1 selected under the members list, set its following properties:

ActiveReports 14 1322

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Property Name
Property
Value

ValueMembersY UnitsInStock

ValueMembersX ProductName

2. Click OK to return back to report design surface.
6. With the chart control selected, go to the Properties window, click the Titles (Collection) property and then click

the ellipsis button that appears.
7. In the Title Collection Editor that appears, set the following properties:

Titles

1. With Header selected under the members list, set its Text property to Product Inventory.

2. Delete/Remove Footer from the members list.
3. Click OK to return back to report design surface.

8. With the chart control selected, go to the Properties window, click the Legends (Collection) property and then
click the ellipsis button that appears.

9. In the Legend Collection Editor that appears, set the following properties:

Legends

1. With defaultLegend selected under the members list, set its Visible property to False.

2. Click OK to return back to report design surface.

To view the report

Click the preview tab to view the report at design time.

ActiveReports 14 1323

Copyright © 2020 GrapeCity, Inc. All rights reserved.

OR

Open the report in the Viewer. See Windows Forms Viewer for further information.

Web
This section contains the following walkthroughs that fall under the Web category.

Document Web Service
This walkthrough describes how to set up a simple web service that returns an ActiveReports document.

Document Windows Application
This walkthrough describes how to set up a Windows client application for the ActiveReports Document Web Service

Important: In order to consume Web services in your Windows applications, you must set permissions to allow the
ASP.NET user to consume the services. Ask your server administrator for help with this.

Document Web Service
With ASP.NET and ActiveReports, you can set up a Web Service that returns a report document which can be shown in a
report viewer control.

This walkthrough illustrates how to create a Web Service that returns the contents of an ActiveReports as a byte array.

This walkthrough is split up into the following activities:

Creating an ASP.NET Web Service project
Adding code to create the Web Method
Testing the Web Service
Publishing the Web Service
Creating a virtual directory in IIS

Note: For the information on how to connect your report to data and how to create the report layout, please see
Basic Data Bound Reports for a section report.

When you have completed this walkthrough, you will have a Web Service that returns the contents of an ActiveReports as
a byte array.

To create an ASP.NET Web Service project

1. From the File menu, select New Project.
2. In the New Project dialog that appears, select ASP.NET Web Service Application.
3. Change the name of the project.
4. Click OK to open the new project in Visual Studio.

To write the code to create the Web Method

1. On the Service.vb or Service.cs tab is the code view of the Service.asmx file.
2. Replace the existing WebMethod and HelloWorld function with the following code.

ActiveReports 14 1324

Copyright © 2020 GrapeCity, Inc. All rights reserved.

The following code demonstrates how you create the Web Method for a section report.

Visual Basic.NET code. REPLACE the existing WebMethod and function with this code.

<WebMethod(_Description:="Returns a products report grouped by category")> _
Public Function GetProductsReport() As Byte()
 Dim rpt As New rptProducts()
 rpt.Run()
 Return rpt.Document.Content
End Function

C# code. REPLACE the existing WebMethod and function with this code.

[WebMethod(_Description = "Returns a products report grouped by category")]
public byte[] GetProductsReport()
{
 rptProducts rpt = new rptProducts();
 rpt.Run();
 return rpt.Document.Content;
}

To test the Document Web Service

1. Press F5 to run the project. The Service page appears in your browser.
2. In the list of supported operations at the top, click GetProductsReport.
3. Click the Invoke button to test the Web Service operation.
4. If the test is successful, you will see the binary version of the contents of rptProducts.

To publish the Document Web Service

1. In the Solution Explorer, right-click the project name and select Publish.
2. In the Publish Web window that appears, enter locahost in the Service URL field and "SiteName"/WebService

in the Site/application field.

Note: Get the SiteName from the Internet Information Services Manager.

3. Select the Mark an IIS application on destination option and click the OK button.

To check the configuration in IIS

1. Open Internet Information Services Manager.
2. In the Internet Information Services Manager window that appears, expand the tree view in the left pane until

you see the Web Service you had added in the steps above.
3. Right-click the Web Service select Manage Application then Browse.
4. In the browser that appears, go to the Address bar and add \Service1 to the url.

For information on consuming the Document Web Service in a viewer, see Document Windows Application.

Document Windows Application
In ActiveReports, you can use a Web Service that returns the content of a Section report to show in the Windows Forms
viewer control.

ActiveReports 14 1325

Copyright © 2020 GrapeCity, Inc. All rights reserved.

This walkthrough illustrates how to create a Windows client application that returns the content of a Section report in the
Windows Forms viewer.

This walkthrough builds on the Document Web Service walkthrough and is split up into the following activities:

Creating a Visual Studio project
Adding the ActiveReports Windows Forms viewer control to the form
Adding a reference to a Web service to the project
Displaying the content returned by the Document Web Service in the viewer
Running the project

Note: Refer to Document Web Service to set up Web service that returns an ActiveReports document.

To create a Visual Studio project

1. From the File menu, select New, then Project.
2. In the Templates section of the New Project dialog, select Windows Application.
3. Change the name of the application to ARDocumentClient.
4. Click OK to open the project.

To add the Viewer control

1. From the Visual Studio toolbox, drag the ActiveReports Viewer control onto the form.
2. Change the Dock property for the viewer control to Fill, and resize the form to accommodate a report.

To add a web reference

To add a reference to a web service in Visual Studio that is compatible with the .NET Framework Web service
version

1. From the Project menu, select Add Service Reference.
2. In the Add Service Reference window that appears, click the Advanced button.
3. In the Service Reference Settings window that appears, click Add Web Reference button.
4. From the Project menu, select Add Web Reference.
5. Type in the address of the .asmx file for the ActiveReports Document Web Service you created in the previous

walkthrough. For example: http://localhost/ARDocumentWS/Service.asmx
6. Click the Add Reference button when the Web Service is recognized.

To add a reference to a web service in Visual Studio

1. From the Project menu, select Add Service Reference.
2. In the Add Service Reference that appears, type in the address of the .asmx file for the ActiveReports Document

Web Service you created in the previous walkthrough. For example:
http://localhost/ARDocumentWS/Service.asmx

3. Click the Go button, and then click the OK button when the Web Service is recognized.

To display the content returned by the Document Web Service in the viewer

To display the report content

1. Double-click Form1 to create an event-handling method for the Form1_Load event.
2. Add code to the handler to display the document Web service content in the viewer.

The following example shows what the code for the method looks like.

ActiveReports 14 1326

Copyright © 2020 GrapeCity, Inc. All rights reserved.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim ws As New localhost.Service
Me.Viewer1.Document.Content = ws.GetProductsReport()

To write the code in C#

C# code. Paste INSIDE the Form Load event.

localhost.Service ws = new localhost.Service();
this.viewer1.Document.Content = ws.GetProductsReport();

To display the report content

1. Double-click on Form1 to create an event-handling method for the Form1_Load event.
2. Add code to the handler to display the document Web service content in the viewer.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the Form Load event.

Dim ws As New ServiceReference1.ServiceSoapClient()
Me.Viewer1.Document.Content = ws.GetProductsReport()

To write the code in C#

C# code. Paste INSIDE the Form Load event.

ServiceReference1.ServiceSoapClient ws = new ServiceReference1.ServiceSoapClient();
this.viewer1.Document.Content = ws.GetProductsReport();

To update the app.config file

Note: You need to update the app.config file if you added the Service Reference to Visual Studio project in the
previous section.

1. In the Solution Explorer, open the app.config file.
2. In the tag <binding name = "ServiceSoap"...>, set maxBufferSize and maxReceivedMessageSize to some large

number, for example, 200500.
3. In the next tag <readerQuotas...>, set maxArrayLength to some large number, for example, 60500.

To run the project

Press F5 to run the project.

Common Walkthroughs
Common walkthroughs cover scenarios to introduce the key features of page and section reports. Learn about different

ActiveReports 14 1327

Copyright © 2020 GrapeCity, Inc. All rights reserved.

page and section report walkthroughs categorized as follows.

Professional
This section contains the walkthroughs explaining features that are part of the ActiveReports Professional Edition.

Web
This section contains the walkthroughs that explain how to create a simple web service for each scenario and how to
create a Windows client application for each web service.

Professional
This section contains the following walkthroughs that fall under the Professional category.

Creating a Basic End User Designer
This walkthrough demonstrates how to set up a basic end-user report designer on a Windows Forms application.

Customizing the HTML Viewer UI
This walkthrough demonstrates how to customize the HTML Viewer interface using JQuery methods.

Creating a Basic End User Report Designer (Pro Edition)
This walkthrough illustrates how to set up a basic End-User Report Designer on a Windows Forms application in the
Professional Edition of ActiveReports.

At the end of this walkthrough, the End-User Report Designer appears like the following image.

Adding the Designer control to the Form

You will add the Designer that could only edit and preview a report file.

1. Create a new Windows Forms Application project.
2. In the Name field, rename the file to CustomEUD and click OK.
3. Install GrapeCity.ActiveReports package from nuget.org to make the ActiveReports 14 toolbox available in Visual

Studio.
4. Install GrapeCity.ActiveReports.Design.Win package to make the Designer control available in the toolbox.
5. Select a Form and go to the Properties Window to change the Name property to frmMain and the Text property

to ActiveReports.
6. Resize the Form so that you can accommodate the controls listed further.
7. From the Visual Studio toolbox, drag the Designer control onto the Form and rename it to designer.
8. From the Visual Studio toolbox, drag the Toolbox control onto the Form and rename it to toolbox.

ActiveReports 14 1328

Copyright © 2020 GrapeCity, Inc. All rights reserved.

9. To attach the toolbox control to the designer control, in the Solution Explorer, right-click Form1.cs and select View
Code.

10. Add the following code (marked in bold) after the InitializeComponent method.

C# code. Paste AFTER the InitializeComponent method

public frmMain()
{
 InitializeComponent();
 designer.Toolbox = toolbox;
}

11. At the top of the code view, add a using directive.

C# code. Paste at the top of the Form1 code view

using GrapeCity.ActiveReports.Design;

Loading and/or saving the report file

1. From the Visual Studio Menus & Toolbars toolbox group, drag the MenuStrip control onto the Form.
2. Create the following structure for the MenuStrip control: File > Open, File > Save as.

3. On the Form, double-click the Open menu item and paste the following code (marked in bold) into the
openToolStripMenuItem_Click handler.

C# code. Paste INSIDE the openToolStripMenuItem_Click handler

private void openToolStripMenuItem_Click(object sender, EventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 var dialogResult = openFileDialog.ShowDialog();
 if (dialogResult == System.Windows.Forms.DialogResult.OK)
 {
 designer.LoadReport(new
System.IO.FileInfo(openFileDialog.FileName));
 }
 }

4. On the Form, double-click the Save as menu item and paste the following code (marked in bold) into the
saveAsToolStripMenuItem_Click handler.

C# code. Paste INSIDE the saveAsToolStripMenuItem_Click handler

private void saveAsToolStripMenuItem_Click(object sender, EventArgs e)

ActiveReports 14 1329

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 {
 SaveFileDialog saveFileDialog = new SaveFileDialog();
 saveFileDialog.Filter = GetSaveFilter();
 var dialogResult = saveFileDialog.ShowDialog();
 if (dialogResult == System.Windows.Forms.DialogResult.OK)
 {
 designer.SaveReport(new
System.IO.FileInfo(saveFileDialog.FileName));
 }
 }

5. After the saveAsToolStripMenuItem_Click handler code, add the code for the GetSaveFilter method as follows.

C# code. Paste AFTER the saveAsToolStripMenuItem_Click handler

private string GetSaveFilter()
 {
 switch (designer.ReportType)
 {
 case DesignerReportType.Section:
 return "Section Report Files (*.rpx)|*.rpx";
 case DesignerReportType.Page:
 return "Page Report Files (*.rdlx)|*.rdlx";
 case DesignerReportType.Rdl:
 return "RDL Report Files (*.rdlx)|*.rdlx";
 default:
 return "RDL Report Files (*.rdlx)|*.rdlx";
 }
 }

Creating a new report based on a chosen type

1. Create the following structure for the MenuStrip control: File > New report > Section report; File > New report
> Page report; File > New report > Rdl report.

2. Double-click the Section report MenuStrip item and add the following code (marked in bold) into the

ActiveReports 14 1330

Copyright © 2020 GrapeCity, Inc. All rights reserved.

sectionToolStripMenuItem_Click handler.

C# code. Paste INSIDE the sectionToolStripMenuItem_Click handler

private void sectionToolStripMenuItem_Click(object sender, EventArgs e)
 {
 designer.NewReport(DesignerReportType.Section);
 }

3. Double-click the Page report MenuStrip item and add the following code (marked in bold) into the
pageReportToolStripMenuItem_Click handler.

C# code. Paste INSIDE the pageReportToolStripMenuItem_Click handler

private void pageReportToolStripMenuItem_Click(object sender, EventArgs e)
 {
 designer.NewReport(DesignerReportType.Page);
 }

4. Double-click the Rdl report MenuStrip item and add the following code (marked in bold) into the
rdlReportToolStripMenuItem_Click handler.

C# code. Paste INSIDE the rdlReportToolStripMenuItem_Click handler

private void rdlReportToolStripMenuItem_Click(object sender, EventArgs e)
 {
 designer.NewReport(DesignerReportType.Rdl);
 }

Adding the Export option

1. Install packages from nuget as follows:
i) Go to Tools > Nuget Package Manager > Manage Nuget Packages for Solution...
ii) Browse the following package and click Install.
 GrapeCity.ActiveReports.export.Pdf

2. At the top of the code view, add using statements.

C# code. Paste at the top of the Form1 code view

using GrapeCity.ActiveReports.Export.Pdf.Page;
using GrapeCity.ActiveReports.Rendering.IO;
using GrapeCity.ActiveReports;
using System.IO;

3. In the MenuStrip control, add the Export menu item to the File menu.

ActiveReports 14 1331

Copyright © 2020 GrapeCity, Inc. All rights reserved.

4. In the Properties Window, set the Enabled property to False. This enables the Export menu item to be displayed in
the Preview mode only.

5. To enable the Export menu item to be displayed for page and rdl reports only, add the following code (marked in
bold) after the InitializeComponent method.

C# code. Paste AFTER the InitializeComponent method

public frmMain()
 {
 InitializeComponent();
 designer.Toolbox = toolbox;
 designer.ActiveTabChanged += designer_ActiveTabChanged;
 }

void designer_ActiveTabChanged(object sender, EventArgs e)
 {
 exportToolStripMenuItem.Enabled = designer.ActiveTab ==
DesignerTab.Preview && designer.ReportType != DesignerReportType.Section;
 }

6. On the Form, double-click the Export item and add the following code (marked in bold) to the
exportToolStripMenuItem_Click handler.

C# code. Paste INSIDE the exportToolStripMenuItem_Click handler

private void exportToolStripMenuItem_Click(object sender, EventArgs e)
 {
 SaveFileDialog saveFileDialog = new SaveFileDialog();
 saveFileDialog.Filter = "Pdf (*.pdf)|*.pdf";
 var dialogResult = saveFileDialog.ShowDialog();
 if (dialogResult == System.Windows.Forms.DialogResult.OK)
 {
 var pdfRe = new PdfRenderingExtension();
 var msp = new MemoryStreamProvider();
 (designer.Report as PageReport).Document.Render(pdfRe, msp);
 using (var stream = msp.GetPrimaryStream().OpenStream())
 using (var fileStream = new FileStream(saveFileDialog.FileName,

ActiveReports 14 1332

Copyright © 2020 GrapeCity, Inc. All rights reserved.

FileMode.Create, FileAccess.Write))
 {
 stream.CopyTo(fileStream);
 }
 MessageBox.Show("Export is done");
 } }

For more information on export filters, rendering extensions and their settings, refer to the Exporting section of the
ActiveReports User Guide.

Adding other controls to the Form

1. From the Visual Studio toolbox, drag the following controls onto the Form.

Control Name Property Value

ReportExplorer arReportExplorer ReportDesigner = designer
This binds the ActiveReports Designer to the ReportExplorer control.
Resize and move as necessary.

LayerList arLayerList ReportDesigner = designer
This binds the ActiveReports Designer to the LayerList control.
Resize and move as necessary.

PropertyGrid arPropertyGrid Resize and move as necessary.

GroupEditor arGroupEditor ReportDesigner = designer
This binds the ActiveReports Designer to the GroupEditor control.
Resize and move as necessary.

ReportsLibrary arReportsLibrary ReportDesigner = designer
This binds the ActiveReports Designer to the ReportsLibrary control.
Resize and move as necessary.

2. On the Form, select the Designer control.
3. In the Properties Window, set the PropertyGrid property of the Designer control to arPropertyGrid. This binds the

ActiveReports Designer to the Property Grid control.

Viewing the End User Report Designer

Press F5 to run the project. The End User Report Designer opens with an RDL Report.

For information on how you can customize the End User Report Designer and more, refer to the End User Designer
product sample.

Customizing the WebViewer UI
You can customize the WebViewer interface using JQuery methods. WebViewer control adds JQuery library in page
scripts. Use the code in this walkthrough to add a button on the toolbar and add a client side PDF export implementation.

When you complete this walkthrough you get a WebViewer that looks similar to the following at run time.

ActiveReports 14 1333

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Load an ActiveReport to the Web application

1. Create a new Visual Studio ASP.NET Web Forms application.
2. Install GrapeCity.ActiveReports.Web package. Go to Tools > Nuget Package Manager > Manage Nuget

Packages for Solution..., browse for the package and click Install.
3. In Solution Explorer, right-click the project and select Add > New Item.
4. Select WebForm and click Add.
5. Go to the Design view of the newly added WebForm.aspx and drag and drop the WebViewer control to the

WebForm designer. The default viewer type is HTMLViewer.
6. Load a report in the WebViewer by setting the ReportName property.

Note: You may load any report, section or page in the HTMLViewer viewer type of WebViewer. See Getting
Started with the WebViewer for information on loading a report.

Add the jQuery library to the Web application project

In the Source view of the WebForm.aspx file, add the following code.

Add this code after the <head> tag

<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

Access the WebViewer view model

The HTML WebViewer is created using the MVVM pattern that provides a view model which does not depend on the
UI. The code can access the Viewer's view model and bind the custom UI to it by using well-documented properties and
methods. For MVVM support, the code can use knockout.js which is the standard MVVM library for JavaScript. Knockout.js
provides declarative bindings, observable objects and collections in HTML markup. See Using Javascript with the HTML
Viewer for more information.

Follow the steps below to access the ViewModel.

1. In the Source view of the WebForm.aspx file, add a <script> tag.
2. Add the following Javascript code for document's Onload event handler and WebViewer's Loaded event handler

that gets fired when the UI is rendered on the Html Page:

Paste the code into .aspx source

<script>
function viewer_loaded()
 {

ActiveReports 14 1334

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 };
function document_onload()
 {
 };
</script>
...
<body onload="document_onload()">

3. Add the following Javascript code inside the viewer_loaded event handler to access WebViewer's view model:

Paste the code into .aspx source

function viewer_loaded() {
 var viewModel = GetWebViewer('WebViewer1');
 };

4. Add the following Javascript code inside the document_onload event handler to bind WebViewer's Loaded event
to client side viewer_loaded event:

Paste the code into .aspx source

function document_onload() {
 $('#WebViewer1').ready(viewer_loaded);
 };

Add a button to the WebViewer toolbar

In the Source view of the WebForms.aspx file, add the following Javascript code inside the viewer_loaded event handler
to access the WebViewer toolbar. Lets add the custom button in the toolbar - an export button and add PDF export
functionality to it.

Paste the code into .aspx source

function viewer_loaded() {
 var viewModel = GetWebViewer('WebViewer1');

 var pdfExportButton = {
 key: '$pdfExportButtonKey',
 text: 'To PDF',
 iconCssClass: 'mdi mdi-file-pdf',
 enabled: true,
 action: function (item) {
 console.log('Export to PDF function works here');
 },
 onUpdate: function (arg, item) {
 console.log(The Viewer UI was updated, check/update button state
here');
 }
 };

 viewModel.toolbar.desktop.addItem(pdfExportButton);

ActiveReports 14 1335

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 };

The complete code for WebForm1.aspx in the Source view is as shown:

Paste the code into .aspx source

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm1.aspx.cs"
Inherits="WebApplication1.WebForm1" %>
<%@ Register assembly="GrapeCity.ActiveReports.Web"
namespace="GrapeCity.ActiveReports.Web" tagprefix="ActiveReportsWeb" %>

<!DOCTYPE html>
<html xmlns="https://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body onload="document_onload()">
 <form id="form1" runat="server">
 <div>
 <ActiveReportsWeb:WebViewer ID="WebViewer1" runat="server" height="466px"
width="667px" ReportName="AllCustomers.rdlx">
 </ActiveReportsWeb:WebViewer>
 </div>

 </form>
 <script src="https://code.jquery.com/jquery-2.1.4.min.js">
 </script>
 <script>
 function viewer_loaded() {
 var viewModel = GetWebViewer('WebViewer1');

 var pdfExportButton = {
 key: '$pdfExportButtonKey',
 text: 'To PDF',
 iconCssClass: 'mdi mdi-file-pdf',
 enabled: true,
 action: function (item) {
 console.log('Export to PDF function works here');
 },
 onUpdate: function (arg, item) {
 console.log('Something in viewer was updated, check/update button
state here');
 }
 };

 viewModel.toolbar.desktop.addItem(pdfExportButton);

ActiveReports 14 1336

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 };

 function document_onload() {
 $('#WebViewer1').ready(viewer_loaded);
 };
 </script>
</body>
</html>

To remove a button from the viewer's UI

Paste the code into .aspx source

function viewer_loaded() {
 var viewModel = GetWebViewer('WebViewer1');
 ...

 viewModel.toolbar.desktop.removeItem($newButtonKey); //(key of the button)
 };

Note:

Replace 'WebViewer1' in the code snippets above, with the actual ID of the WebViewer control in your
application.
In case you provide report name which contains special symbols (like backslash '\'), e.g.
webViewer.ReportName="Folder\Report.rdlx", you need to update the web.config file to allow such characters.
Otherwise, "Report not found" error occurs. Please see Troubleshooting on resolving this issue.

Web
This section contains the following walkthroughs that fall under the Web category.

DataSet Web Service
This walkthrough describes how to set up a simple web service that returns a dataset.

DataSet Windows Application
This walkthrough describes how to set up a Windows client application for the dataset Web Service.

Important: In order to consume Web services in your Windows applications, you must set permissions to allow the
ASP.NET user to consume the services. Ask your server administrator for help with this.

DataSet Web Service
With ASP.NET, you can set up a Web Service that returns a dataset to use in ActiveReports. This walkthrough illustrates
how to create one.

This walkthrough is split into the following activities:

ActiveReports 14 1337

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Creating an ASP.NET Web Service project
Adding code to create the Web method
Testing the Web service
Publishing the Web service
Creating a virtual directory in IIS

Note: For the information on how to connect your report to data and how to create the report layout, please see
Single Layout Reports (for a page report) or Basic Data Bound Reports (for a section report).

To create an ASP.NET Web Service project

1. From the File menu, select New Project.
2. In the New Project dialog that appears, select ASP.NET Web Application to create a empty web application.
3. Change the name of the project.
4. Click OK to open the new project in Visual Studio.

To create the Web Method

1. From the Project menu, select Add New Item.
2. In the Add New Item dialog that appears, select Web Service (asmx) and change the name of the web service.

In the WebService, replace the existing <WebMethod()> _ and HelloWorld function with code like the following.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste OVER the existing WebMethod.

Private connString As String
<WebMethod(Description:="Returns a DataSet containing all Products")> _
Public Function GetProduct() As Data.DataSet
connString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=[User
Folder]\Samples14\Data\Nwind.mdb"
Dim adapter As New Data.OleDb.OleDbDataAdapter("select * from products", connString)
Dim ds As New Data.DataSet()
adapter.Fill(ds, "Products")
Return ds
End Function

To write the code in C#

C# code. Paste OVER the existing WebMethod.

private static string connString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source = [User
Folder]\\Samples14\\Data\\nwind.mdb";
[WebMethod(Description="Returns a DataSet containing all Products")]
public Data.DataSet GetProduct()
{
 System.Data.OleDb.OleDbDataAdapter adapter;
 System.Data.DataSet ds;
 adapter = new System.Data.OleDb.OleDbDataAdapter("select * from products",
connString);

ActiveReports 14 1338

Copyright © 2020 GrapeCity, Inc. All rights reserved.

 ds = new System.Data.DataSet();
 adapter.Fill(ds, "Products");
 return ds;
}

To test the Web Service

1. Press F5 to run the project.
2. If the Debugging Not Enabled dialog appears, select the option that enables debugging and click OK to continue.
3. In the list of supported operations, click the GetProduct link. (The description string from the code above appears

below the link.)
4. Click the Invoke button to test the Web Service operation.
5. If the test is successful, a valid XML schema of the Northwind products table displays in a new browser window.
6. Copy the URL from the browser for use in the Web Reference of your DataSet Windows Application.

To publish the Web Service

1. In the Solution Explorer, right-click the project name and select Publish.
2. In the Publish Web window that appears, select Custom option to create a custom profile and click OK.
3. Enter localhost in the Server field and "SiteName"/WebServiceName in the Site name field.

Note: Get the SiteName from the Internet Information Services Manager.

4. Click the Publish button.

To check the configuration in IIS

1. Open Internet Information Services Manager.
2. In the Internet Information Services Manager window that appears, expand the tree view in the left pane until

you see the Web Service you had added in the steps above.
3. Right-click the Web Service select Manage Application then Browse.
4. In the browser that appears, go to the Address bar to add WebServiceName.asmx to the url and press Enter.

For information on consuming the DataSet Web Service in an ActiveReport, see DataSet Windows Application.

DataSet Windows Application
You can use a Web Service that returns a dataset as the data source for your reports in Windows applications. This
walkthrough illustrates how to create a Windows client application that uses the dataset Web Service as the data source
for an ActiveReports.

This walkthrough builds on the DataSet Web Service walkthrough and is split up into the following activities:

Adding a reference to a Web service to the project
Setting the report data source to the one returned by the Web service

Note: For the information on how to connect your report to data and how to create the report layout, please see
Single Layout Reports (for a page report) or Basic Data Bound Reports (for a section report).

To add a reference to a web service in Visual Studio

1. From the Project menu, select Add Service Reference.

ActiveReports 14 1339

Copyright © 2020 GrapeCity, Inc. All rights reserved.

2. In the Add Service Reference window that appears, type in the address of the virtual directory you created in the
previous walkthrough. You can get the address by running the project from the previous walkthrough and copying
the url from the address in the browser. (It will look something like http://localhost:####/DataSetWS/Service.asmx
where #### is the port number.)

3. Click the Go button, and then click the OK button when the Web Service is recognized.

To set the report data source to the one returned by the Web service

To set the report data source (for Visual Studio compatible with .NET Framework Web service version)

1. Double-click the gray area below the report. This creates an event-handling method for the ReportStart event.
2. Add code to the handler to use the web service dataset in the report.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event

Dim ws As New localhost.Service
Dim ds As DataSet()= ws.GetProduct()
Me.DataSource = ds
Me.DataMember = "Products"

To write the code in C#

C# code. Paste INSIDE the ReportStart event.

localhost.DataSetWS ws = new localhost.Service;
DataSet ds = ws.GetProduct();
this.DataSource = ds;
this.DataMember = "Products";

To set the report data source

1. Double-click the gray area below the report. This creates an event-handling method for the ReportStart event.
2. Add code to the handler to use the web service dataset in the report.

The following example shows what the code for the method looks like.

To write the code in Visual Basic.NET

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Dim ws As New ServiceReference1.ServiceSoapClient()
Dim ds As DataSet = ws.GetProduct()
Me.DataSource = ds
Me.DataMember = "Products"

To write the code in C#

C# code. Paste INSIDE the ReportStart event.

ServiceReference1.ServiceSoapClient ws = new ServiceReference1.ServiceSoapClient();

ActiveReports 14 1340

Copyright © 2020 GrapeCity, Inc. All rights reserved.

DataSet ds = ws.GetProduct();
this.DataSource = ds;
this.DataMember = "Products";

To update the app.config file

Note: You need to update the app.config file if you added the Service Reference to the Visual Studio project in the
previous section.

1. In the Solution Explorer, open the app.config file.
2. In the tag <binding name = "ServiceSoap"...>, set maxBufferSize and maxReceivedMessageSize to some large

number, for example, 200500.
3. In the next tag <readerQuotas...>, set maxArrayLength to some large number, for example, 60500.

Troubleshooting
If you run into an issue while using ActiveReports, you will probably find the solution within this section. Click any short description below to drop down the symptoms, cause,
and solution. Or click a link to another section of the troubleshooting guide.

General Troubleshooting
Error appears on exporting Page/RDL reports from JSViewer run on ASP.NET Core MVC application

Symptoms: "Export report error" appears on exporting Page/RDL report from JSViewer when run through ASP.NET Core MVC applications.

Cause: ASP.NET Core MVC has undergone some changes that disable the synchronous server operations. See this for more information.

Solution: Add following content in Startup.cs to turn on the synchronous operations.

Startup.cs

services.Configure<IISServerOptions>(options =>
{
 options.AllowSynchronousIO = true;
});

Error appears on using parameterized queries with OLE DB provider in .NET core applications

Symptoms: Error is thrown on using parameterized queries with OLE DB provider in .NET Core applications.

Cause: The number of query parameters specified in the dataset do not match the parameters used in the SQL query for dataset. Note that this works perfectly well for OLE
DB provider from Full .NET Framework.

Solution: The number of query parameters specified in the SQL query should be same as number of query parameters in dataset.

Report menu does not appear in the main menu of Visual Studio 2019

Symptoms: When a report is opened in Visual Studio 2019, Report menu does not appear in the main menu.

Cause: Due to new behavior relating to extensions in Visual Studio 2019, Report menu is removed as main menu.

Solution: Go to Extensions menu. You can see that the Report menu is available as submenu.

References missing from Visual Studio Add Reference dialog

Symptoms: When you try to add references to your project, only a few of the ActiveReports references are available.

Cause: The project's target framework is set to an old version of the .NET framework that does not support the new assemblies.

Solution:

1. In the Solution Explorer, right click the project and choose Properties.
2. On the Application tab in C# projects (or the Compile tab, then the Advanced Compile Options button in Visual Basic projects), drop down the Target framework box

and select .NET Framework 4.6.2.

Errors after installing a new build

Symptoms: When you open a project created with a previous build of ActiveReports after installing a new build, there are errors related to being unable to find the previous
build.

Cause: Visual Studio has a property on references called Specific Version. If this property is set to True, the project looks for the specific version that you had installed when
you created the report, and throws errors when it cannot find it.

ActiveReports 14 1341

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/core/compatibility/2.2-3.0#http-synchronous-io-disabled-in-all-servers

Solution: For each of the ActiveReports references in the Solution Explorer, select the reference and change the Specific Version property to False in the Properties Window.

The project does not work if Integrated Managed Pipeline Mode is enabled

Symptoms: The web project does not work in the application pool if Integrated Managed Pipeline Mode is enabled.

Cause: The application configuration is incorrect for being used in Integrated mode.

Solution: Migrate the application configuration. Here is a sample command.

Paste the following on the command line.

"%SystemRoot%\system32\inetsrv\appcmd migrate config YourWebSite/"

GrapeCity.ActiveReports.Extensiblity.dll is added to the list of unused dlls in Visual Studio

Symptoms: GrapeCity.ActiveReports.Extensiblity.dll is added to the references folder when the viewer is dragged and dropped on the form, however it is present in the list of
unused dll in Visual Studio.

Cause: GrapeCity.ActiveReports.Extensiblity.dll is used internally for certain features in ActiveReports and is present in the Global Assembly Cache. Therefore, Visual Studio can
resolve the dependency and cannot find the direct references due to which it gets listed as a unused dll in Visual Studio.

Reports are not associated with the designer in Visual Studio when adding ActiveReports to a TFS-bound project

Symptoms: When adding ActiveReports to a Web site project that is bound to TFS (where reports are added to the App_Code folder), the report does not open in the
designer in Visual Studio.

Cause: The FileAttributes.xml file that contains attribute information to associate ActiveReports files with the Designer is usually loaded and maintained in memory when a
new ActiveReports file is added. However, if a Web site is bound to TFS, the FileAttributes.xml file is not maintained in memory. As a result, Visual Studio treats all the newly
added files as normal code files.

Solution: Add the newly added reports to FileAttributes.xml manually.

1. From the Website menu, select Add New Item.
2. Select ActiveReports 14 Section Report (code-based) and click OK.
3. Close the project.
4. From Windows Explorer, open the FileAttributes.xml file in an editor and add the new ActiveReports file, setting the subtype to Component, using code like the

following.

Note: The FileAttributes.xml is located at C:\Documents and Settings\[username]\Local Settings\Application Data\Microsoft\WebsiteCache\[WebSite1]\ (Windows
XP), or at C:\Users\[username]\AppData\Local\Microsoft\WebsiteCache\[WebSite1]\ (Windows 7).

XML code. Paste inside FileAttributes.xml

<?xml version="1.0" encoding="utf-16" ?>
<DesignTimeData>
 <File RelativeUrl="App_Code/NewActiveReport1.cs" subtype="Component" />
 <File RelativeUrl="Default.aspx.cs" subtype="ASPXCodeBehind" codebehindowner="Default.aspx" />
 <File RelativeUrl="Default.aspx" subtype="ASPXCodeBehind" />
</DesignTimeData>

5. Save the FileAttributes.xml file.
6. Reopen the Web site project.

The SystemNotSupportedException occurs when running ActiveReports with scripts on .NET Framework 4.0

Symptoms: The SystemNotSupportedException occurs when running ActiveReports with scripts on .NET Framework 4.0.

Cause: This exception occurs because of the CAS policy, which is obsolete in the .NET Framework 4.0.

Solution: To resolve this issue, the configuration file needs to be updated. To do this, in the Solution Explorer, open the app.config file (for Windows Forms applications) or
the Web.config file (for ASP.NET Web applications) and add the following code.

(Windows Forms Applications) XML code. Paste inside the app.config file

<configuration>
 <runtime>
 <NetFx40_LegacySecurityPolicy enabled="true"/>
 </runtime>
</configuration>

(ASP.NET Web Applications) XML code. Paste inside the Web.config file

<system.web>
 <trust legacyCasModel="true"/>
</system.web>

An Exception occurs on previewing reports connecting Microsoft Access OLE DB provider in a 64-bit system

Symptoms: "System.InvalidOperationException: The 'Microsoft.Jet.OLEDB.4.0' provider is not registered on the local machine." occurs on previewing reports connecting to
Microsoft.Jet.OLEDB.4.0 provider on a 64-bit operating system.

ActiveReports 14 1342

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Cause: The Microsoft Access OLE DB provider, Microsoft.Jet.OLEDB.4.0, is not compatible with 64 bit, so it fails on a 64-bit operating systems.

Solution: To avoid this, you have two options.

1. (Preferred) Change the OLE DB Provider to Microsoft.ACE.OLEDB.12.0.

Note that both 32-bit and 64-bit version of Microsoft.ACE.OLEDB.12.0 should be available in your machine.

2. Change the project settings to use only 32 bit.

1. With the project open in Visual Studio, from the Project menu, select Project Properties.
2. In the page that appears, select the Compile tab in a VB project, or the Build tab in a C# project.
3. Scroll to the bottom of the page and click the Advanced Compile Options button in VB, or skip this step in C#.
4. Drop down the Target CPU list in VB, or Platform target in C#, (set to use AnyCPU by default) and select x86.
5. Click OK to save the changes, or skip this step in C#.

The printing thread dies before the report finishes printing

Symptoms: The printing thread dies before the report is printed.

Cause: If printing is done in a separate thread and the application is shut down right after the print call, the separate thread dies before the report is printed.

Solution: Set the usePrintingThread parameter of the Print() method to False to keep the printing on the same thread. This applies to all Page reports, RDL reports and
Section reports.

1. In the project where you call the Print method, add a reference to the GrapeCity.ActiveReports.Viewer.Win assembly.
2. At the top of the code file where you call the Print method, add a using directive (Imports for VB) for GrapeCity.ActiveReports.
3. Call the Print method with the usePrintingThread parameter (the third parameter) set to false with code like the following.

C# code.

document.Print(false, false, false);

Visual Basic code.

document.Print(False, False, False)

Exception thrown when using Viewer.Print to print a report

Symptoms: An exception is thrown when the Viewer.Print method is used to print a report.

Cause: Print method was called before the page was loaded completely.

Solution: Use the Viewer.Print method in the LoadCompleted ('LoadCompleted Event' in the on-line documentation) event.

Error on previewing Server reports

Symptoms: When you try to preview Server reports created in previous ActiveReports versions in ActiveReports 14 designer, the error 'Server report is not supported' occurs.

Cause: The Server credentials are present in report definition and ActiveReports Server is not supported in ActiveReports 14.

Solution: Edit the report in any text editor and remove the <Custom Property> tag that contains the Server name and URL.

Some Data Providers are not available in DataSource Editor in .NET Core applications

Symptoms: Microsoft Data Providers such as Sql Client Provider, OleDb Provider, and Odbc Provider are not available in DataSource Editor in Designer in .NET Core 3.1
applications.

Cause: This is because of the references to older versions of Microsoft compatibility pack, etc.

Solution: Update the following references to versions:

Microsoft.Windows.Compatibility 3.0.0 -> 3.1.0
System.Data.SqlClient 4.7.0 -> 4.8.0
System.Text.Encoding.CodePages 4.6.0 -> 4.7.0

Code generation error appears with code-based report applications

Symptoms: The Code generation error appears when working with a code-based application in Visual Studio.

Cause: This is because of the cache problems in Visual Studio.

Solution: Use one of the solutions described below.

Clean Visual Studio cache.
Remove the folder C:\Users\[user name]\AppData\Local\Microsoft\VisualStudio\[VS version dir]\ProjectAssemblies.

Reset Visual Studio settings (see here for more details). For example, in Visual Studio 2019,
1. Open cmd.
2. Switch to C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE folder.
3. Run devenv/resetsettings.

The Visual Studio settings reset may result in the loss of important data.

Timeout error appears on running Angular(Core) samples for Web Designer and JSViewer with default settings

ActiveReports 14 1343

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/visualstudio/ide/reference/resetsettings-devenv-exe?view=vs-2019

Symptoms: The timeout error sometimes appears when running the WebDesigner_Angular(Core) and JSViewer_Angular(Core) samples with default settings. See Web
Samples for more information.

Cause: The connection timeout period is not sufficient and must be increased.

Solution: To increase the solution timeout period, add the following code to the Startup.cs file.

 if (env.IsDevelopment())

 {

 spa.UseAngularCliServer(npmScript: "start");

 spa.Options.StartupTimeout = TimeSpan.FromSeconds(200); //timeout

 }

Section Report Troubleshooting
Blank pages printed between pages, or a red line appears in the viewer

Symptoms: Blank pages are printed between pages of the report.

Cause: This problem occurs when the PrintWidth plus the left and right margins exceeds the paper width. For example, if the paper size were set to A4, the PrintWidth plus
the left and right margins cannot exceed 8.27"; otherwise blank pages will be printed. At run time, ActiveReports marks a page overflow by displaying a red line in the viewer
at the position in which the breach has occurred.

Solution: Adjust the PrintWidth in the report designer using either the property grid or by dragging the right edge of the report. Adjust page margins, height, and width
either through the print properties dialog box (in the Report menu under Settings), or programmatically in the Report_Start event.

Copying reports results in stacked controls

Symptoms: A report file copied into a new project has all of its controls piled up at location 0, 0.

Cause: The report has become disconnected from its resource file. When you set a report"s Localizable property to True, the Size and Location properties of the report"s
controls are moved to the associated *.resx file, so if you copy or move the report, you must move the *.resx file along with it.

Solution: When you copy a report"s *.vb or *.cs file from one project's App_Code folder into the App_Code folder of a new project, you need to also copy its *.resx file from
the original project"s App_GlobalResources folder into the new project's App_GlobalResources folder.

No data appears in a report containing the OleObject control

Symptoms: No data appears in a report containing the OleObject control.

Cause: This issue occurs when the Microsoft .NET Framework 4.6.2 or above is used and the useLegacyV2RuntimeActivationPolicy attribute is not set to True.

Solution: Open the app.config file and set the useLegacyV2RuntimeActivationPolicy attribute to true.

XML code. Paste INSIDE the app.config file.

<configuration>
<startup useLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="MyRunTimeVersion"/>
</startup>
</configuration>

An error message appears in the Fields list

Symptoms: An error message is displayed in the Fields list in the Report Explorer instead of the fields.

Cause: This is an expected error if no default value is given for a parameter. If the field is a data type other than text, memo, or date/time in Access, the report still runs
normally.

Solution: To display the fields in the Fields list in the Report Explorer, supply a default value for the parameter in the Properties Window, or in the SQL query as below:

SQL Query

<%Name | PromptString | DefaultValue | DataType | PromptUser%>

Only the Name parameter is required. To use some, but not all, of the optional parameters, use all of the separator characters but with no text between one and the next for
unused parameters. For example:

SQL Query

<%Name | | DefaultValue | |%>

An unhandled exception of type "System.Data..." occurs when the report is run

Symptoms: When the report is run, an exception like the following occurs: "An unhandled exception of type "System.Data.OleDb.OleDbException" occurred in
system.data.dll"

Cause: If the field is a text, memo, or date/time data type in Access, the parameter syntax requires single quotes for text or memo fields, or pound signs for date/time fields.
Please note that for different data sources, these requirements may differ.

ActiveReports 14 1344

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Solution: To avoid the exception when the report is run against an Access database, use pound signs for date/time values, or single quotes for string values in your SQL
query, for example:

SQL Query

#<%InvoiceDate | Choose invoice date: | 11/2/04 | D | True%>#

or

SQL Query

"<%Country | Country: | Germany | S | True%>"

User is prompted for parameters for subreports even though they are supplied by the main report

Symptoms: The parameter user interface pops up at run time asking for a value even though the main report is supplying the parameter values for the subreports.

Cause: The default value of the ShowParameterUI property of the report is True.

Solution: Set the ShowParameterUI property of the report to False. This can be done in the property grid or in code in the ReportStart event.

The viewer shows the report on the wrong paper size

Symptoms: In the viewer, the report renders to a different paper size than the one specified.

Cause: ActiveReports polls the printer driver assigned to the report to check for clipping, margins, and paper sizes supported by the printer. If the paper size specified for the
report is not supported by the printer, ActiveReports uses the printer's default paper size to render the report.

Solution: If the report is to be printed, the printer assigned to the report must support the paper size and margins. Please note that any changes to the print settings in code
must be made in or before the ReportStart event. To use custom paper sizes not supported by the driver, set the PrinterName to an empty string to use the ActiveReports
virtual print driver. This does not allow printing, but is recommended for reports that are only exported or viewed. This prevents ActiveReports from making a call to the
default printer driver. Use the following code in the ReportStart event, or just before .Run is called.

C# code. Paste INSIDE the ReportStart event.

this.Document.Printer.PrinterName = '';

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Me.Document.Printer.PrinterName = ''

The PaperHeight and PaperWidth properties, which take a float value defined in inches, have no effect unless you set the PaperKind property to Custom. Here is some sample
code which can be placed in the ReportStart event, or just before .Run.

C# code. Paste INSIDE the ReportStart event.

this.PageSettings.PaperKind = Drawing.Printing.PaperKind.Custom;
this.PageSettings.PaperHeight = 2;
//sets the height to two inches
this.PageSettings.PaperWidth = 4;
//sets the width to four inches

Visual Basic.NET code. Paste INSIDE the ReportStart event.

Me.PageSettings.PaperKind = Drawing.Printing.PaperKind.Custom
Me.PageSettings.PaperHeight = 2
'sets the height to two inches
Me.PageSettings.PaperWidth = 4
'sets the width to four inches

Custom paper sizes do not work

Symptoms: Custom paper sizes do not work.

Cause: You can create more than one custom paper size, so setting only the PaperKind property is not enough to create a custom paper size.

Solution: In addition to setting the PaperKind property to Custom, you must also set the PaperName property to a unique string.

An exception relating to System.Data.SqlClient occurs on previewing section reports in Windows Forms Viewer or WPF Viewer in the .NET Core 3.1 desktop
application

Symptoms: The "Could not load file or assembly 'System.Data.SqlClient" exception occurs when you preview a section report in the Windows Forms Viewer or WPF Viewer in
the .NET Core 3.1 desktop application. This exception also occurs when you design a section report in the Designer in the .NET Core 3.1 desktop application.

Cause: This is a Microsoft compatibility issue.

Solution: You need to manually add the Microsoft.Windows.Compatibility NuGet package. For more information, see this article.

System.NotSupportedException occurs on previewing section reports with scripts in Windows Forms Viewer or WPF Viewer in the .NET Core desktop applications

Symptoms: When you preview section reports with scripts using Windows Forms Viewer, WPF Viewer, and Windows Designer components in .NET Core applications, the

ActiveReports 14 1345

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/core/porting/windows-compat-pack

exception "System.NotSupportedException. No data is available for encoding 1252" occurs. For information on defining a custom encoding, see the documentation for
the Encoding.RegisterProvider method.

Cause: You need to register encodings before using .NET Core applications with Windows Forms Viewer, WPF Viewer, and Windows Designer components.

Solution: To avoid this situation, please do the following.

1. Add the System.Text.Encoding.CodePages.dll assembly from the NuGet package.
2. Add Encoding.RegisterProvider to Program.cs.

static void Main()
{
System.Text.Encoding.RegisterProvider(System.Text.CodePagesEncodingProvider.Instance);Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new DesignerForm());
}

System.MissingMethodException occurs when running the Windows Forms Viewer on the .NET Core 3.1

Symptoms: When running the Windows Forms Viewer on the .NET Core 3.1 Runtime to preview a section report, the "System.MissingMethodException" exception occurs.

Cause: This is a Microsoft compatibility issue.

Solution: You should change the PowerToolsLicenseProvider.RetrieveLicenseFromAppDomainCache() method to avoid using the
AppDomain.CurrentDomain.SetupInformation.LicenseFile property while running the Windows Forms Viewer on the .NET Core 3.1.

An exception "Could not load type 'System.Data.OleDb.OleDbFactory' from assembly 'System.Data'" occurs when running the Windows Forms Viewer on the .NET
Core 3.1 Runtime

Symptoms: When running the Windows Forms Viewer on the .NET Core 3.1 Runtime to preview a section report, the "Could not load type 'System.Data.OleDb.OleDbFactory'
from assembly 'System.Data'" exception occurs.

Cause: This is a Microsoft compatibility issue.

Solution: You must disable the use of OleDbFactory in the DataExtensionsConfigurationHandler.GetDefaultDataProviders() method.

An exception "System.IO.FileNotFoundException' object" occurs when running a section report in an ASP.NET Core 3.1 project

Symptoms: When running a section report in an ASP.NET Core 3.1 project, the "System.IO.FileNotFoundException' object" exception occurs.

Cause: Due to the Windows Forms dependancy of section reports, you need to add more references to the project.

Solution: To avoid this situation, please do the following.

1. Install the Microsoft.Windows.Compatibility NuGet Package.
2. Add the following code to the project csproj file.

<ItemGroup>
<FrameworkReference Include="Microsoft.WindowsDesktop.App" />
</ItemGroup>

3. Add the following code to Startup.cs.

Startup.cs

public void ConfigureServices(IServiceCollection services)
{Encoding.RegisterProvider(CodePagesEncodingProvider.Instance); }

4. Build and run the solution.

Page/RDL Report Troubleshooting
An expression containing a numeric field name does not display any data at run time.

Symptoms: An expression containing a numeric field name does not display any data at runtime.

Cause: Visual Basic syntax does not allow an identifier that begins with a number.

i.e. =Fields!2004.Value

Solution: Make the numeric field name a string.

i.e. =Fields("2004").Value or, =Fields.Item("2004").Value

DataSet field in PageHeader of an RDL report

Symptoms: Cannot set a dataset field (bound field) in the PageHeader of an RDL report.

Cause: ActiveReports is based on the RDL 2005 specifications, therefore, referencing datasets in the PageHeader of an RDL report is not supported.

Solution: There is no direct way to add a DataField in a PageHeader, however, as a workaround you can create a hidden report parameter that is bound to your dataset and
has the default value set to your expression. For example, ="*" & First(Fields!name.Value). You can then use this parameter in the page header.
Alternatively, you can use a Page report, which lets you place data fields anywhere on a page.

ActiveReports 14 1346

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/api/system.text.encoding.registerprovider?view=netcore-3.1

Exception thrown when using Viewer.Document property

Symptoms: An exception is raised when Viewer.Document ('Document Property' in the on-line documentation) is used with a page report or RDL report.

Cause: Document property is available for section reports only.

Cannot add assembly reference created in .NET Framework 4.0 or above in Page Reports/RDL Reports

Symptoms: Cannot add assembly reference created in .NET Framework 4.0 or above in Page Reports/RDL Reports of the stand-alone designer application.

Cause: The Stand-alone Designer application was created using the .NET 3.5 framework, therefore it cannot load .NET 4.0 assemblies.

WPF Viewer Troubleshooting
Toolbox for WPF Viewer is missing from WPF Project

Symptoms: The Toolbox for WPF Viewer does not appear in a new WPF project in Visual Studio on adding WPF package, GrapeCity.ActiveReports.Viewer.Wpf.

Cause: It is a Visual Studio limitation where XAML Hot Reload does not work correctly.

Solution: The XAML Hot Reload should be enabled. To enable the XAML Hot Reload, follow these steps.

1. Go to Debug > Options > General.
2. Select options Enable UI Debugging Tools for XAML and Enable XAML Hot Reload.
3. Open MainWindow.xaml. The Toolbar should now display the WPF Viewer tab.

See Troubleshooting XAML Hot Reload for more information.

TargetInvocationException occurs when running the WPF browser application

Symptoms: When running the WPF browser application, the TargetInvocationException occurs.

Cause: The WPF browser application does not support Partial Trust.

Solution: Make sure that the WPF browser application uses Full Trust. To do that, in the Visual Studio Project menu, go to YourProject Properties and on the Security tab,
under EnableClickOnce security settings, select the option This is a full trust application.

Design-time error appears on adding the WPF Viewer to the xaml page if the project is targeting .NET Core 3.1.

Symptoms: A design-time error appears on adding the WPF Viewer to the xaml page if the project is targeting .NET Core 3.1.

Cause: This is the .NET limitation.

Solution: To resolve this problem, add the Microsoft.Windows.Compatibility NuGet package to the project and then rebuild the project.

Memory Troubleshooting

Note: According to Microsoft it is not necessary to call GC.Collect and it should be avoided. However, if calling GC.Collect reduces the memory leak, then this indicates
that it is not a leak after all. A leak in managed code is caused by holding a reference to an object indefinitely. If ActiveReports is holding a reference to an object, then
the object cannot be collected by the garbage collector.

Symptoms: ActiveReports is consuming too much memory; CPU usage always goes to 100% when using ActiveReports.

Cause: There are several reasons why too much memory may be consumed:

The report is not being disposed of properly

Cause: The report is not being disposed of properly. The incorrect syntax is as follows.

C# code.

//Incorrect!
rpt.Dispose();
rpt=null;

Visual Basic code.

'Incorrect!
rpt.Dispose()
rpt=Nothing

Solution: The correct syntax for disposing of a section report is as follows.

C# code.

//Correct!
rpt.Document.Dispose();
rpt.Dispose();
rpt=null;

Visual Basic code.

ActiveReports 14 1347

Copyright © 2020 GrapeCity, Inc. All rights reserved.

https://docs.microsoft.com/en-us/visualstudio/xaml-tools/xaml-hot-reload-troubleshooting?view=vs-2019

'Correct!
rpt.Document.Dispose()
rpt.Dispose()
rpt=Nothing

Machine.Config MemoryLimit setting is insufficient

Cause: Large reports in an ASP.NET application can easily use up the 60% of memory allocated to the ASP.NET worker process by default, which produces an error. In
Machine.Config, MemoryLimit specifies the maximum allowed memory size, as a percentage of total system memory, that the worker process can consume before ASP.NET
launches a new process and reassigns existing requests.

Solution: Set the CacheToDisk property of the document to True.

This caches the report to disk instead of holding it in memory. This setting is also detected by the PDF Export, which follows suit, but any other exports still consume memory.
Although it is not advised, the ASP.NET worker process memory allocation can also be changed in your Machine.Config file, which is located in a path like:
C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319\Config\. Search the Machine.Config file for memoryLimit, which is located in the processModel.

Report never finishes processing

Cause: In some cases, very large reports can consume so much memory that the report never finishes processing. Some of the things that can cause this include:

1. Many non-repeating images, or a high resolution repeating image
2. Instantiating a new instance of a subreport each time the format event of a section fires
3. Using a lot of subreports instead of grouping with joins in the SQL query
4. Pulling in all of the data when only a few fields are needed (e.g. Select * from db instead of Select First, Last, Address from db)

Solution: In cases where the report is too large to run any other way, the CacheToDisk property may be set to True. This property should only be used when there is no
other way to run the report to completion. Before resorting to this method, please see the Optimizing Section Reports topic.

Task manager indicates the current "working set" of the process

Cause: If inflated memory usage is seen in the Task Manager it is not necessarily in use by the code. Task manager indicates the current "working set" of the process and,
upon request, other processes can gain access to that memory. It is managed by the Operating System.

Solution: For an example of some working set behavior anomalies (which are considered normal), create a WinForms application and run it. Look in Task Manager at the
working set for that process (it should be several megabytes), then minimize and maximize the form and notice that the working set reclaims to <1MB. Obviously, the code
was not using all that memory even though Task Manager showed that it was allocated to that process. Similarly, you'll see ASP.NET and other managed service processes
continue to gradually grow their working set even though the managed code in that process is not using all of it. To see whether this is the case, try using the two lines of
code below in a button Click event after running the project.

System.Diagnostics.Process pc = System.Diagnostics.Process.GetCurrentProcess();
pc.MaxWorkingSet = pc.MinWorkingSet;

If that reclaims the memory then the Operating System trimmed the working set down to the minimum amount necessary and this indicates that the extra memory was not
actually in use.

Web Applications Troubleshooting
PDF opens in a new window when an application contains the WebViewer

Symptoms: When using Internet Explorer and Acrobat Reader to view a page containing a WebViewer in PDF mode, the resulting PDF always opens in a new window.

Cause: Acrobat Reader is only available in a 32-bit version. When the 64-bit version of Internet Explorer is used, it opens up an instance of the 32-bit version of Internet
Explorer so that the plug-in and the PDF can load, rendering the resulting PDF in a new window.

Solution:

Install a PDF reader plug-in that is 64-bit compatible.
OR
Use the 32-bit version of Internet Explorer.

The report in the HTML viewer type does not look exactly like the other viewer types

Symptoms: The report in the HTML viewer type does not look exactly like the other viewer types.

Cause: The HTML format is not WYSIWYG. It does not support the following items:

Line control
Control borders
Shapes (other than filled rects)
CrossSectionBox and CrossSectionLine controls
Overlapping controls

Solution: Try to avoid using the above items in reports which are shown in HTML format.

Blank reports with the AcrobatReader viewer type on the production web server

Symptoms: In the WebViewer, reports render correctly with the HTML ViewerType but they show up blank with the AcrobatReader ViewerType on the production web server.

ActiveReports 14 1348

Copyright © 2020 GrapeCity, Inc. All rights reserved.

Cause: .ArCacheItem is not set up in your IIS extension mappings.

Solution:

1. From the Start menu, choose Control Panel, then Administrative Tools, then Internet Information Services.
2. Right-click your Default Web Site and choose Properties.
3. On the Home Directory tab, click the Configuration button.
4. On the Mapping tab, check the Extension column to see whether .ArCacheItem appears. If not, click Add.
5. In the Add/Edit Application Extension Mapping dialog that appears, click Browse and navigate to (Windows)\Microsoft.NET\Framework\vx.0.
6. In the Open dialog, change Files of type to Dynamic Link libraries (*.dll).
7. Select aspnet_isapi.dll and click Open.
8. In the Extension textbox type .ArCacheItem.
9. Click the Limit to radio button and type GET,HEAD,POST,DEBUG.

10. Ensure that the Script engine check box is selected and the Check that file exists check box is cleared.
11. Click OK.

A web page gets refreshed on performing any action in the WebViewer

Symptoms: A Web browser gets reloaded on performing any action in the WebViewer.
Cause: This is the default behavior of WebForms with the WebViewer.
Solution: Make sure that the WebViewer control is placed outside the Form tag with a runat=server attribute.

PlatformNotSupportedException occurs on using WebViewer, JSViewer, and Web Designer

Symptoms: PlatformNotSupportedException occurs in Web Applications using WebViewer, JSViewer, and Web Designer in Classic Pipeline Mode.
Cause: The WebViewer, JSViewer, and Web Designer are supported only in the Integrated pipeline mode.
Solution: Change the Application Pool mode as follows:

1. Open IIS Manager.
2. Go to Application Pools.
3. Select the application pool where your app runs.
4. Select Basic Settings.
5. In the Edit Application Pool dialog, change the Managed Pipeline Mode to Integrated.

The "Report not found" error occurs when a report name contains special symbols

Symptoms: When you specify a report name with special symbols, e.g. webViewer.ReportName="Folder\Report.rdlx", you may get a "Report not found" error.

Cause: Additional code needs to be added to the Web.config file to have the WebViewer use report names with the corresponding folders.

Solution: Add the following code to the Web.config file.

Paste inside the Web.config file

<system.web>
<httpRuntime requestPathInvalidCharacters="" requestValidationMode="2.0"/>
<pages validateRequest="false"/>
</system.web>

<system.webServer>
<security>
<requestFiltering allowDoubleEscaping="true"/>
</security>
</system.webServer>

The 'The type or namespace name 'Linq' does not exist in the namespace 'System'' error occurs when adding the WebViewer control in an ASP.NET Web Site
project

Symptoms: When you add the WebViewer control in an ASP.NET Web Site project, the 'The type or namespace name 'Linq' does not exist in the namespace 'System' error
occurs.

Cause: This is a known NuGet limitation.

Solution: You should install or upgrade the Microsoft.CodeDom.Providers.DotNetCompilerPlatform NuGet package.

"This application will be terminated because it was built without a license for PageReport" error occurs on deploying an application on Azure Functions
Application.

Symptoms: When you deploy an application in an Azure Functions application, error "This application will be terminated because it was built without a license for
PageReport" occurs.

Cause: This is because the application being deployed is not licensed properly.

Solution: You should follow the steps provided in the Licensing Compiled Code topic for correctly licensing the application before deploying it to the Azure Functions
application.

ActiveReports 14 1349

Copyright © 2020 GrapeCity, Inc. All rights reserved.

	Table of Contents
	ActiveReports 14 User Guide
	Welcome to ActiveReports 14
	What's New
	ActiveReports Editions
	Product Requirements
	Install ActiveReports
	Available Packages
	Manage ActiveReports Dependencies
	GrapeCity Copyright Notice
	End User License Agreement
	Redistributable Files
	Open Source Software

	License Your ActiveReports
	License Types
	Licensing a Developer Machine
	Licensing a Project
	Licensing Compiled Code
	Licensing with Pipelines
	Licensing Errors
	Contacting Support

	Quick Start
	Upgrade Reports
	Breaking Changes
	Migration Types
	Migrate from Previous Versions
	ActiveReports Version Up History
	ActiveReports File Converter
	Migrate to ActiveReports 14
	Reference Migration
	License Migration
	ds Variable
	WebViewer Migration
	ActiveX Viewer Migration
	Compatibility Guidelines

	Migrate Execution Environment
	Migrate from ActiveReports 2 COM
	ActiveReports 2 COM versus ActiveReports 14
	Coexistence of ActiveReports Designers

	Import Reports
	Import Crystal Reports/MS Access Reports
	Import Excel
	Import RPX

	Report Types
	Page Report
	Report Definition Language (RDL) Report
	Master Reports (RDL)

	Code-Based Section Report
	XML-Based Section Report

	Preview Reports
	Windows Forms
	Customize the Viewer ToolStrip
	Customize the Viewer Control

	ASP.NET
	Getting Started with the WebViewer
	Using the HTML Viewer
	Using Javascript with the HTML Viewer

	JavaScript
	JSViewer API
	Configure JSViewer
	Previewing Reports in JSViewer

	WPF
	View Reports in WPF Viewer

	Medium Trust Support
	Viewing Reports from Different Domains using CORS

	Print Reports
	Advanced Print Options
	Print Methods
	Print in JSViewer
	PDF Print Presets

	Export Reports
	Rendering Extensions
	Rendering to HTML
	Rendering to PDF
	Rendering to Images
	Rendering to XML
	Rendering to Excel
	Rendering to Word
	Rendering to CSV
	Rendering to JSON
	Editable PDFs

	Export Filters
	HTML Export
	PDF Export
	Text Export
	RTF Export
	Excel Export
	TIFF Export
	Exporting Reports using Export Filters
	Basic Spreadsheet with SpreadBuilder
	Custom Font Factory (Pro Edition)
	Font Linking

	Concepts
	ActiveReports Designer
	Design View
	Report Menu
	Designer Tabs
	Designer Buttons
	Page Tabs
	Toolbar
	Report Explorer
	Exploring Page and RDL Reports
	Exploring Section Reports

	Toolbox
	Properties Window
	Rulers
	Scroll Bars
	Snap Lines
	Zoom Support

	ActiveReports Web Designer
	Set up Web Designer
	Designer Server API Object
	Designer Options Object
	Create a Simple Web Designer Sample

	Designer Control (Pro Edition)
	Standalone Viewers
	Standalone ActiveReports Designer
	Page Report/RDL Report Concepts
	Toolbox
	Banded List
	Barcode
	Bullet
	Chart
	Chart Types
	Column Chart
	Bar Chart
	Line Chart
	Area Chart
	Pie Chart
	Spiral Chart
	Polar Chart
	Other Chart Types

	Classic Chart
	Chart Data Dialog

	CheckBox
	Container
	Formatted Text
	Image
	InputField
	Line
	List
	Map
	Overflow Place Holder
	Shape
	Sparkline
	Subreport
	Table
	Table of Contents
	TextBox
	Tablix
	Tablix Reports

	Data Sources and Datasets
	Report Data Source Dialog
	Microsoft SQL Client Provider
	CSV Provider
	Reports with CSV Data

	DataSet and Object Providers
	JSON Provider
	Reports with JSON Data

	Microsoft ODBC Provider
	Microsoft OLeDb Provider
	XML Provider
	Reports with XML Data

	DataSet Dialog
	Nested Data Regions Bound to Different Data

	Expressions
	Common Values
	Common Functions
	Expressions in Reports
	LookupSet Function in Data Regions

	Layers
	Working with Layers
	View, Export or Print Layers
	Tracing Layers

	Report Appearance
	Styles
	Themes

	Report Dialog
	Fixed Page Dialog
	Data Visualizers
	Icon Set
	Range Bar
	Range Bar Progress
	Data Bar
	Gradient
	Hatch
	Color Scale 2
	Color Scale 3

	Custom Resource Locator

	Section Report Concepts
	Section Report Toolbox
	Label
	TextBox (Section Report)
	CheckBox (Section Report)
	RichTextBox
	Shape (Section Report)
	Picture
	Line (Section Report)
	Page Break
	Barcode (Section Report)
	Subreport (Section Report)
	Ole Object
	Chart
	Chart Wizard
	Chart Types (Section Reports)
	Area Chart
	2D Area Charts
	3D Area Charts

	Bar Chart
	2D Bar Charts
	3D Bar Charts

	Line Chart
	2D Line Charts
	3D Line Charts

	Pie and Doughnut Charts
	2D Pie/Doughnut Charts
	3D Pie/Doughnut Charts

	Financial Chart
	2D Financial Charts
	3D Financial Charts

	Point and Bubble Charts
	2D Point/Bubble Charts

	Chart Series
	Chart Appearance
	Chart Effects
	Colors
	3D Effects
	Alpha Blending
	Lighting

	Chart Control Items
	Chart Annotations
	Chart Titles and Footers
	Legends
	Markers
	Label Symbols
	Constant Lines and Stripes

	Chart Axes and Walls
	Standard Axes
	Custom Axes
	Gridlines and Tick Marks

	Report Info
	CrossSection Controls

	Section Report Structure
	Section Report Events
	Designing Code-based Section Reports in .NET Core
	Scripting in Section Reports
	Report Settings Dialog
	Date, Time, and Number Formatting
	Optimizing Section Reports
	CacheToDisk and Resource Storage

	Visual Query Designer
	Query Building With Visual Query Designer
	Tables And Relations

	Using the Visual Query Designer

	Interactive Features
	Parameters
	Filtering
	Drill-Down Reports
	Linking in Reports
	Document Map
	Sorting
	Annotations

	Report Parts
	Create report using Report Parts

	Common Concepts
	Text Justification
	Multi Line in Report Controls
	Line Spacing and Character Spacing
	Shrink Text to Fit in a Control
	Condense Characters to Fit in a Control

	Localization
	Cultures

	Section 508 Compliance

	How To
	Page Report/RDL Report How To
	Report Data
	Connect to a Data Source
	Add a Dataset
	Work with Local Shared Data Sources
	Bind a Page Report to a Data Source at Run Time
	Use Dynamically Built JSON Data Source

	Report Controls
	Work with Map
	Create a Map
	Add Data
	Work with Layers
	Use Layers
	Use a Polygon Layer
	Use a Point Layer
	Use a Line Layer
	Use a Tile Layer
	Add a Custom Tile Provider

	Use Color Rule, Marker Rule and Size Rule

	Work with Images
	Add TableOfContents
	Merge Cells in a Data Region
	Add Totals and Subtotals in a Data Region
	Set Fixed Size of a Data Region

	Manage Data
	Group Data
	Set Detail Grouping In Sparklines
	Sort Data
	Set Filters

	Page/RDL Report Scenarios
	Create Top N Report
	Create Red Negatives Report
	Create Green Bar Report
	Create a Bullet Graph
	Create a Whisker Sparkline
	Create and Use a Master Report (RDL Report)
	Merge Multiple Reports

	Interactivity
	Add Parameters
	Add a Multi-Value Parameter
	Add a Cascading Parameter
	Set a Hidden Parameter

	Add Hyperlinks
	Add Bookmarks
	Create a Drill-Down Report
	Set a Drill-Through Link
	Allow Users to Sort Data in the Viewer

	Common Tasks
	Add Items to the Document Map
	Change Page Size
	Add Code to Layouts Using Scripts
	Freeze Rows and Columns (RDL Report)
	Add Page Numbers
	Add Page Breaks in RDL (RDL Report)

	Section Report How To
	Report Data
	Bind Reports to a Data Source
	Modify Data Sources at Run Time

	Report Controls
	Add Field Expressions
	Display Page Numbers and Report Dates
	Load a File into a RichTextBox Control
	Use Custom Controls on Reports

	Section Report Scenarios
	Create Top N Reports
	Create a Summary Report
	Create Green Bar Reports

	Interactivity
	Add Parameters in a Section Report
	Add Bookmarks
	Add Hyperlinks
	Add and Save Annotations

	Common Tasks
	Inherit a Report Template
	Change Ruler Measurements
	Conditionally Show or Hide Details
	Use External Style Sheets
	Insert or Add Pages
	Add Groups
	Embed Subreports
	Add Code to Layouts Using Script
	Save and Load RDF Report Files
	Save and Load RPX Report Files
	Print Multiple Copies, Duplex and Landscape

	Localize and Deploy
	Localize Reports, TextBoxes, and Chart Controls
	Localize ActiveReports Resources
	Localize the End User Report Designer
	Localize the Viewer Control
	Deploy Windows Applications
	Deploy Web Applications
	Configure HTTPHandlers in IIS 8 and IIS 10

	Samples and Walkthroughs
	Samples
	Samples
	Advanced
	Page and RDL Reports
	Calendar
	Custom Chart
	Custom Data Provider
	Custom Pdf Export
	Custom Resource Locator
	Custom Tile Provider
	Svg Image
	RTF Control
	Oracle Data Provider

	Section Reports
	Custom Drill Through
	Custom Word Export

	API
	Page and RDL Reports
	Create Report
	Digital Signature Pro
	Export
	Layers
	Report Wizard
	Stylesheets

	Section Reports
	Charting
	Cross Section Controls
	Cross Tab Report
	Custom Annotation
	Digital Signature Pro
	Export
	Inheritance
	Print Multiple Pages per Sheet
	Style Sheets
	Sub Report
	Summary

	Data Binding
	Page and RDL Reports
	CSV Data Source
	DataSet DataSource
	Json Data Source
	Object Data Source
	OData Data Source
	OleDb Data Source
	Xml Data Source

	Section Reports
	Bound Data
	IList Binding
	LINQ
	Unbound Data
	XML

	Designer Pro
	Map
	End User Designer
	Table of Contents

	Desktop
	Reports Gallery
	Win Viewer
	WPF Viewer

	Web
	Custom Preview

	Web Samples
	JSViewer Angular(Core)
	JSViewer MVC
	JSViewer MVC(Core)
	JSViewer React(Core)
	JSViewer Vue(Core)
	JSViewer Blazor
	Web Designer MVC
	Web Designer MVC(Core)
	Web Designer Angular(Core)
	WebViewer Pro

	Online Samples
	FinancialPortfolio_Angular
	Plant Performance_Angular
	ReportsGallery_Angular

	Walkthroughs
	Page Report/RDL Report Walkthroughs
	Data
	Master Detail Reports
	Reports with Parameterized Queries
	Reports with Stored Procedures
	Multiple Datasets in a Data Region

	Layout
	Banded List Reports
	Collate Multiple Copies of a Report
	Columnar Layout Reports (RDL)
	Overflow Data in a Single Page(Page Report)
	Overflow Data in Multiple Pages(Page Report)
	Recursive Hierarchy Reports
	Single Layout Reports
	Subreports in Page/RDL Reports

	Chart
	Column Charts
	Composite Charts

	Funnel Charts
	Gantt Charts
	Column Charts (Classic Charts)
	Composite Charts (Classic Charts)

	Map
	Reports with Map

	Tablix
	Grouping in Tablix
	Cell Merging in a Row Group Area in Tablix

	Export
	Custom Web Exporting

	Preview
	Drilldown Reports
	Drill-Through Reports
	Parameterized Reports
	Reports with Bookmarks
	Reports with TableOfContents

	Advanced
	Reports with Custom Code
	Custom Resource Locator
	Custom Data Provider

	Section Report Walkthroughs
	Data
	Basic Data Bound Reports
	Basic XML-Based Reports (RPX)
	Run-Time Data Sources
	Bind a Section Report to CSV Data Source

	Layout
	Address Labels
	Columnar Reports
	Group On Unbound Fields
	Mail Merge with RichText
	Overlaying Reports (Letterhead)
	Run-Time Layouts
	Subreports with XML Data
	Subreports with Run-Time Data Sources

	Chart
	Bar Chart
	3D Pie Chart
	Financial Chart
	Unbound Chart

	Export
	Custom Web Exporting (Std Edition)
	Custom HTML Outputter (Std Edition)

	Script
	Script for Simple Reports
	Script for Subreports

	Parameters
	Using Parameters in Sub Reports
	Parameters for Charts

	Web
	Document Web Service
	Document Windows Application

	Common Walkthroughs
	Professional
	Creating a Basic End User Report Designer (Pro Edition)
	Customizing the WebViewer UI

	Web
	DataSet Web Service
	DataSet Windows Application

	Troubleshooting

